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Abstract: We study interrelations between symbolic de-
scriptions of concurrently evolving systems and underly-
ing sequential dynamics. We focus our interests on mini-
mal shifts and t-shifts generated by them, assuming that an
independence relation is given by a five vertex co-graph.

1 Introduction

In [11] we formulated a framework which allows to study
parallel dynamics by tools used in a research of sequen-
tial symbolic dynamics. To be more precise, in place of
words we consider traces introduced in the seminal papers
[4, 16] and define a t-shift as a parallel counterpart of a
shift. Then we raised a problem of interrelations between
the sequential dynamics and their parallel counterparts.

The problem is well known in the theory of computing.
Namely, a one-tape Turing machine is equivalent, in the
sense of a computational power, to a Turing machine with
multiple tapes. However, if we analyze moves of the tape
then a “simple” computation of a multi-tape machine may
force quite “complex” behavior of a one-tape machine dur-
ing a simulation process. Some attempts have been made
for the better understanding of relations between dynam-
ics of computation and computation process itself - com-
pare [3, 9, 20, 21, 22, 19]. There are also other models of
computation considered in the literature [8]. For example,
CRCW P-RAM - Concurrent Read Concurrent Write Par-
allel RAM that realizes the situation in which more than
one processor can concurrently read from or write into the
same memory location. These models could be described
as dynamical systems and then one could analyze some of
their dynamical properties. Basing our research on trace
theory we try to combine, in some sense, these two ap-
proaches - parallel or concurrent execution of computa-
tional processes and its dynamics description using sym-
bolic dynamics tools. This paper fits into this direction of
a research.

Our recent results are published in [11, 12, 13, 14]. In
this paper we focus our interests on minimal shifts and t-
shifts generated by them, assuming that an independence
relation, which determines infinite traces, is given by a five
vertex co-graph. In fact there are 24 such co-graphs and

we try to analyze all of them. The reason for choosing co-
graphs as an independence relations follows from the gen-
eral fact proved by B.Courcelle, M.Mosbah in [5] that all
problems that can be formulated in monadic second-order
logic (without quantification of edge sets) can be solved
in a linear time on co-graphs. To make it more clear -
for any co-graph its recognition, along with the construc-
tion of the corresponding co-tree, can be done in linear
time. Co-trees form the basis for polynomial algorithms
for problems such as isomorphism, coloring, clique detec-
tion, Hamiltonicity, tree-width and path-width, and domi-
nating sets on co-graphs. In general case these problems
are NP-hard. This is also a common reason for choosing a
family of co-graphs as a subject of various theoretical re-
searches with possible applications, for example in exami-
nation scheduling and automatic clustering of index terms
[7].

2 Definitions and notations

Now we recall only basic concepts of graph theory, sym-
bolic dynamics and theory of traces. All the missing no-
tions may be found in [6, 15].

We consider only simple and finite graphs. Bya co-
graph we understand either a single vertex graph, or the
disjoint union of two co-graphs, or the edge complement
of a co-graph.

Let Σ be any finite set (alphabet) and denote byΣ∗

andΣω the set of all finite and infinite words overΣ, re-
spectively. The setΣ∗ with concatenation of words and
the empty word, denoted 1 is a free monoid. The set of
nonempty words is denoted byΣ+ andΣ∞ = Σ∗ ∪Σω .

Let I ⊂ Σ × Σ be a symmetric and irreflexive relation.
In the sequelI is calledan independence (commutation)
relation; its complement is denoted byD and calleda
dependence relation. For every lettera ∈ Σ we denote
by D(a) = {b ∈ Σ : (a,b) /∈ I}, a set of all letters from
Σ which depend ona. The relationI may be extended
to a congruence∼I on Σ∗. We haveu ∼I v if and only
if it is possible to transformu to v by a finite number
of swapsab → ba of independent letters.A trace is an
element of the quotient spaceM(Σ, I) = Σ∗/ ∼I . For
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w ∈ Σ∗, t ∈M(Σ, I) we denote by| w |a and| t |a the num-
ber of occurrences of the lettera ∈ Σ in w and t respec-
tively. alph(w) and alph(t) denote the set of all letters
which occur inw, t. Two tracest1 and t2 are indepen-
dent, denotedt1It2, if and only if alph(t1)×alph(t2) ⊂ I .
If x∈ Σω andi ≤ j are nonnegative integers then we denote
x[i, j ] = xixi+1 . . .x j andx[i, j) = x[i, j−1].

We recall that a wordw ∈ Σ∗ is in the Foata normal
form, if it is the empty word or if there exist an integer
n > 0 and nonempty wordsv1, ...,vn ∈ Σ+ (calledFoata
steps) such that:

1. w= v1.....vn,

2. for anyi = 1, ...,n the wordvi is a concatenation of
pairwise independent letters and is minimal with re-
spect to the lexicographic ordering,

3. for anyi = 1, ...,n− 1 and for an arbitrary lettera ∈
alph(vi+1) there exists a letterb ∈ alph(vi) such that
(a,b) ∈ D.

It is well known that for anyx ∈ Σ∗ there exists the unique
w ∈ [x]∼I in the Foata normal form.

In the theory of dynamical systems continuous maps
acting on metric spaces are considered. Hence we endow
Σω with the following metricd. If x = y thend(x,y) = 0
and otherwised(x,y) = 2− j where j is the number of let-
ters in the longest common prefix ofx andy. Now, define
a shift mapσ : Σω → Σω by

(σ(x))i = xi+1

where(·)i denotes thei-th letter of a sequence. It is easy
to observe thatσ is continuous.Σω together with the map
σ is referred to as thefull shift over Σ. Any closed and
σ -invariant (i.e.σ(X) ⊂ X) setX ⊂ Σ is called ashift or a
subshift.

For any wordw= (wi)i∈N ∈ Σω thedependence graph
ϕG(w) = [V,E,λ ] is defined as follows. We putV = N
andλ (i) = wi for any i ∈ N. The functionλ successively
labels nodes ofϕG(w) by letters ofw. There exists an
arrow (i, j) ∈ E, if and only if i < j and (wi ,wj ) ∈ D.
Let us denote the set of all possible dependence graphs
(up to an isomorphism of graphs) byRω(Σ, I) and let
ϕG : Σω → Rω(Σ, I) be a natural projection. We call el-
ements ofRω (Σ, I) infinite (real) traces. Each dependence
graph is acyclic and it induces a well-founded ordering on
N. Then for anyv ∈ V the functionh : V → N given by
h(v) = maxP(v) where
P(v)= {n∈N : ∃v1, ..,vn ∈V,vn= v,(vi ,vi+1)∈ E for i =
1, ...,n−1} is well defined.

By Fn(t) we denote a wordw ∈ Σ∗ consisting of all the
letters from then-th level of infinite tracet ∈ Rω(Σ, I),
that is from the set{λ (v) : v ∈ V,h(v) = n}. It follows
from the definition of a dependence relation that for any
infinite tracet ∈ Rω(Σ, I) the wordw = F1(t) . . .Fn(t) is
in the Foata normal form with Foata steps given byFi(t)
and t = ϕG(F1(t)F2(t) . . .). Then in the same way as it

was done forΣω we may endowRω (Σ, I) with a met-
ric dR(s,t) putting dR(s,t) = 0 if s = t and dR(s, t) =
2− j+1 if s 6= t where j is the maximal integer such that
Fi(t) = Fi(s) for 1 ≤ i ≤ j. By a full t-shift we mean
the metric space(Rω(Σ, I),dR) together with a continu-
ous mapΦ : Rω (Σ, I) → Rω(Σ, I) defined by the formula
Φ(t) = ϕG(F2(t)F3(t) . . .) for any t ∈ Rω(Σ, I). Analogi-
cally as a shift is defined, by at-shift we mean any closed
andΦ-invariant subset ofRω(Σ, I). It was proved in [11]
that from a dynamical system point of view(Rω (Σ, I),Φ)
is equivalent to a shift of finite type (which means that
dynamics of(Rω (Σ, I),Φ) and(Σω ,σ) is to some extent
similar). However, it frequently happens that theϕG image
of a shift is not a t-shift and there are also t-shifts which
cannot be obtained as images of any (sequential) shift.

Let (X,d) be a compact metric space and letf : X → X
be continuous. A pointy ∈ X is said to be anω-limit
point of x if it is an accumulation point of the sequence
x, f (x), f 2(x), . . . . The set containing all elements of the
sequencex, f (x), f 2(x), . . . is called an orbit ofx and de-
noted by Orb+(x). The set of allω-limit points of x is
referred to asω-limit set of x and denoted byω(x, f ). A
point x is said to beperiodic (fixed)if f n(x) = x for some
n ≥ 1 (n= 1) and is said to berecurrentif x ∈ ω(x, f ). If
x is not periodic (fixed) point butf m(x) is periodic (fixed)
for some positive integerm then we say thatx is even-
tually periodic (fixed). A subsetM of X is minimal if it
is closed, nonempty, invariant (i.e.f (M) ⊂ M) and con-
tains no proper subset with these three properties. It is
well known that if a nonempty closed setM ⊂ X is mini-
mal then the orbit of every point ofM is dense inM. We
recall that a pointx is referred to asminimal (or almost
periodic) if it belongs to a minimal set.

Let X andY be compact metric spaces and letf : X → X
andg : Y → Y be continuous maps. If there is a homeo-
morphismφ : X → Y with φ ◦ f = g◦ φ , we will say that
f andg are (topologically) conjugateandπ is called a
(topological) conjugacy. If there is a conjugacy fromX to
Y thenY is sharing all properties ofX. Not formally we
can think about these two shifts as they are the same.

Let X be a closed andσ -invariant subset ofΣω . We
define the setBn(X) of n admissible words for Xby:

Bn(X) =
{

x[i,i+n) ∈ Σ∗ : x ∈ X, i ∈N
}
.

Let w ∈ Σ∗. The set of all subwords ofw with the length
equal ton is denoted by

Sn(w) = {u ∈ Bn(Σ∗) : ∃ v1,v2 ∈ Σ∗ , w= v1uv2} .

We may extend canonically the definition ofSn to the case
of x ∈ Σω , i.e. givenx ∈ Σω we define:

Sn(x) =
{

u ∈ Bn(Σ∗) : ∃ i , u= x[i,i+n)
}
.

The least integerm (if it exists) such that for anyw ∈
Bm(X) it holds thatSn(w) = Sn(x) is called then-th re-
currency index of x in Xand is denoted byR(n,x,X). If
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suchm does not exist we putR(n,x,X) = +∞. In the case
of X = cl(Orb+(x)) we will simplify the notation writing
R(n,x) instead ofR(n,x,cl(Orb+(x))) where cl(A) denotes
the closure of a setA. Let us recall some facts on recur-
rency indices.

Theorem 1 ([17, Thm. 7.2]). Let x∈ Σω . The following
conditions are equivalent:

1. x is a minimal point,

2. R(n,x)<+∞ for all positive integers n.

Theorem 2([17, Thm. 7.1]). If M ⊂ Σω is a minimal set,
then R(n,x) = R(n,y) for any x,y ∈ M and n∈ N.

Let us consider an independence alphabet(Σ, I) and let
A be the set of all nonempty words overΣ which are prod-
ucts of pairwise independent letters and are minimal with
respect to the lexicographical ordering ofΣ. Hence an ele-
ment ofA is a Foata step which may occur in some Foata
normal form of a word (finite or not) over(Σ, I). We de-
fine a graphG (Σ, I) puttingV = A as the vertex set and
defining the set of edgesE ⊂ V ×V as follows. A pair
((a1 . . .ak),(b1 . . .bl )) is in E if for any 0≤ j ≤ k there ex-
ists 1≤ i ≤ l such that(a j ,bi) ∈ D. It is well known that
the set

XG (Σ,I) = {a0a1 . . . ∈ A ω : (ai,ai+1) ∈ E for i = 0,1, . . .}
is a shift space overA and it was proved in [11] that there
is a conjugacyπ : Rω(Σ, I) → XG (Σ,I).

Given a tracet ∈Rω (Σ, I) we definean n-th recurrency
index of tby R(n,t) = R(n,π(t)).

3 Main result

In our paper [14] we studied minimal shifts, their images
by ϕG and interrelations between these objets assuming
that an independency relationI is given by relatively small
graphs (up to four vertices). We obtain a clear description
of these cases except forI generated byC4 - the cycle on
four vertices. Now we present the main result of this paper,
that is a description of trace counterparts of minimal shifts,
assuming that an independency relationI is given by a co-
graph defined on five vertices.

We start our presentation with two useful theorems.

Theorem 3 ([14] Thm. 7). Let Σ,Θ be alphabets,Θ  Σ
and X⊂ Σω be a minimal shift with alph(X) = Σ. Let an
independence relation I be given as follows:

I = ((Σ× Θ)∪ (Θ × Σ))\ ∆Σ,

where∆Σ = {(a,a) : a ∈ Σ} .
Let π : Σω → (Σ\ Θ)∞ be a projection

π(a) =

{
1 if a ∈ Θ
a if a /∈ Θ

ThenϕG(X) and π(X) are t-shift and shift respectively,
they are conjugated and(π(X),σ) is minimal.

The proof of a subsequent assertion is a modified ver-
sion of the original one in [14].

Theorem 4. Let X be a minimal shift, alph(X) = Σ. Let
Σ1,Σ2 be a partition ofΣ and assume thatΣ1 × Σ2 ⊂ D.
Then there exists an integer M such that the sets

Y =
M⋃

i=0

Φi(ϕG(X)), Z = ΦM(Y).

are t-shifts. Furthermore t-shift(Z,Φ) is minimal.

Proof. We will show thatϕG(x) is a minimal point for
somex ∈ X. Let us fix an infinite wordx = x0x1 . . . ∈ X
such thatx0 ∈ Σ1 and x1 ∈ Σ2 what is possible accord-
ing to the minimality ofX. It follows from the assumption
that for everyi = 0,1, ... any Foata stepFi(x) is a word in
Σ∗

1 or Σ∗
2 exclusively, that is ifalph(Fi(x))∩ Σ j 6= /0 then

Fi(x) ∈ Σ∗
j where j = 1,2.

Now, let us fix a pointx= x0x1 . . . ∈ X such thatx0 ∈ Σ1

and x1 ∈ Σ2. We will show thatϕG(x) is a minimal
point. In the wordx there exist lettersx j1,x j2 ∈ Σ1 and
x j1+1,x j2−1 ∈ Σ2 for somej1 < j2. Thenx j1 andx j2 deter-
mine some Foata steps, in the sense thatx j1 ∈ Fi1(x) and
x j2 ∈ Fi2(x) respectively for somei1 < i2. All the inter-
mediate steps are uniquely determined by the intermediate
letters, that isFi(x) = Fi−i1(x( j1, j2)) for every i1 < i < i2
- by the definition ofI and according to the fact that
x j1,x j2 ∈ Σ1 andx j1+1,x j2−1 ∈ Σ2 it is not allowed to move
any intermediate letter outside two-sided boundary given
by the lettersx j1,x j2. Now, let us introduce the following
notation

M = sup
{

n : ∃ i, xi ,xi+n ∈ Σ1, Σ1 ∩alph(x(i,i+n)) = /0
}
.

M is finite sinceX is minimal, in particularM ≤ 2R(x,1).
For any positive integersi,s there exist indicesi1 ≤ i,
i ≤ i2 − s such that i1 − i ≤ M, i2 − i − s ≤ M and
Fi1(x),Fi2(x) ∈ Σ∗

2 andFi1−1(x),Fi2+1(x) ∈ Σ∗
1. In partic-

ular, this implies that all the stepsFi1(x), . . . ,Fi2(x) are
uniquely determined by some subwordu of x with the
length|u|< (2M+s+2)|Σ|. But from the minimality ofx
each subword ofx with the lengthR((2M+ s)|Σ|,x) con-
tainsu as a subword. AdditionallyFi+1(x) = Fi(σ(x)) and
F0(x) = x0 ∈ Σ1. Finally

R(s,ϕG(σ(x))) ≤ R((2M+s)|Σ|,x)

and thenϕG(σ(x)) is a minimal point. If we fixy∈ X with
y0 ∈ Σ1 then there exists an increasing sequence{ik}∞

k=1
such that limk→∞ σ ik(x) = y. In particular, we may assume
that x[ik,ik+1] = y[0,1]. There exists also an increasing se-
quence{ jk}∞

k=1 such thatΦ jk(ϕG(x)) = ϕG(σ ik+1(x)) and
soσ(y) ∈ cl(Orb+(ϕG(σ(x)))). Thus we have just proved
that allx∈ X with x0 ∈ Σ1,x1 ∈ Σ2 define exactly the same
unique minimal t-shift. But it is also clear that for any
y∈ X there isj ≤ M such thaty j ∈ Σ1 andy j+1 ∈ Σ2 which
immediately implies thatΦi(ϕG(y)) is contained in a min-
imal set, for somei ≤ j ≤ M.
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Now let us consider five letter alphabet and an indepen-
dence relation given by a co-graph of order 5. We devide
the set of 24 mentioned co-graphs into three subclasses ac-
cording to their properties in order to facilitate analysisof
the situation.

Theorem 5. Let the independence relation I be repre-
sented by a co-graph G.

1. If G belongs tosubclass I (Fig.1), then there exists
a positive integer M and Y=

⋃M
i=0 Φi(ϕG(X)) is a

t-shift and Z= ΦM(Y) is a minimal subshift.

2. If G belongs tosubclass II (Fig.2), then two cases
can occur. The first one is described in statement 1.
and in the second oneϕG(X′) is a minimal subshift.

Proof.

• subclass I
If the relationI is represented by any graph belonging
to subclass I (see Fig. 1),
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•
• •
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Figure 1: Subclass I of co-graphs of order 5

then there exists at least one letter (denote it bya)
which is in relationD with any other letter. Then we
can apply Theorem 4 becauseΣ1 = {a}, Σ2 = Σ\{a}
fulfill the assumptions of the mentioned theorem. In
particular,Y =

⋃M
i=0 Φi(ϕG(X)) is a t-shift and after a

finite number of iterations it becomes a minimal sub-
shift Z =ΦM(Y), whereM is a positive integer which
depends on the structure ofX. In fact, exactly the
same situation holds for the last two graphs from this
subclass, but nowΣ is decomposed into two sets con-
taining two and three letters respectively.

• subclass II
If the relationI is represented by any graph depicted
at Fig 2, then there is at least one letter which is inde-
pendent with any other letter.

Then by Theorem 3ϕG(X) is homeomorphic to
ϕG(X′) whereX′ is obtained fromX by removing
this particular letter. But this transformation allows
us to modify the independence relation by removing
exactly the same letter fromI . Finally we obtain two
cases. The first that allows to apply Theorem 4, and
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Figure 2: Subclass II of co-graphs of order 5

the second in which a form of the relationI obvi-
ously implies thatϕG(X′) is minimal (for exampleI
consisted of five isolated vertices).

One can see that the previous Theorem does not con-
sider two remaining co-graphs on five vertices depicted in
Fig. 3.

•
• •

• •

•
• •

• •

Figure 3: Subclass III of co-graphs of order 5

Unfortunately in this case we are unable to give any gen-
eral description. So this case remains open for a further
research.
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[6] V. Diekert and G. Rozenberg, eds.,The book of traces,
World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

[7] V. Guruswami, C. Pandu Rangan, M.S. Chang, G.J. Chang,
C. K. Wong, The Vertex-Disjoint Triangles Problem,
Graph-Theoretic Concepts in Computer Science, LNCS
1517 (1998), 26–37.

[8] Sun-Yuan Hsieh,A faster parallel connectivity algorithm
on cographs, Applied Mathematics Letters 20, (2007),
341–344.

[9] P. Kurka, On topological dynamics of Turing machines,
Theoret. Comput. Sci. 174 (1997), 203–216.

[10] M. Kwiatkowska, A metric for traces, Inform. Process.
Lett. 35, (1990), 129–135.
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