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Abstract. The problem of constructing quasi equidistant and reflected binary 
Gray code sequences and code in a mixed factorial, Fibonacci and binomial 
numeration systems is considered in the article. Some combinatorial construc-
tions and machine algorithms synthesis sequences, based on the method of di-
rected enumeration are offered. For selected parameters of sequences all quasi 
equidistant (for individual cases - reflected) codes with Hamming distance 
equal to 1 are found.  
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1 Introduction  

Coding theory is one of the most important areas of modern applied mathematics. 
Beginning of the formation of mathematical coding theory dates back to 1948, when 
it was published a famous article by Claude Shannon [1]. The growth of codes origi-
nally was stimulated by tasks of communication. Later constructed codes found many 
other applications. Now codes are using to protect data in a computer memory, cryp-
tography, data compression, etc. 

The work is devoted to a rather small, but extremely important for applications 
subset of so-called quasi-equidistant and reflected codes. The class of quasi equidis-
tant codes are sequences of uniform (i.e., containing the same number of bits) of bi-
nary code combinations in which any adjacent (neighboring) code sets (words) are at 
the same Hamming d  distance equal to a fixed number of natural numbers (i.e. d = 
1, 2, …) [2]. Equidistant sets include such codes in which any two words (code com-
binations) are at the same distance d  [3]. 

Finally, we shall refer to the reflected subset quasi equidistant codes with distance 
d =1, the formation of which is based on the principle of mirror reflection? [4]. But if 
we restrict ourselves to only one mirror, the code sequence will contain the original 
sequence, after which is the same sequence just re-written in reverse order, which is 
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unacceptable, since it leads to code repetition. The elimination of repetition can be 
provided by initial expansion of the number of digits combinations. The essence of 
the "mirror" reflection of the expansion is explained below as an example of canoni-
cal reflected Gray codes and in other sections of this article. 

The main objective of this study is to develop algorithms for constructing quasi-
equidistant and reflected binary Gray codes as well as code sequences in a mixed 
factorial, Fibonacci and binomial bases. The method of direct enumeration is the base 
of algorithms of computer sequences synthesis. 

2 Basic of Number System 

The history of discrete mathematics and computer science is directly related to the 
development and introduction of newer principles of representation and encoding 
digital information, which are based on the numeration system of numbers. By a nu-
meration system we understand the way of image sets of numbers using a limited set 
of characters that form its alphabet, in which the characters (elements of the alphabet) 
are located in the established order, occupying a certain positions [5]. Any numeration 
system should be composed of a finite set of non-negative numbers — a range that it 
encodes. It always includes the number 0 and then follows the natural numbers start-
ing with 1 [6].  

There are various numeration system (as well as methods for their classification), 
whose number is constantly growing. All systems can be divided into the following 
main classes: positional, not positional and mixed. In the positional numeration sys-
tems the same numeric characters (digit) has different meanings in its description 
depending on the location (level) where it is resides.   

By positional numeration system is generally understood the p numeration system, 
which is defined by an integer 1p   — is called a base of numeration system. Un-

signed integer N  in p  numeration system is represented as a finite linear combina-

tion of powers of 

1

n
k

k
k

N p


   , (1) 

where k  are integers satisfying the inequality 0 ( 1)k p    , n  the number of 

digits of the number. The simplest examples of positioning systems (1) can be binary, 
decimal, and other numeration systems. 

 In no positional numeration systems the value which indicated by the digit does 
not depend on the position in a number. At the same time the system may impose 
restrictions on the position of numbers, for example, that they are in descending order. 
The Roman and many other systems belong to not positional systems.  

The mixed numeration system is a generalization of the p system, and often refers 
to the positional numeration systems. The base of mixed numeration system is an 
increasing sequence of numbers , 1, 2,kp k   , and each N  number is presented 

like linear combination:  



Binary Quasi Equidistant and Reflected Codes …          313 

 

1

n

k k
k

N p


  , 

there are some restrictions exist for k  coefficient.  

One of the known examples of the mixed system is a factorial numeration system, 
in which the bases are the sequence of factorials !kp k . Another commonly used 

Fibonacci numeration system is a system that is based on Fibonacci numbers. The 
Binomial system in the form in which it is presented in the relevant section of this 
article, we will also include to a mixed numeration system. 

A positive integer is depicted in an arbitrary numeration system as a sequence of 
symbols   1 2 1,n n kN        where  N  - the number representation in this 

numeration system, besides each k  symbol takes kr  bit in general case (if binary 

alphabet is using).  
Note the following general characteristics of quasi equidistant codes with Ham-

ming distance 1d  . Let’s agree each code sequence starts with zero code. And as 
result of this agreement the following code after the zero code should be placed with 
weights 1 and 2, and Further weight codes must alternate even (E) — odd (O) under 
the scheme 

012OEOEE(O) . (2) 

Scheme (2) is a symbolic form of the tree sequence code combinations. Let’s en  

and  on  to be the amount of even and odd code words in a sequence. If the sequence 

(2) ends up with odd code combination this means e on n , and if even —

1e on n  . This becomes evident: 

Statement 1. Inequality 

0 ( ) 1e on n    , (3) 

is a necessary (but not always sufficient) condition for the construction of quasi equi-
distant codes. 

3 Sequences of Gray Codes 

Classic Gray codes [7] may be called canonical, since for arbitrary length sequence of 
combinations are not only quasi equidistant, but also reflected.  Let’s ( )G n  se-

quence of n-bites classical Gray codes. To construct ( 1)n   bites reflected Gray 

Codes, let’s us note as ( 1)rcG n    codes, it is just enough to prefix for each source 

code ( )G n  the 0 digit and 1 to the left of code group ( )RG n constructed by reflected 

(reflex or reverse) mirror of ( )G n  sequence, i.e. 
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( 1) 0 ( ) ||1 ( )R
rcG n G n G n   , (4) 

where || - is a symbol of concatenation (conjunction of sequences). 
According to (4), ( 1) ( 1)rcG n G n   and as a result sequences of Gray codes 

of ( )G n number of digits 2n  are both quasi equidistant and reflected, and besides 

the line of reflection goes through 12n   and 1(2 1)n    code combinations. On the 

basis of the canonical code ( )G n , 2n  , the equidistant Gray codes can be con-

structed. For example, Tab. 1 show the three 12-bit code quasi equidistant sequences, 
one of which corresponds to the canonical version of the Gray code. 

The first six variants of sequences in the table constructed of canonical option 1 as 
a result of a variety column rearrangement saving the Hamming distance 1d   of 
related code combinations.  Variants 7-12 are formed as a result of inverse none zero 
rearrangements of code combinations from appropriate variants 1-6.  

Table 1. Three bit quasi equidistant Gray code 

Variants of sequence 

1 2 3 4 5 6 7 8 9 10 11 12 

000 000 000 000 000 000 000 000 000 000 000 000 

001 100 100 001 010 010 100 001 010 010 001 100 

011 110 101 101 110 011 101 101 110 011 011 110 

010 010 001 100 100 001 111 111 111 111 111 111 

110 011 011 110 101 101 110 011 011 110 101 101 

111 111 111 111 111 111 010 010 001 100 100 001 

101 101 110 011 011 110 011 110 101 101 110 011 

100 001 010 010 001 100 001 100 100 001 010 010 

 

The first six variants of sequences in the table constructed of canonical option 1 as 
a result of a variety column rearrangement saving the Hamming distance 1d   of 
related code combinations.  Variants 7-12 are formed as a result of inverse none zero 
rearrangements of code combinations from appropriate variants 1-6. As follows from 
Tab. 1 the only variants 1 (canonical) and 6 of Gray codes belong to a set of three 
bites reflected codes. At the same time each three bite sequence by (4) statement pro-
duce subset of four bite reflected Gray codes. Thereby it is true: 

Statement 2. All amounts ( )
от ( )GL n  of reflected Gray codes of n number of digits is 

defined by 

( ) , if 2;
( 1)

2 !, if 3.
G

rc

n n
L n

n n


   
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3 Factorial Sequence 

The integer positive number N  in factorial number of numeration system can be 
represented as  

1

!, 0
n

k k
k

N k k


      (5) 

where  1, 2, , ; 0 .kk n k     Extended form of (5) statement is 

1 2 1! ( 1)! 2! 1!n nN n n               , (6) 

Statement (6) is so called numerical, or digital, function [8] of factorial system. 
There are first 120 decimal numbers (Tab. 2) defined by their k coefficients in facto-

rial numeration system. 

Table 2. Binary representations of decimal numbers of factorial numeration system 

N   k Fakt
N  N   k Fakt

N  N   k Fakt
N  N   k Fakt

N  N   k Fakt
N  

0 0 24 100000 48 1000000 72 1100000 96 10000000 

1 1 25 100001 49 1000001 73 1100001 97 10000001 

2 10 26 100010 50 1000010 74 1100010 98 10000010 

3 11 27 100011 51 1000011 75 1100011 99 10000011 

4 100 28 100100 52 1000100 76 1100100 100 10000100 

5 101 29 100101 53 1000101 77 1100101 101 10000101 

6 1000 30 101000 54 1001000 78 1101000 102 10001000 

7 1001 31 101001 55 1001001 79 1101001 103 10001001 

8 1010 32 101010 56 1001010 80 1101010 104 10001010 

9 1011 33 101011 57 1001011 81 1101011 105 10001011 

10 1100 34 101100 58 1001100 82 1101100 106 10001100 

11 1101 35 101101 59 1001101 83 1101101 107 10001101 

12 10000 36 110000 60 1010000 84 1110000 108 10010000 

13 10001 37 110001 61 1010001 85 1110001 109 10010001 

14 10010 38 110010 62 1010010 86 1110010 110 10010010 

15 10011 39 110011 63 1010011 87 1110011 111 10010011 

16 10100 40 110100 64 1010100 88 1110100 112 10010100 

17 10101 41 110101 65 1010101 89 1110101 113 10010101 

18 11000 42 111000 66 1011000 90 1111000 114 10011000 

19 11001 43 111001 67 1011001 91 1111001 115 10011001 

20 11010 44 11110 68 1011010 92 1111010 116 10011010 

21 11011 45 111011 69 1011011 93 1111011 117 10011011 

22 11100 46 111100 70 1011100 94 1111100 118 10011100 

23 11101 47 111101 71 1011101 95 1111101 119 10011101 



316          E. Beletsky and A. Beletsky 

Let’s mark ( )Ф k  sequence of n bite factorial codes. In the case where number of 

digits of code combination from code set ( )Ф k less than k , it is prefixed with required 

amount of zeros. Let’s ( )dФ k  sequence of quasi equidistant k  bite factorial codes 

with Hamming distances among related combinations equal to d . Based on data from 
Tab. 2 it is easy to create (Tab. 3) sequences 1( )Ф k for 1k   (singular case), and also 

2k   and 3k   created by columns rearrangement of base sequences (variant 1). 

Table 3. Sequences of quasi equidistant Factorial Codes 

1( )Ф k  

1k   2k   3k   

1 1 2 1 2 3 4 5 6 

0 00 00 000 000 000 000 000 000 

1 01 10 010 010 100 100 001 001 

 11 11 011 110 101 110 011 101 

 10 01 001 100 001 010 010 100 

  101 101 011 011 110 110 

  100 001 010 001 100 010 

Table 3 illustrates one possible method of synthesis of quasi equidistant codes. Its 
idea is in the following. At the very first stage the base sequence of quasi equidistant 
codes of n number of digits is created by means of some method (for example, the 
method of direct search which is examined below). On the second stage a variety of 
all possible rearrangements of base sequence columns (check out Tab. 3, the corre-
spondent values are of number 1) is done which results in formation of n! different 
quasi equidistant codes. And finally on the third stage the sequences which contain 
restricted code combinations are excluded from n! sequences. Such combinations are 
110 codes from Tab. 3 highlighted with bold type. So from six three bite sequences 
the only two generate quasi equidistant factorial sequences.  Starting from 4k   apart 
from quasi equidistant sets it is possible to create reflected factorial codes ( )rcФ k . 

Starting from 4k   apart from quasi equidistant sets it is possible to create reflected 
factorial codes ( )rcФ k . The algorithm of reflected codes creation depends on their 

number of digits. In particular, here is easily provable by direct verification. 

Statement 3. The set of uniform reflected factorial codes defined by recurrence re-
lation 

1 1( ) 0 ( 1) ||1 ( 1)R
rcФ k Ф k Ф k   , 

Let’s discuss the problem of synthesis of quasi equidistant factorial codes with a 

number of digits 4, 7n  . So taking the data from Tab. 3 let’s construct a preliminary 

weights distribution of n  bite code combinations resulting in Tab. 4. The amount of 
codes with even and odd weights in current table for all variants n  are satisfying 
inequality (3) and this means, that all required conditions for quasi equidistant facto-
rial codes creation are met.  
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Schema (2) of uniform codes (4)Ф  weights interchanges, according to Tab. 4, is 

012O2O2O2O2O (7) 

Table 4. Weights distribution of code words ( )Ф n  

The bit of code combinations Code 
weight 4n   5n   6n   7n   

0 1 1 1 1 

1 4 5 6 7 

2 5 9 14 20 

3 2 7 16 30 

4  2 9 25 

5   2 11 

6    2 

en  6 12 24 48 

on  6 12 24 48 

In all 12 24 48 96 

At that from 5 odd elements (O) of sequence (7) two elements are equal 3 and the 
rest – 1. Which means, that there are ten possible variants of quasi equidistant facto-
rial code trees of number of digits 4n  , from whose the one, for depiction, is shown 
on Fig. 1. 

 

Fig. 1. Tree 1(4)Ф  of sequence 012321232121 

The symbolic form of the tree of code combination sequence 1(5)Ф can be repre-

sented by schema 

012OEOEOEOEOEOEOEOEOEOEO , (8) 

One of variants is shown on Fig. 2. 

 

Fig. 2. The variant of tree sequence 1(5)Ф  
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Let’s go to validation to the whole amount of trees variants 1(5)Ф . First of all pay 

attention (Fig. 2) the code combinations with weight of 4 must reside between codes 
with weights equal 3. This is required to provide a distance between related combina-
tions equal to 1. Merge code pairs with weights equal to 3 among whose code with 
weights equal to 4 are reside. By that we can get rid of two code pairs with weights 3 
and 4 in column 5n   Tab. 4 and schema (8) rewrite as 

012O2O2O2O2O2O2O2O2O . (9) 

There are group of nine odd (O) code combinations which contains four codes with 
weight equal to 1 and five with weight equal to 3 in the schema (9). It is evident the 
126 variant of not complete trees of sequence  1(5)Ф  exists, equal to number of nine 

by four combinations. And now take into consideration that in each of 126 variants of 
symbolic form (9) because of the operation, inversed to “merge” operation described 
above, it is possible to restore entire schemas of trees (8). Because of 10 possible 
methods of inverse operation means the entire amount of trees 1(5)Ф  construction 

equal to 1260. Performing by the same method validation of amount of trees Ф(6)L  

of 1(6)Ф sequences we get Ф(6)L =1513512. With increasing of number of digits n  

the complexity of combinatorial validation Ф( )L n  and amount of trees 1( )Ф n dra-

matically increases. For example, all 10 variants of trees 1(4)Ф  are shown in Tab. 5. 

Table 5. Trees 1(4)Ф
 

№ Tree variant  № Tree variant  

1 012323212121 6 012123212321 

2 012321232121 7 012123212123 

3 012321212321 8 012121232321 

4 012321212123 9 012121232123 

5 012123232121 10 012121212323 

First of all we construct ranged by weights v  sequence of uniform codes 
(4)Ф (Tab. 6). 

Table 6. Ranged (4)Ф  codes  

Code weight v  
№ 

0 1 2 3 

1 0000 0001 0011 0111 

2  0010 0101 1011 

3  0100 0110  

4  1000 1001  

5   1010  
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In correspondence with a schema of sixth tree variant (Tab. 5) the first two code 
sequences, which will be called layers of tree branch, choose 0000 and 0001 codes. 

We could choose 0010 layer instead of 0001. The third layer to choose would be a 
code with weight equal to 2, the one which consist of 0001 code with Hamming dis-
tance equal to 1. Suitable ones are codes in columns with 1, 2 and 4 numbers of Tab. 
6. The code with smaller number will be considered as a base, the rest – alternative. 
Keep moving the same way with codes choosing for 1(4)Ф  sequence, using the 

schema of chosen tree, we have a Tab. 7.  

Table 7. Synthesis of of 1(4)Ф  branch 

№ Code weight Base code Alternative code 
1 0 0000   
2 1 0001 0010  
3 2 0011 0101 1001 
4 1 0010   
5 2 0110   

The ninth layer of tree under synthesis should be a code with weight equal to 2, 
moreover it must reside from previous code with distance equal to 1. 

But there is no such a code, which were not used in Tab. 6. In order to cope with 
this deadlock we will do the following. We will go up through columns of and will do 
a substitution in this row with a nearest alternative code located from the right of it. In 
this case we should substitute base code 0011 with alternative code 0101 and after-
wards continue the synthesis procedure for 1(4)Ф . An example of quasi equidistant 

codes 1(4)Ф synthesized by method of direct enumeration is shown in Tab. 8. 

Table 8. 1(4)Ф  Sequences, correspondent to 012321212321 tree 

The branch of the tree Number 

of  tiers 
Tree 

1 2 3 4 5 6 7 8 9 10 

0 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

1 1 0001 0001 0010 0010 0010 0010 0100 0100 0100 0100 

2 2 1001 1001 0011 0011 1010 1010 0101 0101 1100 1100 

3 3 1011 1101 1011 1011 1011 1011 1101 1101 1101 1101 

4 2 0011 0101 1010 1010 0011 0011 1100 1100 0101 0101 

5 1 0010 0100 1000 1000 0001 0001 1000 1000 0001 0001 

The branch of the tree Number 

of  tiers 
Tree 

1 2 3 4 5 6 7 8 9 10 

6 2 1010 1100 1001 1100 0101 1001 1001 1010 0011 1001 

7 1 1000 1000 0001 0100 0100 1000 0001 0010 0010 1000 

8 2 1100 1010 0101 0101 1100 1100 0011 0011 1010 1010 

9 3 1101 1011 1101 1101 1101 1101 1011 1011 1011 1011 

10 2 0101 0011 1100 1001 1001 0101 1010 1001 1001 0011 

11 1 0100 0010 0100 0001 1000 0100 0010 0001 1000 0010 
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4 Fibonacci Sequences 

Fibonacci codes are generalized concept of classical binary code [9]. Any nonnega-
tive integer 0,1, 2,N   …  can  be  exclusively  represented  by a numerical Fibo-

nacci function  

1 1 2 2 1 1n n n n k kN F F F F F              . (10) 

Besides the sequence { k } in (1) doesn’t contain pairs of neighbor unities which 

are provided by equivalent conversion called “folding’ operation: 011 100 . This 
operation makes it possible to represent Fibonacci number as so called “minimal” 
form, the code combination of which will have minimal weight.  

For example, [10], 

01111011001 10011100001 10100100001 . (11) 

The codes which are underlined in example (11) are codes for which folding opera-
tion was performed. As it follows from this example the folding operations resulted in 
weights decreasing of code combinations. Namely, the amount of units in the final 
code is less than in the original one.  

Using the folding operation it is easy to come to a representational algorithm of 
multidigit binary Fibonacci numbers. As an example let’s consider a method of repre-
sentation of natural sequence of decimal numbers (including zero) by four digits 
numbers of Fibonacci codes. We need to agree to label code numbers from right to 
left assuming the smaller (the very right) number the correspond to number 1, then 
number 2 and so on. We choose such a coding method of first three decimal numbers 
0, 1 and 2: 

  

100 0000  ; 

101 0001 ; 

102 0010.  

 

(12) 

A conversion from decimal number 10k to 10( 1)k   number in Fibonacci codes (la-

bel them as kF  and  1kF   correspondingly) will be performed using a rule: if there is 

0 in a smaller position kF  then it is substituted with 1 in 1kF   code. If there is 1 in a 

smaller position kF  then this 1 goes to the second position and writes as 0 in a 

smaller position. This rule is using in system (12) while conversion from 1F
 
to 2F  . 

Let’s represent number 103 with Fibonacci code. But before we go, following the 

rule described above we will get code 103 00011 which by folding operation would 

be represented in its minimal form  
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103 0100.  (13) 

According to statements (12) and (13), the smaller positions of Fibonacci codes are 
using for decimal numbers 1, 2 and 3 representations correspondingly. Those values 
are generalized by the following recurrent block synthesis algorithm of binary Fibo-
nacci sequences. Let’s ( )F k   is a set of Fibonacci numbers of the same length in-

cluding 0. Then we have:  

Statement 4. A set of k  bite Fibonacci numbers of the same length is defined by 
recurrent correlation 

( ) 10 || ( 2)F k F k  .      (14) 

 
The proving of just formulated statement can be easily performed by a method of 

direct verification. In the right part of (14) the ( 2)F k   set is consisted of ( 2)k    

position numbers. 

From this it is followed that if any subset of Fibonacci numbers, included in 
( 2)F k   , contain digits the number of digits of whose are less than 2k   then those 

numbers are prefixed with required amount of zeros. Algorithm (14) is right for any 
value 2k   . Indeed, if 2k  then  

(2) 10 || (0)F F . 

As long as (0)F  set is empty then (2)F set contains the only Fibonacci digit 10, 

which corresponds to decimal digit 102 .  

There are Fibonacci codes for limited sequence of decimal numbers calculated us-
ing recurrent formula considering initial condition (12) in Tab. 9. Zeros, which are 
located to the left of bigger unit in Fibonacci coders, have been removed. 

You can see values n  in column F  of  Tab. 9, equal to number of codes which 
can be created by a fixed number of binary positions. For example, 3F   means the 
four bite combinations, which contain 1 in its older position, can be created three 
Fibonacci codes. Writing down the values from F column we will get sequence 1, 1, 
2, 3, 5, 8, 13,… which is classical sequence of Fibonacci numbers. 

Now go to estimation of variants of quasi equidistant Fibonacci code trees. For this 
purpose based on data from Tab. 9 let’s create a preliminary table of distribution of 

code combinations weights, included in ( )F k , 4, 7k  , (Tab. 10). By analysis of 

data from Tab. 10 we have the following conclusion. Quasi equidistant sequences of 
four digit Fibonacci numbers are end up with code combinations with weight of 1,  
five or six  number of digits with weight of 2 and seven numbers of digits with odd 
weight equal to 1 or 3. 
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Table 9. Fibonacci numbers 

10k  kF  F  10k  kF  F  10k  kF  F  

0 0  13 100000 21 1000000 

1 1 1 14 100001 22 1000001 

2 10 1 15 100010 23 1000010 

3 100 16 100100 24 1000100 

4 101 
2 

17 100101 25 1000101 

5 1000 18 101000 26 1001000 

6 1001 19 101001 27 1001001 

7 1010 

3 

20 101010 28 1001010 

8 10000   29 1010000 

9 10001   30 1010001 

10 10010   31 1010010 

11 10100   32 1010100 

12 10101 

5 

  

8 

33 1010101 

13 

Table 10. Distribution of code combinations weights ( )F k  

Number of code digits ( k ) All code 

combinations 4 5 6 7 

0 1 1 1 1 

1 4 5 6 7 

2 3 6 10 15 

3 1 4 10 

4   1 

чn  4 7 11 17 

нn  4 6 10 17 

All together 8 13 21 34 

It is not that complicated to perform a calculation ( )FL k of quantity of variants for 

quasi equidistant Fibonacci sequence 1( )F k  trees.  

The result of this calculation for chosen k parameters is shown in Tab. 11. 

Table 11. Power of tree subset 1( )F k  

 Amount of tree variants 1( )F k  

k  4 5 6 7 

( )FL k  1 5 126 205920 

For reflected Fibonacci codes it is right the following 

Statement 5. A set of even k bite reflected Fibonacci codes is defined by recurrent 
correlation  
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от 1 1( ) 00 ( 2) 10 ( 2)RФ k F k F k    ,      (15) 

where 1 ( )RF k  sequence is inversed to 1( )F k  , i.e. the sequence of quasi equidistant 

codes 1( )F k  written in reverse order. 

As an example (Tab. 12) of calculated using a computer a branch of one tree 

1(6)F .  

Table 12. Sequences 1( )F k of tree 012321232123232121212 

The branch of the tree Number 

of tiers 
Tree 

1 2 3 4 5 6 7 8 

0 0 000000 000000 000000 000000 000000 000000 000000 000000 

1 1 000001 000001 000010 000100 000100 001000 001000 010000 

2 2 000101 010001 100010 000101 010100 001010 101000 010001 

3 3 010101 010101 101010 010101 010101 101010 101010 010101 

4 2 010100 000101 001010 010001 000101 101000 100010 010100 

5 1 000100 000100 001000 000001 000001 100000 100000 000100 

6 2 100100 100100 101000 100001 100001 100001 100001 000101 
7 3 100101 100101 101001 100101 100101 101001 101001 100101 
8 2 100001 100001 001001 100100 000000 001001 001001 100100 
9 1 100000 100000 000001 100000 100000 000001 000001 100000 

10 2 100010 100010 010001 100010 100010 010001 010001 100010 
11 3 101010 101010 010101 101010 101010 010101 010101 101010 
12 2 101000 101000 000101 101000 101000 000101 000101 101000 
13 3 101001 101001 100101 101001 101001 100101 100101 101001 
14 2 001001 001001 100001 001001 001001 100100 100100 100001 
15 1 001000 001000 100000 001000 001000 000100 000100 000001 
16 2 001010 001010 100100 001010 001010 010100 010100 001001 
17 1 000010 000010 000100 000010 000010 010000 010000 001000 

The branch of the tree Number 

of tiers 
Tree 

1 2 3 4 5 6 7 8 

18 2 010010 010010 010100 010010 010010 010010 010010 001010 
19 1 010000 010000 010000 010000 010000 000010 000010 000010 
20 2 010001 010100 010010 010100 010001 100010 001010 010100 
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5 Binomial Sequences 

There are many known methods for binomial codes creation and based on them – 

binomial sequences [11]. We will consider two ways of even binomial codes synthesis 

in this unit. First of them we will call an “algorithm A. Borysenko”, and the second 

one an “algorithm of A. Beletsky”, which is called as alternative algorithm here in 

after. 
The whole idea of first algorithm of uneven binary binomial codes, which correlate 

to algorithm of full summarized binomial arithmetic, is described in [12], page 124. 
Of course any uneven binary code can be converted to even code of n number of dig-
its (length).  For this purpose it is just enough to prefix the code combination such 
amount of zeros so the common number of digits became equal to n . 

To construct algorithms of binomial arithmetic by Borysenko it is enough to define 
two parameters k and n, the first one defines the maximal amount of units in codes, 
the second one by value 1r n  , defines the maximal length of uneven binomial 
number. A decimal zero in Borysenko’s binomial code is written down as l n k   of 
zeros, the range P of binomial numbers is defined by formula max 1F P  . Here are 

a number of examples of binomial numbers xB  (algorithm  A. Borysenko), creation 

whose correspond to decimal value x (Tab. 13). 

Table 13. Variants of binomial number sequences 

n = 6, k = 4 n = 6, k = 2 n = 6, k = 3 

x  xB  x  xB  x  xB  x  xB  x  xB  x  xB  

0 00 10 11010 0 0000 10 10000 0 000 10 1000 

1 010 11 11011 1 00010 11 10001 1 0010 11 10010 

2 0110 12 11100 2 00011 12 1001 2 00110 12 10011 

3 01110 13 11101 3 00100 13 101 3 00111 13 10100 

4 01111 14 1111 4 00101 14 11 4 0100 14 10101 

5 100   5 0011  5 01010 15 1011 

6 1010   6 01000  6 01011 16 11000 

7 10110   7 01001  7 01100 17 11001 

8 10111   8 0101  8 01101 18 1101 

9 1100   9 011  9 0111 19 111 

Let’s label ( , )B n k  sequence of binomial numbers created by Borysenko’s algo-

rithm. From analysis of Tab. 4 we get the following conclusion.  

Statement 6. Direct and inverse binomial sequences are linked with correlation 

( , ) ( , )
R

B n k B n n k  , 
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where ( , )
R

B n n k  sequence of binomial codes, which first of all is written in re-

verse order to codes in ( , )B n k and secondly each position of ( , )
R

B n n k forms by 

result of inversion (i.e. substitution of 0 to 1 and vice versa) of corresponding posi-
tions ( , )B n k . 

Let’s find out a possibility of quasi equidistant codes 1( , )B n k  creation  based  on  

set  of binomial numbers ( , )B n k . For this purpose using the data from Tab. 13 lets 

create a table of code combination weights distribution (Tab. 14) included in ( , )B n k  

set. According to data from Tab. 14 and also values en  and on  comparison, received 

for many other parameters n  and k , we can conclude the inequality (3) for codes 
( , )B n k is not true and as sequence it is true 

Table 14. Distribution of code combination weights ( , )B n k  

Weight of code 
combination 

(6, 4)B  (6, 2)B  (6, 3)B  

0 1 1 1 
1 2 4 3 
2 3 10 6 
3 4  10 
4 5   

чn  9 11 7 

нn  6 4 13 

All together 15 15 20 

Statement 7. Binomial codes  do not form quasi equidistant sequences. 

Let’s move to creation of alternative binomial codes. Introduce numeric function 

1 1
1 11 1

n kn
n n n kn kB C C C C     

         (15) 

where 
( 1) ( 1 )

!
k
l

k k k k l
C

l l

    
  
 

, 

- binomial coefficient which is equal to number of k  and l  combinations. The coef-

ficients k  are defined by a correlation 0, / 2k k  , in which x  means 

rounding of number x to the nearest integer above. 
Series (15) is presented in form of binary coefficients k  for each of who’s the 

limited number of positions equal to number of digits and required for binary value 

/ 2k representation is assigned. 

Coefficient unambiguously defines the value of monomial k
k kC ,

 
as it is shown in 

Tab. 15 (in which for example purpose the value 7k   is chosen). 
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Table 15. An example of monomial series calculation (16) 

7  0 1 2 3 4 

7
7C  1 7 21 35 35 

7
7 7C  0 7 42 105 140 

For a sequence of binomial codes created by numerical function (15), let’s intro-
duce a label ( , )B n r in which n parameter will be called a power of a function, and 

r   order of function, which is equal to coefficient n . A fragment of binomial 

codes is shown in Tab. 16. 

Table 16. The sequence of binomial numbers (4, 2)B  

N  3  2  1  N  4  3  2  1  

0   0 10  1 0 1 1 1 

1  1 11 1 1 0 0 1 

   12 1 1 0 1 0 

2 1 0 13 1 1 0 1 1 

3  1 1    

   14 1 0 0 0 1 0 

4 1 0 1 15 1 0 0 0 1 1 

5 1 1 0 16 1 0 0 1 0 1 

6 1 1 1 17 1 0 0 1 1 0 

    18 1 0 0 1 1 1 

7 1 0 0 1 19 1 0 1 0 0 1 

N  3  2  1  N  4  3  2  1  

8 1 0 1 0 20 1 0 1 0 1 0 

9 1 0 1 1 21 1 0 1 0 1 1 

In order to decide a question regarding the possibility of quasi equidistant binomial 
sequences creation let’s create a table of a set of code combinations weights (Tab. 
17). 

Table 17.  Distribution of weights of code combinations 1( , )B n r  

Amount of digits of binomial sequence 
Weight 

3 4 5 6 7 8 9 10 

0 1 1 1 1 1 1 1 1 

Amount of digits of binomial sequence 
Weight 

3 4 5 6 7 8 9 10 

1 2 2 2 2 2 2 2 2 

2 3 5 5 6 6 6 6 6 

3 1 2 4 9 9 12 12 12 

Amount of digits of binomial sequence 
Weight 

3 4 5 6 7 8 9 10 
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4  2 4 7 15 15 17 

5  2 12 12 23 

6   4 8 29 

7  2 18 

8   4 

Even 4 6 8 1 14 26 30 57 

Odd 3 4 6 11 13 26 28 55 

In all 7 10 14 22 27 52 58 112 

Sign + – – + + + – – 

 

As an example check Tab. 18, where results of quasi equidistant codes creation by 
a method of direct enumeration based on one of trees for (4,2)B is shown. 

Table 18. Results of computer code synthesis 1(4,2)B  

The branch of the tree Number 
of tiers 

Tree 
1 2 3 4 5 6 7 8 

0 0 000000 000000 000000 000000 000000 000000 000000 000000 

1 1 000001 000001 000001 000001 000001 000001 000001 000001 
2 2 000101 000101 000101 000101 000101 000101 000101 000101 

3 3 100101 100101 100101 100101 100101 100101 100101 100101 
4 4 100111 100111 100111 100111 100111 100111 100111 100111 
5 3 100011 100011 100110 100110 100110 100110 100110 100110 

6 2 000011 100010 100010 100010 100010 100010 100010 100010 
7 3 001011 101010 100011 100011 101010 101010 101010 101010 
8 2 001010 001010 000011 000011 001010 001010 001010 001010 

9 3 011010 011010 001011 001011 001011 011010 011010 011010 
10 4 011011 011011 011011 101011 011011 011011 011011 011011 
11 3 011001 011001 011001 101001 011001 001011 011001 011001 

12 2 001001 001001 001001 001001 001001 001001 001001 001001 
13 3 101001 101001 101001 011001 101001 101001 101001 101001 
14 4 101011 101011 101011 011011 101011 101011 101011 101011 

15 3 101010 001011 101010 011010 100011 100011 100011 001011 
16 2 100010 000011 001010 001010 000011 000011 000011 000011 
17 1 000010 000010 000010 000010 000010 000010 000010 000010 

18 2 000110 000110 000110 000110 000110 000110 000110 000110 
19 1 000010 000010 000010 000010 000010 000010 000010 000010 

The branch of the tree Number 
of tiers 

Tree 
1 2 3 4 5 6 7 8 

20 2 000110 000110 000110 000110 000110 000110 000110 000110 
21 3 000111 000111 000111 000111 000111 000111 000111 000111 
22 4 010111 010111 010111 010111 010111 010111 010111 010111 
23 3 010110 010110 010110 010110 010110 010110 010110 010110 
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A feature of alternative binomial codes is that they do not allow creating quasi 
equidistant codes in a full manner as it is visible from Tab. 18. In particular, for all 
sequences shown in Tab. 18, the latest codes (highlighted) reside from previous codes 
with a Hamming distance equal 3 but not 1, as it is required for sequence 1(4,2)B . 

This feature of alternative binomial codes is visible in all possible variants 1( , )B n r . 

6 Conclusions 

The main result of this research is formation of generalized conditions for quasi equi-
distant and reflected codes existence which are produced by even consistent binary 
code combinations in a mixed numeration systems. Except of Gray codes the Fibo-
nacci, factorial and binomial codes with Hamming distance between related code 
combinations equal to 1, are also included in a set of such codes. The main method 
for synthesis of quasi equidistant codes is a method of computer direct enumeration. 
The results of this research can be easily generalized and applied for cases where 
Hamming distance is more than 1. 
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