

Program Algebras with Monotone Floyd-Hoare
Composition

Andrii Kryvolap1, Mykola Nikitchenko1
 and Wolfgang Schreiner2

1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

krivolapa@gmail.com, nikitchenko@unicyb.kiev.ua

2 Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.jku.at

Abstract. In the paper special program algebras of partial predicates and func-
tions are described. Such algebras form a semantic component of a modified
Floyd-Hoare logic constructed on the base of a composition-nominative ap-
proach. According to this approach, Floyd-Hoare assertions are presented with
the help of a special composition called Floyd-Hoare composition. Monotonic-
ity and continuity of this composition are proved. The language of the modified
Floyd-Hoare logic is described. Further, the inference rules for such logic are
studied, their soundness conditions are specified. The logic constructed can be
used for program verification.

Keywords. Program algebra, program logic, composition-nominative approach,
partial predicate, soundness

Key terms. FormalMethod, VerificationProcess

1 Introduction

Program logics are the main formalisms used for proving assertions about program
properties. A well-known Floyd-Hoare logic [1, 2] is an example of such logics. Se-
mantically, this logic is defined for a case of total predicates and functions though
programs can be partial. In this case assertions can be presented with the help of a
special composition over total predicates and functions called Floyd-Hoare composi-
tion (FH-composition). However, a straightforward extension of classical Floyd-
Hoare logic for partial predicates and functions meets some difficulties. The first one
is that the classical FH-composition will not be monotone. Monotonicity means that
the result of the mapping evaluation remains the same on extended data, if it was
evaluated on the initial data. This important property grants the possibility to reason
about the correctness of the program based on the correctness of its approximations.

534 A. Kryvolap, M. Nikitchenko and W. Schreiner

That is why the need of a modified definition of the classical Floyd-Hoare logic for
the case of partial mappings arises. Here we will consider only mappings (predicates,
ordinary functions, and program functions) defined over flat nominative data (nomi-
native sets). Such data are treated as collections of named values. Mappings over such
data are called quasiary mappings [3]. The obtained program algebras are called qua-
siary program algebras. They form a semantic component of quasiary Floyd-Hoare
logics.

The syntactic component of such logics is presented by their languages and sys-
tems of inference rules. We study the possibility to use classical rules for modified
logics with a monotone Floyd-Hoare composition. Systems of such inference rules
should be sound and complete to be of a practical use. This could be achieved by
adding proper restrictions to the inference rules of the classical Floyd-Hoare logic that
fail to be correct. It should be also shown that by weakening additional restrictions we
obtain a system of the inference rules that is not sound. This will prove that restric-
tions are necessary.

The rest of the paper is structured as follows. In Section 2 we describe program al-
gebras of quasiary predicates and functions on different levels of abstraction, define a
modified Floyd-Hoare composition and specify the syntax for the modified logic. In
Section 3 we prove the main properties of this composition. In Section 4 we study the
soundness of the system of inference rules for the introduced program algebras. Fi-
nally, we formulate conclusions in Section 5.

2 Quasiary Program Algebras

To modify the classical Floyd-Hoare logic for partial quasiary mappings, we will use
semantic-syntactic scheme [3-5]. This means that we will first define the semantics in
the form of classes of quasiary program algebras. Then the language of the logic will
be defined as well as the interpretation mappings.

To emphasize a mapping’s partiality/totality we write the sign p for partial

mappings and the sign t for total mappings. Given an arbitrary partial mapping

: D p D , d D, S  D, S  D we write:
– (d) to denote that  is defined on d;
– (d)= d to denote that  is defined on d with a value d ;
– (d) to denote that  is undefined on d;
– μ[] {μ() | μ() , }S d d d S   to denote the image of S under ;

– 1μ ['] { | μ() , μ() ' }S d d d S    to denote the preimage (inverse image) of S
under .

2.1 Classes of quasiary mappings

Let V be a set of names (variables). Let A be a set of basic values. Given V and A, the
class VA of nominative sets is defined as the class of all partial mappings from V to A,

Program Algebras with Monotone Floyd-Hoare Composition 535

thus, VA=V p A. Informally speaking, nominative sets represent states of vari-
ables.

Though nominative sets are defined as mappings, we follow mathematical tradi-
tions and also use a set-like notation for these objects. In particular, the notation
d = [vi ai | iI] describes a nominative set d where i i nv a d means that d(vi) is

defined and its value is ai (d(vi)=ai). The main operation for nominative sets is the

binary total overriding operation : VA× VA t VA defined by the formula

1 2 2 1 2[| (())]n n nd d v a v a d v a d a v a d           . Intuitively,
given d1 and d2 this operation yields a new nominative set which consists of named
pairs of d2 and those pairs of d1 whose names do not occur in d2.

Let },{ TFBool  be the set of Boolean values. Let PrV, A=VA p Bool be the

set of all partial predicates over VA. Such predicates are called partial quasiary predi-

cates. Let FnV, A=VA p A be the set of all partial functions from VA to A. Such
functions are called partial quasiary ordinary functions. Here ‘ordinary’ means that

the range of such functions is the set of basic values A. Let FPrgV, A=VA p VA be
the set of all partial functions from VA to VA. Such functions are called bi-quasiary
functions.

Quasiary predicates represent conditions which occur in programs, quasiary ordi-
nary functions represent the semantics of program expressions, and biquasiary func-
tions represent program semantics.

The terms ‘partial’ and ‘ordinary’ are usually omitted. In a general term, elements
from PrV, A, FnV, A, and FPrgV, A are called quasiary mappings.

2.2 Hierarchy of program algebras and logics

Based on algebras with three carriers (PrV, A, FnV, A, and FPrgV, A) we can

define logics of three types:

– Pure quasiary predicate logics based on algebras with one sort: PrV,А
– Quasiary predicate-function logics based on algebras with two sorts: Pr V,А and

FnV,А
– Quasiary program logics based on algebras with three sorts: PrV,А, FnV,А, and

FPrgV,А

For logics of pure quasiary predicates we identify renominative, quantifier, and
quantifier-equational levels.

Renominative logics [3] are the most abstract among above-mentioned logics. The
main new compositions for these logics are the compositions of renomination (renam-

ing) of the form R 1

1

,...,
,...,

n

n

v v
x x : PrV,А t

 PrV,А. Intuitively, given a quasiary predicate p

and a nominative set d the value of R 1

1

,...,
,...,

n

n

v v
x x (p)(d) is evaluated in the following way:

first, a new nominative set d  is constructed from d by changing the values of the

536 A. Kryvolap, M. Nikitchenko and W. Schreiner

names v1,...,vn in d to the values of the names x1,..., xn respectively; then the predicate
p is applied to d . The obtained value (if it was evaluated) will be the result of

R 1

1

,...,
,...,

n

n

v v
x x (p)(d). For this composition we will also use a simplified notation v

xR . The

basic compositions of renominative logics are , , and R v
x . Note, that renomination

(primarily in syntactical aspects) is widely used in classical logic, lambda-calculus, and
specification languages like Z-notation, B, TLA, RAISE, ASM, etc.

At the quantifier level, all basic values can be used to construct different nomina-
tive sets to which quasiary predicates can be applied. This allows one to introduce the
compositions of quantification of the form x in style of Kleene’s strong quantifiers.

The basic compositions of logics of the quantifier level are , , R v
x , and x.

At the quantifier-equational level, new possibilities arise for equating and differen-
tiating values with special 0-ary compositions of the form =xy called equality predi-

cates. Basic compositions of logics of the quantifier-equational level are , , v
xR ,

x, and =ху .
All specified logics (renominative, quantifier, and quantifier-equational) are based

on algebras that have only one sort: a class of quasiary predicates.
For quasiary predicate-function logics we identify the function level and the func-

tion-equational level.
At the function level, we have extended capabilities for the formation of new ar-

guments of functions and predicates. In this case it is possible to introduce the super-

position compositions v
FS and v

PS (see [4, 5]), which formalize substitution of func-

tions into function and predicate respectively. Also special null-ary denomination
parametric compositions (functions) 'x are introduced. The introduction of such func-
tions allows one to model renomination compositions with the help of superpositions.

The basic compositions of logics of the function level are , , v
FS , v

PS , x, and 'x.

At the function-equational level, a special equality composition = can be intro-
duced additionally. The basic compositions of logics of the function-equational level

are , , v
FS , v

PS , x, 'x, and = . At this level different classes of first-order logics

can be presented.
This means that two-sorted algebras (with sets of predicates and functions as sorts

and above-mentioned compositions as operations) form a semantic base for first-order
CNL.

The level of program logics is quite rich. Investigation of such logics is a special
challenge; here we will study semantic properties of a modified Floyd-Hoare logic.
To define such logics we should first define program algebras with program composi-
tions as their operations. Such compositions correspond to the main structures of pro-
grams. In the simplest case they are:
– The parametric assignment composition , ,:x V A V AAS Fn FPrg

– The composition of sequential execution , , ,: V A V A V AFPrg FPrg FPrg  

– The conditional composition , , , ,: V A V A V A V AIF Pr FPrg FPrg FPrg  

– The cyclic composition (loop) , , ,: V A V A V AWH Pr FPrg FPrg 

Program Algebras with Monotone Floyd-Hoare Composition 537

Additionally we need compositions that describe properties of the programs. The
Floyd-Hoare composition , , , ,: V A V A V A V AFH Pr FPrg Pr Pr   is the most important

of them. Its formal definition will be given in the next subsection.

2.3 Formal definition of a Floyd-Hoare composition

The required definition stems from the treatment of Floyd-Hoare assertions with total
predicates (see, for example, [6]). Namely, an assertion {p}f{q} is said to be valid if
and only if

for all d from VA if p(d) =T, f(d)= d for some d then q(d) =T (1)

Note, that we do not make a distinction between a formula and its interpretation.

Thus, we treat, say, p as a formula in the assertion {p}f{q} and as a predicate of the
program algebra.

The definition (1) permits to treat {p}f{q} as a predicate because this is a pointwise
definition. Rewriting this definition for different cases we get the following matrices
(table 1) specifying the logical values of {p}f{q} for an arbitrarily d:

Table 1. Logical values of {p}f{q} for total predicates.

 a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) F T

F T T

T F T

p(d) {p}f{q}(d)

F T

T T

Our aim is to extend the notion of assertion validity for partial predicates. But first

we should admit that the presented definition will not be monotone under predicate
extension. Indeed, consider informally the following assertion:

{T} while T do skip {F}.

This Floyd-Hoare triple will be true on all data, because the infinite loop is

undefined on all data, and thus on all data the condition of validity for this assertion is
satisfied. Now consider a triple {T} skip {F} that is false on all data. However, the
mapping ‘skip’ is an extension of ‘while T do skip’. Thus, monotonicity fails for a
case when p(d)=T and f(d) is undefined. So, the value for this case should be changed.

To define a monotone interpretation of Floyd-Hoare triple for partial predicates we
should change the question marks in Table 2 to Boolean values.

538 A. Kryvolap, M. Nikitchenko and W. Schreiner

Table 2. Logical values of {p}f{q} for partial predicates, where the question marks represent
values that should be changed to proper Boolean values.

a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) F T Undefined

F T T ?
T F T ?
undefined ? ? ?

p(d) {p}f{q}(d)

F T

T ?

undefined ?

To define such interpretation we adopt the following requirements:

– Monotonicity of a composition on all its arguments
– Maximal definiteness of the obtained predicates (we call this requirements as

Kleene’s principle)

We use techniques for non-deterministic semantics described in [7]. We treat the
case when a predicate is ‘undefined’ as non-deterministic values T and F. Thus, we
can use matrices from table 1 to evaluate a set of Boolean values for every case. The
obtained results are presented in Table 3.

Table 3. Logical values of {p}f{q} for partial predicates presented as sets of Boolean values.

a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) {F} {T} {F,T}

{F} {T} {T} {T}

{T} {F} {T} {F,T}

{F,T} {F,T} {T} {F,T}

p(d) {p}f{q}(d)

{F} {T}
{T} {F,T}

{F,T} {F,T}

Now, replacing non-deterministic results {F, T} on undefined we get the final results
(table 4).

Table 4. Logical values of {p}f{q} for partial predicates.

a) f(d) is defined b) f(d) is undefined
p(d)\q(f(d)) F T undefined

F T T T

T F T undefined
undefined undefined T undefined

p(d) {p}f{q}(d)

F T

T undefined

undefined undefined

The obtained matrices define an interpretation of {p}f{q} for partial predicates. As

was said earlier, we formalize such triples as a Floyd-Hoare composition
, , , ,: V A V A V A V AFH Pr FPrg Pr Pr   (p, q PrV,A, fFPrgV,А, d VA):

FH(p,f, q)(d)=











 cases.other in undefined

,))((and)(if,

,)(or))((if,

FdfqTdpF

FdpTdfqT

Program Algebras with Monotone Floyd-Hoare Composition 539

2.4 Formal definition of program algebra compositions

In the previous subsection the formal definition of FH-composition was presented. In
this subsection we give brief definitions of other compositions (see details in [3-5]).

Propositional compositions are defined as follows (p, q  PrV,A, d VA):













 cases.other in undefined

,)(and)(if ,

,)(or)(if ,

))((FdqFdpF

TdqTdpT

dqp













 .)(if undefined

,)(if ,

,)(if ,

))((

dp

TdpF

FdpT

dp

Unary parametric composition of existential quantification x with the parameter
xV is defined by the following formula (p PrV,A, d  VA):













 .casesother in undefined

 ,each for)(,

,)(:exists if ,

))((AaFaxdpF

TbxdpAbT

dpx 



Here axd  is a shorter form for][axd  .

Parametric n-ary superpositions with 1(,...,)nx x x as the parameter are defined

by the following formulas (f, g1,…, gn  FnV,A, p  PrV,A, d VA):

1 1 1((, , ,))() ([(), , ()])x
F n n nS f g g d f d x g d x g d     ,

1 1 1((, , ,))() ([(), , ()])x
P n n nS p g g st f st x g st x g st     .

Null-ary parametric denomination composition with the parameter xV is defined
by the following formula (d VA): 'x (d) = d(x).

Binary equality composition = is defined as follows (f, g  FnV,A, d VA):

(f=g) (d)

, if () , () , and () (),

, if () , () , and () (),

undefined in other cases.

T f d g d f d g d

F f d g d f d g d

   
   



Identical program composition idFPrgV,А is the most simple: ()id d d (d VA).

Assignment composition is defined as follows (f FnV,A, d VA):
()() [()]xAS f d d x f d   .

Sequential execution is introduced in the ordinary way (fs1, fs2FPrgV,А, d VA):

1 2 2 1() (())fs fs d fs fs d  .

Note, that we define  by commuting arguments of conventional functional compo-
sition: 1 2 2 1fs fs fs fs   .

Conditional composition depends on the value of the first function which is the
condition itself (p PrV,A, fs1, fs2FPrgV,А, d VA):

1

1 2 2

(), if () ,

(, ,)() (), if () ,

undefined in other cases.

fs d p d T

IF p fs fs d fs d p d F

 


 



540 A. Kryvolap, M. Nikitchenko and W. Schreiner

Cycle is defined by the following formulas: (,)() nWH p fs d d , where 0 ,d d

1 0()d fs d , …, 1()n nd fs d  , moreover 0()p d T , 1()p d T , … ,

1()np d T  ,….. ()np d F (p PrV,A, fsFPrgV,А, d VA).

It means that we have defined the following quasiary program algebra:

QPA(V, A) = < PrV,A, FnV,A, FPrgV,A; , , v
FS , v

PS , x, x, =, id, AS x, , IF, WH, FH>.

This algebra is the main object of our investigation.

2.5 Formal definition of program algebra terms

Terms of the algebra QPA(V, A) defined over sets of predicate symbols Ps, function
symbols Fs, program symbols Prs, and variables V specify the syntax (the language)
of the logic. We now give inductive definitions for terms (, , ,)Tr Ps Fs Prs V , formulas

(, , ,)Fr Ps Fs Prs V , program texts (, , ,)Pt Ps Fs Prs V , and Floyd-Hoare assertions

(, , ,)FHFr Ps Fs Prs V .

First we will define terms:

– if f Fs then (, , ,)f Tr Ps Fs Prs V

– if v V then ' (, , ,)v Tr Ps Fs Prs V

– if f Fs , 1, , (, , ,)nt t Tr Ps Fs Prs V , and 1, , nv v V are distinct variables

then 1(, , ,) (, , ,)v
F nS f t t Tr Ps Fs Prs V

Then we will define program texts:

– (, , ,)id Pt Ps Fs Prs V

– if p Prs then (, , ,)p Pt Ps Fs Prs V

– if v V and (, , ,)t Tr Ps Fs Prs V then () (, , ,)vAS t Pt Ps Fs Prs V

– if 1 2, (, , ,)p p Pt Ps Fs Prs V then 1 2 (, , ,)p p Pt Ps Fs Prs V 

– if 1 2, (, , ,)p p Pt Ps Fs Prs V and (, , ,)b Fr Ps Fs Prs V then

1 2(, ,) (, , ,)IF b p p Pt Ps Fs Prs V

– if (, , ,)p Pt Ps Fs Prs V and (, , ,)b Fr Ps Fs Prs V then

(,) (, , ,)WH b p Pt Ps Fs Prs V

Finally, formulas and Floyd-Hoare triples are defined:

– if p Ps then (, , ,)p Fr Ps Fs Prs V

– if (, , ,)Fr Ps Fs Prs V then (, , ,)Fr Ps Fs Prs V

– if 1 2, (, , ,)t t Tr Ps Fs Prs V then 1 2 (, , ,)t t Fr Ps Fs Prs V 

– if (, , ,)Fr Ps Fs Prs V and v V then (, , ,)v Fr Ps Fs Prs V 

– if , (, , ,)Fr Ps Fs Prs V  then (, , ,);Fr Ps Fs Prs V

Program Algebras with Monotone Floyd-Hoare Composition 541

– if p Ps , 1, , (, , ,)nt t Tr Ps Fs Prs V , and 1, , nv v V are distinct variables

then 1(, , ,) (, , ,)v
P nS p t t Fr Ps Fs Prs V

– if (, , ,)f Pt Ps Fs Prs V and , (, , ,)p q Fr Ps Fs Prs V then

{ } { } (, , ,)p f q FHFr Ps Fs Prs V

After syntax and semantics have been defined, we need to specify the interpretation
mappings, assuming that interpretation mappings for the predicate symbols

,: V A
PsI Ps Pr , functional symbols ,: V A

FsI Fs Fn , and program symbols
,: V A

PrsI Prs FPrg are given. Let ,: (, , ,) V A
FrJ Fr Fs Ps Prs V Pr denote an inter-

pretation mapping for formulas, ,: (, , ,) V A
TrJ Tr Fs Ps Prs V Fn denote an interpreta-

tion mapping for terms and ,: (, , ,) V A
PtJ Pt Fs Ps Prs V Prg denote an interpretation

mapping for programs. They are all defined in a natural way, only the case with asser-
tion needs special consideration:

({ } { }) ((), (), ())FHFr Fr Pt FrJ p f q FH J p J f J q .

An assertion is said to be valid (denoted | { } { }p f q) if a corresponding predicate

is not refutable.

3 Monotonicity and Continuity of the Floyd-Hoare
Composition

In the previous section, a function-theoretic style of composition definitions was used.
To prove properties of the FH-composition, it is more convenient to use a set-
theoretic style of definition.

The following sets are called respectively truth, false, and undefiniteness domains
of the predicate p over D:

{ | () }Tp d p d T  ,

{ | () }Fp d p d F  ,

{ | () }p d p d   .

The following definitions introduce various images and preimages involved in
Floyd-Hoare composition:

, 1[]T f Tq f q  ,
, 1[]F f Fq f q  ,
, 1[]fq f q   ,
, []T f Tp f p ,
, []F f Fp f p ,
, []fp f p  .

Using these notations we can define FH-composition by describing the truth and
false domains of the predicate that is the value of the composition:

542 A. Kryvolap, M. Nikitchenko and W. Schreiner

,(, ,)T F T fFH p f q p q  ,
,(, ,)F T F fFH p f q p q  .

Validity of formulas (predicates) is considered as irrefutability, that is
| Fp p   . From this follows that

,| (, ,) T F fFH p f q p q     .

Let us give a formal definition of the monotone composition.
Composition , , , ,: () () ()V A n V A k V A m V AC FPrg Pr Fn Pr   is called monotone if

the following condition holds for all arguments of C:

1 1 1 1 1 1, , , , , , , ,n n k k m mf g f g p q p q a b a b        

1 1 1 1 1 1(, , , , , , , ,) (, , , , , , , ,)n k m n k mC f f p p a a C g g q q b b      .
Theorem 1. Floyd-Hoare composition is monotone on every argument.
Let us prove monotonicity on every argument separately, examining their truth and

false domains. For truth domain we have:

1 2p p  1 2
T Tp p  , ,

1 2
T F f T F fp q p q    

1 2(, ,) (, ,)F FFH p f q FH p f q .

Similar, for the false domain of the precondition we have:

1 2p p  1 2
F Fp p  , ,

1 2
F T f F T fp q p q    

1 2(, ,) (, ,)T TFH p f q FH p f q .

Thus, 1 2p p  1 2(, ,) (, ,)FH p f q FH p f q .

In the case of truth domain of postcondition the proof is similar:

1 2q q  1 2
T Tq q  , ,

1 2
T f T fq q   , ,

1 2
F T f F T fp q p q    

1 2(, ,) (, ,)T TFH p f q FH p f q .

The same for the false domain of postcondition:

1 2q q  1 2
F Fq q  , ,

1 2
F f F fq q   , ,

1 2
T F f T F fp q p q    

1 2(, ,) (, ,)F FFH p f q FH p f q .

Thus, 1 2 1 2(, ,) (, ,)q q FH p f q FH p f q   .

Let us show the monotonicity of the truth domains for the FP-composition:

1 2f f  1 2, ,T f T fq q   1 2, ,T f T fF Fp q p q   

 1 2(, ,) (, ,)T TFH p f q FH p f q .

Similar, for the false domains:

1 2f f  1 2, ,F f F fq q   1 2, ,F f F fT Tp q p q    

1 2(, ,) (, ,)F FFH p f q FH p f q .

Also 1 2 1 2(, ,) (, ,)f f FH p f q FH p f q   .

Thus, it was shown that the composition is monotone on every component, what is
needed to be proved.

For the constructed composition even stronger result is true, it is continuous. To
show this, the following definitions are made and the notion of continuity is given
(see, for example, [6]).

Program Algebras with Monotone Floyd-Hoare Composition 543

An infinite set of indexed functions (predicates) 0 1 1{ , , }, ,i if f f f i   is

called a chain of functions (predicates).
The supremum of the above-mentioned set of indexed functions (predicates) is

called limit of the chain of functions (predicates), denoted as i
i

f .

The composition , , , ,: () () ()V A n V A m V A l V AC Prg Pr Fn Pr   is called continuous

on the first argument if for arbitrary chain { | }if i  the following property

holds: 2 1 1 2 1 1(, , , , , , ,) (, , , , , , ,)i n m l i n m l
i i

C f g g p p q q C f g g p p q q       .

Continuity on the other arguments is defined in a similar manner.
Theorem 2. Floyd-Hoare composition is continuous on every argument.
Though this result follows from the general consideration, we give here its direct

proof. Let us show the continuity on the first argument. In the case of other arguments
the proof will be similar.

Consider a chain of predicates { | }ip i  . Since Floyd-Hoare composition is

monotone, { (, ,) | }iFH p f q i  will also be a chain. We need to show

that (, ,) (, ,)i i
i i

FH p f q FH p f q  .

For the arbitrary data d , there are two different possibilities –

()i
i

p d  and ()i
i

p d  . In the first case none of the elements of the chain in de-

fined on d . Thus , (, ,)() (, ,)()i j
i

j FH p f q d FH p f q d   , therefore needed

equality is obvious. If the limit is defined on these data, an element of the chain that is
also defined on this data could be found. Otherwise the limit would have been unde-
fined on those data, what is guaranteed by the inclusion relation on the elements of
the chain. Let the limit be the element with index k. Then

(, ,)()i
i

FH p f q d = (, ,)()kFH p f q d and

(, ,)() (, ,)()k i
i

FH p f q d FH p f q d ,

since , () ()i ki k p d p d   from the definition of the chain.

The following equality is obtained: (, ,)() (, ,)()i i
i i

FH p f q d FH p f q d  .

Since the data was chosen arbitrary, we get (, ,) (, ,)i i
i i

FH p f q FH p f q  , what

was needed to be proved.
The proof for the other arguments (a program and a postcondition) is similar. Thus,

it is proven that the monotone Floyd-Hoare composition is also continuous on every
argument.

544 A. Kryvolap, M. Nikitchenko and W. Schreiner

4 Soundness of Inference Rules System in Floyd-Hoare
Algebras

In this section we adopt the same convention as earlier that we do not distinguish
between syntactic and semantic notation for formulas. We also assume that the alge-
bra QPA(V, A) is fixed and interpretation mappings are also fixed.

Since a result of the Floyd-Hoare composition can be undefined on some data,
classical inference rules can be unsound. This informally means that with true pre-
conditions they could give false postconditions. This happens because predicates can
be partial and compositions are defined in a way that differs from the classical Floyd-
Hoare composition to be monotone. Let us examine the following system of inference
rules to find out what conditions are required for rules to be sound:

[]{ (,)} (){ }x xS p f AS f p – Ax_AS

{ } { }p id p – Ax_ID

{ } { },{ } { }

{ } { }

p f q q g r

p f g r
 – Ax_SEQ

{ } { },{ } { }

{ } (, ,){ }

b p f q b p g q

p IF b f g q

  
 – Ax_IF

{ } { }

{ } (,){ }

b p f p

p WH b f b p


 

 – Ax_WH

{ } { }

{ } { }

p f q

p f q

 
 – Ax_CONS

Note that we do not include additional conditions for the consequence rule, be-
cause in different classes of algebras we will have different conditions.

An assertion { } { }p f q is said to be derived if there exists its derivation tree with

rules of the type Ax_AS, Ax_ID on its leaves. Derivability is denoted as | { } { }p f q .

Let us show that for the rules Ax_SEQ, Ax_WH , and Ax_CONS without addi-
tional conditions we can give such an example of the application of the inference rule
that will have true preconditions and false postconditions.

Consider Ax_SEQ with violation of the condition ,T f Tp q .

If this condition fails then , , , : () , (()) ,| { } { }p q f d p d T q f d p f q    . In this case

we will take such r and g that | { } { }q g r and (()) , ((()))g f d r g f d F  . This is

possible if we define them in the following way:

g id ,
, (),

()
, ().

T x f d
r x

F x f d


  

Then | { } { }p f g r  does not hold, while ()p d T and (())r f g d F  , what is

equal to ,{ } T F f gd p r   .

Consider Ax_WH with violation of the condition ,()T f Tb p p  .

We will construct such b , f , and p that the following properties hold:

Program Algebras with Monotone Floyd-Hoare Composition 545

,| { } { }, ()T f Tb p f p b p p    ,

| { } (,){ }p WH b f b p   .

Let 1 2 3d d d  . Then b , f , and p are defined in the following manner:

3

3

, ,
()

, .

T x d
b x

F x d


  

1 2

2 1

3 2

, , ,

, ,()

, .

x x d d

d x df x

d x d


  
 

2 3

2

3

, , ,

() , ,

, .

T x d d

p x x d

F x d


  
 

It is not hard to check that the above-mentioned properties are not satisfied:
,

2 2() ,T f Td b p d p   ,

1 3 1, (,)()Td p d WH b f d  ,
, (,)

3 1() ()F F WH b fd b p d b p        ,

1 2 3() , ,T Fd b p d p d p    .

Thus, | { } { }b p f p  because for other data p is true.

That proves that the additional condition is necessary because in other cases the
rule is not sound while used on such examples.

The case with the rule Ax_CONS is similar to the previous one with the conditions
,T T F Fp p q q   .

So, it was shown that additional conditions are not redundant. Let us show that if
additional conditions hold then the rules are sound.

Theorem 3. Inference rules are sound with additional conditions. In other words:
[]| { (,)} (){ }x xS p f AS f p ,

| { } { }p id p ,
,| { } { } | { } { } | { } { }T f Tp f q q g r p q p f g r        ,

| { } { } | { } { } | { } (, ,){ }b p f q b p g q p IF b f g q        ,
,| { } { } () | { } (,){ }T f Tb p f p b p p p WH b f b p         ,

| { } { } | { } { }T T F Fp f q p p q q p f q          .

Let us prove this for each rule.
For []| { (,)} (){ }x xS p f AS f p to hold it is needed that the following condition

holds: [] [] , ()((,), (),) ((,))
xx x F x T F AS fFH S p f AS f p S p f p    .

Assume that it is false and the intersection is not empty. Let some data d belongs
to the intersection.

If []((,))x Td S p f then ([()])p d x f d T  .

546 A. Kryvolap, M. Nikitchenko and W. Schreiner

Let , ()xF AS fd p then (()()) ([()])xp AS f d p d x f d F   , what is impossi-

ble, thus, the assumption is incorrect and [] , ()((,))
xx T F AS fS p f p   , similar,

[] , ()((,))
xx T AS fS p f p   , what means []| { (,)} (){ }x xS p f AS f p .

| { } { }p id p follows from the definition.

Let us prove ,| { } { } | { } { } | { } { }T f Tp f q q g r p q p f g r        .

We have | { } { },| { } { }p f q q g r  that means , ,;T F f T F gp q q r      . We

need to show that ,T F f gp r    .

Let it be false and ,: T F f gd d p d r     . This means that

() (())p d T r f g d F    .

But using the additional condition we have ,T f Tp q , thus (())q f d T . That

means () Tf d q , then ,() F gf d r . This contradicts the fact that
,(()) () ()F F gr f g d F f g d r f d r       .

We have the contradiction, which means that the assumption is wrong and
,T F f gp r    . Then | { } { }p f g r  .

Let us prove | { } { } | { } { } | { } (, ,){ }b p f q b p g q p IF b f g q        .

We have | { } { }, | { } { }b p f q b p g q     , which means:
, ,() ; ()T F f T F gb p q b p q         .

We need to show that , (, ,)T F IF b f gp q   .

Let , (, ,): T F IF b f gd d p d q    . Then () , ((, ,)())p d T q IF b f g d F  .

Let us examine different cases of ()b d :

()b d  is impossible, because then (, ,)()IF b f g d  leads to a contradiction with

assumptions about existence of such d .

()b d T  (, ,)() ()IF b f g d f d  ()Td b p   ,(, ,)() ()T fIF b f g d b p  .

With properties of the upper part of the inference rule we have:
, ,((, ,)() (, ,)() () ()T F f T F IF b f gb p q IF b f g d f d d b p d q           .

A case with ()b d F is similar to the case where ()b d T .
, ,((, ,)() (, ,)() () ()T F g T F IF b f gb p q IF b f g d g d d b p d q            .

Thus ,((, ,)F IF b f gd q in any case if d is defined which is guaranteed by the as-

sumption. That leads us to the contradiction, so, , (, ,)T F IF b f gp q   .

Thus, we have | { } (, ,){ }p IF b f g q .

Let us prove ,| { } { } () | { } (,){ }T f Tb p f p b p p p WH b f b p         .

We have | { } { }b p f p  , that means: ,()T F fb p p    .

We need to show that the following condition holds: , (,)()T F WH b fp b p      .

Program Algebras with Monotone Floyd-Hoare Composition 547

Let , (,): ()T F WH b fd d p d b p       . Then :n nd d  (,)()WH b f d , and by the

definition of the composition we have 1 2, , :nd d d  1d d  1 ()i id f d  ,

1, 1i n   ()jb d T , 1, 1j n   1()p d T  ()nb d F and ()() .nb p d F  

Thus, 1()()b p d T  . By ,()T f Tb p p  we obtain that 2 1() (())p d p f d T  .

Using the induction over a number of loop execution we obtain that ()np d T .

That means ()()nb p d T   . Thus, we obtained contradiction, so,
, (,)()T F WH b fp b p      .

Let us prove | { } { } | { } { }T T F Fp f q p p q q p f q          .

We have | { } { }p f q  , what means: ,T F fp q     .

We need to show that ,T F fp q  .

Let this condition be false and ,: T F fd d p d q    . This means that

() (())p d T q f d F   .

By the condition that T Tp p we obtain ()p d T  .

But ,T F fp q     , thus, ,F fd q  , while ,F fd q , then ()f d  , and we

have (())q f d F  .

We have a contradiction which means that the assumption does not hold,
so, ,T F fp q  .

Both conditions are proved, then | { } { }p f q .

Thus, all rules are inspected and theorem is proved.
Also the condition for the rule Ax_SEQ can be substituted by one of the following:
,T fp q  , ,g Fq r    or ,F g Fq r , but none of them is a sufficient condi-

tion, because ,(| { } { } | { } { } | { } { }) T f Tp f q q g r p f g r p q        doesn’t hold.

 Similar for the rule Ax_WH , the condition could be given in the one of

the follow-

ing manner: ,()T fb p p   , ,() f Fb p p   or ,()F f Fb p p  , and they

are also insufficient.
The conditions for the rule Ax_CONS also are not sufficient. To prove that we need

only to show an example when the condition does not hold but the rule does.
But in some cases we can avoid adding the conditions implicitly to the rules.
Theorem 4. For all assertions { } { }p f q that were inferred using rules of the infer-

ence system except Ax_CONS the following properties hold:
,T f Tp q ,

,T fp q  ,
, f Fp q    ,

,F f Fp q .

Let us prove the first property by induction. For the fourth property the case is
similar and second and third properties are consequences of the first and the fourth
respectively.

548 A. Kryvolap, M. Nikitchenko and W. Schreiner

Induction base: for Ax_ID and Ax_AS proof is obvious.
Induction step. For Ax_SEQ we have:

, , ,T f T T g T T f g Tp q q r p r     .

The proof of this fact is obvious.
For Ax_IF we need to prove:

, , , (, ,)() () ()T f T T g T T IF b f g Tb p q b p q p q        .

Consider , (, ,)T IF b f gd p , then : ((, ,)()) ()x IF b f g x d p x   , that leads to two

cases:
– ()b x T , then () Tf x q , moreover (, ,)() ()d IF b f g x f x  , thus, Td q ;

– ()b x F , then () Tg x q , moreover (, ,)() ()d IF b f g x g x  , thus, Td q .

For Ax_WH we need to prove: , , (,)() ()T f T T WH b f Tb p p p b p      .

Let , (,)T WH b fd p , then : ((,)()) ()x WH b f x d p x   , we need to prove that

()()b p d T   . Let us examine all data that are obtained during the calculation of

(,)()WH b f x : 0 ;x x 1 0()x f x ... nd x , 0 1 1() () ()nb x b x b x T   ,

()nb x F , thus from ,()T f Tb p p  we have, that () ()np d p x T  , this together

with ()nb x F gives ()()b p d T   , what was needed to prove.

The theorem is proved.
Theorem 3 and Theorem 4 together give us the fact that if we declare Ax_CONS in

such a way that it retains the properties of the theorem 4, then inference rules system
will be sound without addition of new conditions, which will be guaranteed by Theo-
rem 4.

But in this case system would not be complete. Let us give an example.
Let q be an arbitrary predicate that has nonempty truth, false, and undefiniteness

domains, and p be such predicate that T Tp q q  . Then | { } { }p id q , but
,()T id Tp q  , when the inference rules system was constructed for the following

property to hold: ,| { } { } T f Tp f q p q   .

5 Conclusions

In this paper special program algebras of partial quasiary mappings have been de-
scribed. Such algebras form a semantic base for a modified Floyd-Hoare logic. In this
case assertions have been presented by a special composition called Floyd-Hoare
composition. Monotonicity and continuity of this composition have been proved. The
language of the modified Floyd-Hoare logic has been described. Further, the inference
rules for such a logic have been studied and their soundness conditions have been
specified. The logic constructed can be used for program verification.

The major directions of further investigation are the question of completeness of
the system of inference rules, invariants for rules, and types for variables and func-
tions. Also the authors plan to construct a prototype of a program system in the style
of [8, 9] oriented on the constructed logics.

Program Algebras with Monotone Floyd-Hoare Composition 549

References

1. Floyd, R. W.: Assigning Meanings to Programs. In: Proc. American Mathematical Society
Symposia on Applied Mathematics, vol. 19, pp. 19–31 (1967)

2. Hoare, C. A. R.: An Axiomatic Basis for Computer Programming. Comm. ACM, 12, 576–
580, 583 (1969)

3. Nikitchenko, M. S., Shkilniak, S. S.: Mathematical Logic and Theory of Algorithms. Pub-
lishing house of Taras Shevchenko National University of Kyiv, Kyiv (2008) (in Ukrain-
ian)

4. Nikitchenko, M., Tymofieiev, V.: Satisfiability and Validity Problems in Many-Sorted
Composition-Nominative Pure Predicate Logics. In: V. Ermolayev et al. (eds.): ICTERI
2012, CCIS 347, pp. 89–110. Springer Verlag, Berlin Heidelberg (2013)

5. Nikitchenko, M. S., Tymofieiev, V. G.: Satisfiability in Composition-Nominative Logics.
Central European Journal of Computer Science, 2(3), 194–213 (2012)

6. Nielson. H.R., Nielson, F.: Semantics with Applications: A Formal Introduction. John
Wiley & Sons Inc. (1992)

7. Avron, A., Zamanskym A.: Non-Deterministic Semantics for Logical Systems. Handbook
of Philosophical Logic, vol. 16, pp. 227–304 (2011)

8. Schreiner, W.: Computer-Assisted Program Reasoning Based on a Relational Semantics of
Programs. In: P. Quaresma and R.-J. Back (eds.) Proc 1st Workshop on CTP Components
for Educational Software (THedu'11), July 31 2011, Wrocław, Poland, No 79 of Electronic
Proceedings in Theoretical Computer Science (EPTCS), ISSN: 2075-2180, pp. 124–142
(2012)

9. Schreiner, W.: A Program Calculus Technical Report. Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, http://www.risc.uni-
linz.ac.at/people/schreine/papers/ProgramCalculus2008.pdf (2008)

