ITAT 2013 Proceedings, CEUR Workshop Proceedings Vol. 1003, pp. 89-93 VAN
http://ceur-ws.org/Vol-1003, Series ISSN 1613-0073, © 2013 W. Forys, G. Semanigin, M. Fory$ ITAT

Trace shifts - minimal case for independence relations giveby five node
co-graphs

Wit Forys!, Gabriel Semanisf) and Magdalena Fogy

1 Jagiellonian University, Krakéw, Poland,
forysw@ii.uj.edu.pl
2 p.J. Saférik University, KoSice, Slovakia,
gabriel.semanisin@upjs.sk
3 AGH University of Science and Technology
Krakow, Poland,
maforys@agh.edu.pl

Abstract: We study interrelations between symbolic de- we try to analyze all of them. The reason for choosing co-
scriptions of concurrently evolving systems and underly-graphs as an independence relations follows from the gen-
ing sequential dynamics. We focus our interests on mini-eral fact proved by B.Courcelle, M.Mosbah in [5] that all
mal shifts and t-shifts generated by them, assuming that aproblems that can be formulated in monadic second-order
independence relation is given by a five vertex co-graph. logic (without quantification of edge sets) can be solved
in a linear time on co-graphs. To make it more clear -
. for any co-graph its recognition, along with the construc-
1 Introduction tion of the corresponding co-tree, can be done in linear
time. Co-trees form the basis for polynomial algorithms
In [11] we formulated a framework which allows to study for problems such as isomorphism, coloring, clique detec-
parallel dynamics by tools used in a research of sequenion, Hamiltonicity, tree-width and path-width, and domi-
tial symbolic dynamics. To be more precise, in place of nating sets on co-graphs. In general case these problems
words we consider traces introduced in the seminal papergre NP-hard. This is also a common reason for choosing a
[4, 16] and define a t-shift as a parallel counterpart of afamily of co-graphs as a subject of various theoretical re-
shift. Then we raised a problem of interrelations betweensearches with possible applications, for example in exami-

the sequential dynamics and their parallel counterparts. pation scheduling and automatic clustering of index terms
The problem is well known in the theory of computing. [7].

Namely, a one-tape Turing machine is equivalent, in the

sense of a computational power, to a Turing machine with

multiple tapes. However, if we analyze moves of the tape2 Definitions and notations

then a “simple” computation of a multi-tape machine may

force quite “complex” behavior of a one-tape machine dur-Now we recall only basic concepts of graph theory, sym-

ing a simulation process. Some attempts have been madaolic dynamics and theory of traces. All the missing no-

for the better understanding of relations between dynamtions may be found in [6, 15].

ics of computation and computation process itself - com- We consider only simple and finite graphs. Byco-

pare [3, 9, 20, 21, 22, 19]. There are also other models ofgyraph we understand either a single vertex graph, or the

computation considered in the literature [8]. For example,disjoint union of two co-graphs, or the edge complement

CRCW P-RAM - Concurrent Read Concurrent Write Par- of a co-graph.

allel RAM that realizes the situation in which more than Let Z be any finite set (alphabet) and denote Iy

one processor can concurrently read from or write into theand Z% the set of all finite and infinite words ov&r;, re-

same memory location. These models could be describedpectively. The sek* with concatenation of words and

as dynamical systems and then one could analyze some dlie empty word, denoted 1 is a free monoid. The set of

their dynamical properties. Basing our research on tracenonempty words is denoted &y and%® = Z* U 3%,

theory we try to combine, in some sense, these two ap- Letl C 2 x Z be a symmetric and irreflexive relation.

proaches - parallel or concurrent execution of computa-n the sequel is calledan independence (commutation)

tional processes and its dynamics description using symrelation; its complement is denoted by and calleda

bolic dynamics tools. This paper fits into this direction of dependence relation For every lettera € ~ we denote

aresearch. byD(a)={be X : (ab) ¢ 1}, a set of all letters from
Our recent results are published in [11, 12, 13, 14]. InZ which depend ora. The relationl may be extended

this paper we focus our interests on minimal shifts and t-to a congruence-; on Z*. We haveu ~ v if and only

shifts generated by them, assuming that an independendéit is possible to transformu to v by a finite number

relation, which determines infinite traces, is given by a five of swapsab — ba of independent lettersA traceis an

vertex co-graph. In fact there are 24 such co-graphs an@lement of the quotient spadé(>,1) = ¥*/ ~|. For
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we 2 t € M(Z,1) we denote by w | and| t |4 the num-
ber of occurrences of the lettarc ~ in w andt respec-
tively. alph(w) andalph(t) denote the set of all letters
which occur inw, t. Two tracest; andt, are indepen-
dent denotedjlty, if and only ifalph(ty) x alph(tz) C 1.

was done forz® we may endowR®(X,l) with a met-
ric dr(s,t) putting dg(s,t) =0 if s=t and dr(s,t) =
2-1+1if st wherej is the maximal integer such that
Fi(t) = F(s) for 1 <i < j. By afull t-shift we mean
the metric spacéR®(Z,1),dgr) together with a continu-

If xe Z¥ andi < j are nonnegative integers then we denoteous map® : R®(Z,1) — R¥(Z,1) defined by the formula

X[i,j] = XiXi+1...Xj andx[i_’j) = X[i,jfl]-

We recall that a wordv € 2* is in the Foata normal
form, if it is the empty word or if there exist an integer
n > 0 and nonempty wordsg,,...,v, € = (called Foata
step$ such that:

2. for anyi = 1,...,n the wordy; is a concatenation of
pairwise independent letters and is minimal with re-
spect to the lexicographic ordering,

3. foranyi =1,....n—1 and for an arbitrary lettea €
alph(vi;1) there exists a lettds € alph(v;) such that
(a,b) € D.

Itis well known that for any € ~* there exists the unique
W € [X]~, in the Foata normal form.

In the theory of dynamical systems continuous maps

acting on metric spaces are considered. Hence we endo
>® with the following metricd. If x =y thend(x,y) =0
and otherwisel(x,y) = 2-1 wherej is the number of let-
ters in the longest common prefix andy. Now, define

a shift mapo : £ — % by

(0(X)i =Xi41

where(-); denotes thé-th letter of a sequence. It is easy
to observe that is continuousZ® together with the map
o is referred to as thé&ull shift overZ. Any closed and
o-invariant (i.e.0(X) C X) setX C Z is called ashiftor a
subshift

For any wordw = (wi)icn € Z% the dependence graph
#c(w) = [V,E,A] is defined as follows. We pit = N
andA (i) = w; for anyi € N. The functionA successively
labels nodes ofpg(w) by letters ofw. There exists an
arrow (i, j) € E, if and only ifi < j and (wj,w;) € D.

P(t) = ¢ (R(t)R3(1)...) for anyt € R¥(Z,1). Analogi-
cally as a shift is defined, bytashiftwe mean any closed
andd-invariant subset oR®(Z,1). It was proved in [11]
that from a dynamical system point of vid“(Z, 1), ®)

is equivalent to a shift of finite type (which means that
dynamics of(R“(Z,1),®) and (2, 0) is to some extent
similar). However, it frequently happens that theimage

of a shift is not a t-shift and there are also t-shifts which
cannot be obtained as images of any (sequential) shift.

Let (X,d) be a compact metric space andfetX — X
be continuous. A poiny € X is said to be arw-limit
point of x if it is an accumulation point of the sequence
x, f(x), f2(x),.... The set containing all elements of the
sequence, f(x), f2(x),... is called an orbit ok and de-
noted by Orb (x). The set of alleo-limit points of x is
referred to ago-limit set of x and denoted byo(x, f). A
pointx is said to beperiodic (fixed)f f"(x) = x for some
n= 1 (n=1) and is said to beecurrentif x € w(x, f). If
X is not periodic (fixed) point but™(x) is periodic (fixed)
for some positive integem then we say thax is even-
tually periodic (fixed) A subsetM of X is minimal if it
is closed, nonempty, invariant (i.€.(M) C M) and con-
tains no proper subset with these three properties. It is
well known that if a nonempty closed det C X is mini-
mal then the orbit of every point df is dense irM. We
recall that a poink is referred to asninimal (or almost
periodic if it belongs to a minimal set.

Let X andY be compact metric spaces andfetX — X
andg:Y — Y be continuous maps. If there is a homeo-
morphismg : X — Y with go f = go @, we will say that
f andg are (topologically) conjugateand 1t is called a
(topological) conjugacylf there is a conjugacy frorX to
Y thenY is sharing all properties o. Not formally we
can think about these two shifts as they are the same.

Let X be a closed and-invariant subset oE®. We

Let us denote the set of all possible dependence graphgefine the seB,(X) of n admissible words for Xy:

(up to an isomorphism of graphs) B®®(Z,1) and let
dg : Z¥ — R¥(Z,1) be a natural projection. We call el-
ements ofR®(Z, 1) infinite (real) traces Each dependence
graph is acyclic and it induces a well-founded ordering on
N. Then for anyv € V the functionh:V — N given by
h(v) = maxZ?(v) where
PNV)={neN:3Ivy,..vneV,Vh=V,(V;,Vi;1) €E fori=
1,...,n—1} is well defined.

By Fn(t) we denote a worgl € X* consisting of all the
letters from then-th level of infinite tracet € R®(Z,1),
that is from the se{A(v) : veV,h(v) =n}. It follows
from the definition of a dependence relation that for any
infinite tracet € R®(Z,1) the wordw = Fy(t)...Fy(t) is
in the Foata normal form with Foata steps givenmbi)
andt = ¢g(F1(t)F2(t)...). Then in the same way as it

Bn(X) = {Xjijsn €Z* : xeX,i eN}.

Letw € Z*. The set of all subwords af with the length
equal ton is denoted by

Siw) ={ueBn(Z*) : vy, €Z" , W=ViUVs}.

We may extend canonically the definition®fto the case
of xe 2%, i.e. givenx € =% we define:

Si(X) = {ueBn(Z*) : i, u=Xjjitn}.

The least integem (if it exists) such that for any €
Bm(X) it holds thatS,(w) = Sy(X) is called then-th re-
currency index of x in Xand is denoted bR(n,x, X). If
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suchmdoes not exist we piR(n,x, X) = +co. In the case The proof of a subsequent assertion is a modified ver-
of X = cl(Orb" (x)) we will simplify the notation writing  sion of the original one in [14].

R(n,x) instead oR(n, x,cl(Orb" (x))) where c[A) denotes i .
the closure of a seA. Let us recall some facts on recur- Theorem 4. Let_)_( be a minimal shift, alpfx) = =. Let
21,2, be a partition ofz and assume thaf; x >, c D.

rency indices. . :
y Then there exists an integer M such that the sets
Theorem 1([17, Thm. 7.2]) Let xe Z%. The following

conditions are equivalent: Mo
) Y=o (s(x), Z=M().

1. x is a minimal point, i=0

2. R(n,x) < +oo for all positive integers n. are t-shifts. Furthermore t-shifZ, @) is minimal.
Theorem 2([17, Thm. 7.1]) If M C % is aminimal set,  Proof. We will show that¢g(x) is a minimal point for
then Rn,x) = R(n,y) for any xy € M and ne N. somex € X. Let us fix an infinite wordk = xgX; ... € X

such thatxg € Z; andx; € 2, what is possible accord-

ing to the minimality ofX. It follows from the assumption
pthat for everyi = 0,1,... any Foata stepi(x) is a word in

27 or X5 exclusively, that is ifalph(Fi(x)) N Zj # 0 then

Let us consider an independence alphdBek) and let
< be the set of all nonempty words oewhich are prod-
ucts of pairwise independent letters and are minimal wit
respect to the lexicographical orderingzofHence an ele- s
ment of</ is a Foata step which may occur in some Foata"(X) € 2] wherej = 1,2.
normal form of a word (finite or not) ovez, 1). We de- Now, let us fix a poink = xox1 . .. € X such thako € 4
fine a graph?(Z, 1) puttingV = . as the vertex setand 2nd X1 € Z2. We will show thatgg(x) is a minimal
defining the set of edges c V x V as follows. A pair point. In the wordx therg eX|_st lettersj,, Xj, € Z; and
(a1...a), (br...by)) isinEifforany 0< j < kthere ex-  Xj1+1:Xjp-1 € 22 for somejy < jo. Thenx;, andx;, deter-
ists 1<i < such that(aj,bj) € D. It is well known that mine some Foata gteps, in the Sense Xhae El(x) and
the set Xj, € Fi,(x) respectively for somé; < i,. All the inter-

mediate steps are uniquely determined by the intermediate
Xg(s1) = {a0an... € &/ (a,ai11) €Efori=0,1,...}  letters, that isF(x) = Fi_i, (X, j,)) for everyiy <i <ip
is a shift space ovew and it was proved in [11] that there _ by the definition ofl and ac_cprdlng to the fact that
: : - i1»Xjp € 21 andxj, 1 1,Xj,-1 € 2z itis not allowed to move
is a conjugacyt: R(Z,1) — Xz 1) ; . ] . i
) o o any intermediate letter outside two-sided boundary given

Given a trace € R®(Z,|) we definean n-th recurrency . :
. by the letters;, , Xj,. Now, let us introduce the following
index of tby R(n,t) = R(n, 7(t)). notation

3 Main result M =sup{n : 3i, X, X4n € 1, Z1Nal Ph(X(ijn)) = 0}.

In our paper [14] we studied minimal shits, their images M i finite sinceX is minimal, in particulaM < 2R(x, 1).
by ¢ and interrelations between these objets assuming O @ny positive integergs there exist indices; < i,
that an independency relatibiis given by relatively small | < iz — s such thati; —i <M, i; —i—s<M and
graphs (up to four vertices). We obtain a clear description':u(x)?':[z()_() € 2; and Fi;—1(X), Fi+1(X) € Z3. In partic-
of these cases except fogenerated by - the cycle on  Ular, this implies that all the stefs, (x),...,Fi,(x) are
four vertices. Now we present the main result of this paperUniquely determined by some subwaudof x with the
thatis a description of trace counterparts of minimal shift €Ngth|u| < (2M +s+2)|Z|. But from the minimality o

assuming that an independency relatigagiven by a co- ~ &&ch subword ok with the lengthR((2M +s)|Z|,x) con-
graph defined on five vertices. tainsu as a subword. Additionallf..1(x) = K (og(x)) and

We start our presentation with two useful theorems. ~ Fo(X) = o € Z1. Finally

Theorem 3([14] Thm. 7) LetZ, O be alphabets® ¢ = R(s, ¢ (0(x))) <R((2M +s)|Z|,X)
and XC Z® be a minimal shift with alpfX) = X. Let an

independence relation | be given as follows: and thenpg (0(x)) is @ minimal point. If we fixy & X with

Yo € Z1 then there exists an increasing sequefigg,_;
I =((ZxO)U(OxZ2))\As, such that lim_,., o'k (x) = y. In particular, we may assume
thatX;;, i,+1 = Yjo,- There exists also an increasing se-
quence{ jk}r_, such thatblk (¢ (x)) = ¢g (a1 (x)) and
soa(y) € cl(Orb" (¢ (a(X)))). Thus we have just proved
1 if ae® that allx € X with Xg € Z1,X; € Z, define exactly the same
(@) = a if a¢® unigue minimal t-shift. But it is also clear that for any
y € X there isj < M such thay; € Z; andy;1 € 3> which
Then¢g(X) and 1i(X) are t-shift and shift respectively, immediately implies tha®' (¢ (y)) is contained in a min-
they are conjugated andt(X), o) is minimal. imal set, for some < j < M. O

whereAs = {(a,a) : a€ Z}.
Letrr: 2® — (Z\ ©)% be a projection
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the situation.

Now let us consider five letter alphabet and an indepen-
dence relation given by a co-graph of order 5. We devide
the set of 24 mentioned co-graphs into three subclasses ac-

cording to their properties in order to facilitate analysfis /i%

Theorem 5. Let the independence relation | be repre-

sented by a co-graph G. )

Figure 2: Subclass Il of co-graphs of order 5

1. If G belongs tosubclass | (Fig.1), then there exists
a positive integer M and Y= UM, @' (¢¢(X)) is a

t-shift and Z— ®M (Y) is a minimal subshift. the second in which a form of the relatidnobvi-

ously implies thatpg (X’) is minimal (for exampléd
2. If G belongs tosubclass |1 (Fig.2), then two cases consisted of five isolated vertices).
can occur. The first one is described in statement 1.

and in the second ong; (X’) is a minimal subshift. =

One can see that the previous Theorem does not con-
Proof. sider two remaining co-graphs on five vertices depicted in

Fig. 3.
e subclass |

If the relationl is represented by any graph belonging

to subclass | (see Fig. 1), % ﬁ

. . .« . . . . . Figure 3: Subclass Il of co-graphs of order 5

y b ‘—% % % @ Unfortunately in this case we are unable to give any gen-

. . . . . eral description. So this case remains open for a further
research.
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