
Tagged Mathematics in PDFs for Accessibility
and other purposes

Ross Moore

Mathematics Department, Macquarie University, Sydney, Australia
ross.moore@mq.edu.au

Abstract. PDF has been the preferred format for publishing mathe-
matics for many years now. With changes to methods of delivery (i.e.,
electronic rather than predominantly paper) there need to be correspond-
ing enhancements in the document format. Not least among these can
be implicit legal obligations to satisfy Accessibility criteria.

The answer developed for PDF is tagging of document structure and
content types, as described in the PDF/UA Implementation Guide [4].
Wikipedia describes this as “not a separate file-format but simply a way
to use PDF” [12], which when supported “reader software will be able
to reliably reflow text onto small screens, provide powerful navigation
options, transform text appearance, improve search engine functionality,
aid in the selection and copying of text, and more” [12]. Academic pub-
lishers are starting to see these benefits and will doubtless soon require
at least minimal tagging of online PDF documents for Accessibility pur-
poses, in a similar way to how Accessibility tags have been incorporated
into HTML.

Here is a brief overview of work done by the author to incorporate full
MathML tagging of mathematical content in documents produced pri-
marily using the LATEX typesetting system. Since the publicly available
TEX software was not written to support such tagging of document con-
tent, further software tools are also required. This includes using a mod-
ified version of pdfTEX, a self-developed Perl program, TEX to MathML
conversion software, some standard Unix command-line utilities, and ex-
tensive use of self-written TEX and LATEX macros.

As this work is a continuation of work presented at the CICM meetings
in 2009 [5], we concentrate here mostly on the advancements made since
then. This includes the ability to capture complete math-environments
from a running LATEX job, to automatically invoke a conversion of the
LATEX source of the particular piece of mathematics into Presentation
MathML using whatever appropriate conversion software is available.
Previously the MathML version needed to have been available indepen-
dent from the LATEX source. Now this conversion can be done ‘on-the-fly’,
using TEX4HT for example, before merging the MathML and LATEX de-
scriptions of the same piece of mathematics into a new extended LATEX
description incorporating macros to cause the generation of appropriate
tagging and enrichment to satisfy Accessibility requirements. Such auto-
matic conversion and merging can add significantly to the total running
time for the whole job, so an indexing system has been developed which

2

allows the resulting enriched LATEX description to be reused with multi-
ple occurrences of the same source coding within the same job, and to
be available for reuse in subsequent LATEX runs.

Another development is better control over the words produced for al-
ternative text, to be read by screen-readers. Where previously this was
largely hard-coded in the enriched LATEX description, this is now replaced
by macros whose expansion text can be customised. This allows for the
possibility of generating speech text in different languages, or customis-
ing what is to be spoken according to the field of mathematics being
described within the document. Such customisations can be done at the
LATEX level, so that a document author need not be involved with the
highly intricate details of conversion to MathML and the enhancements
required for tagging.

1 Background, Overview of “Tagged PDF”

The Web Content Accessibility Guidelines (WCAG 2.0) [9], have been developed
primarily for the construction of websites to allow easier access to, and navigation
of, online content by persons having a disability, in particular by people with
visual impairment. The governments of some countries [7], including Canada
[11] and Australia [10], have established that adherence to these guidelines be a
requirement, at least for their own governmental web presence.

While PDF files are not websites, the same principles of Accessibility should
still apply [4], which make tagging of both structure and content within a PDF

document an issue of some importance. Indeed the latest version of Adobe’s
‘Acrobat Pro’ application has a suite of 32 checks which test whether a document
meets various aspects of the WCAG recommendations [8]. Typically a PDF pro-
duced using LATEX software is lucky to satisfy 11 of these checks, with two others
requiring manual verification anyway. Lucky, because some of these checks refer
to content/structure types not even present, hence not deemed to be failing.

With the help of a modified version of pdfTEX, having extra primitives specif-
ically to enable production of proper “Tagged PDF” documents, the author has
been able to produce PDFs containing extensive technical and mathematical
content, that fail none of those 32 tests. Such documents are deemed properly
Accessible by Adobe’s checks, while at the same time being capable of valida-
tion against both the PDF/A-2b and PDF/A-2u [4] specifications. Just using the
modified version of pdfTEX is not sufficient. While this enables tagging to be
implemented, much macro programming is required to (i) load extra Metadata
and font-encoding mappings; (ii) provide alternative-text to be read by screen-
reader software; (iii) organise how the new tagging primitives are used and are
correctly nested; (iv) identify structural “artifacts” (such as page-numbers, foot-
note rules, background images, etc.); (v) keep track of aspects of the document
structure; and (vi) many other details requiring special attention. Some of these
tasks enhance the Accessibility without the need for tagging; but the tagging is

3

D
o

cu
m

en
t

ti
tl

e
as

 w
in

d
o

w
 n

am
e

Ta
g

s
tr

ee
 s

h
o

w
in

g
 c

o
n

te
n

t,
co

n
si

st
en

t
w

it
h

 re
ad

in
g

 o
rd

er

co
n

te
n

t-
lik

e
 “A

rt
ifa

ct
s”

Ta
g

g
ed

 li
st

 a
n

d
 it

em
s

m
at

h
em

at
ic

s
ta

g
g

ed
 fo

r s
tr

u
ct

u
re

 a
n

d
 c

o
n

te
n

t

se
le

ct
io

n
 o

f s
tr

u
ct

u
re

 s
u

b
tr

ee
 h

ig
h

lig
h

ts
 c

o
n

te
n

t
si

b
lin

g
s

Fig. 1. View of the ‘Tags’ tree as seen in Acrobat Pro XI, for a typical document
containing mathematical content, indicating some aspects particularly relevant
to Accessibility considerations. Light blue boxes in the main viewing panel indi-
cate separately tagged portions of content.

4

certainly the most important requirement. Figure 1 shows part of a document,
indicating some of the above-listed features.

Now the WCAG recommendations do not specify the detail to which mathe-
matical formulas should be tagged, but the natural format would be Presentation
MathML. Furthermore, since the forthcoming ISO 32000-2 specifications are to
include MathML tagging, this is the natural choice for handling mathematical
content. In subsequent sections, we first give a brief overview of how tagging is
implemented in PDF, then show what this means for a simple piece of mathemat-
ical content, in which each single character has a special meaning and fits within
a very tight structural description. Also shown, in Figure 5 is the enriched LATEX
source to achieve this, requiring many lines of input to capture the meaning and
structure of just a few characters in the original LATEX description.

Catalog 1

Pages

Page 101

Contents

Page 102

Contents

Contents 201

Contents 202

Pages 100

Kids [...]

StructTreeRoot

StructTreeRoot 300

K [...]

ClassMap

RoleMap

StructElem 301

P

K [...]

StructElem 302

P

Pg

K 0

StructElem 303

P

Pg

K [...]

StructElem 304

P

Pg

K [...]

Chap Head1 Para Para

Head 1 <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 2>>

StructParents 0

StructParents 1

ParentTree

Parent tree 400

Nums [...] 401

 [...]

402

 [...]

ParentTreeNextKey

IDTree

403

Kids [...]

Fig. 2. Interleaving of structure and content tagging within a 2-page PDF doc-
ument, structured as a heading and two paragraphs. (based on an example in [1]).
Picture reproduced with permission from [5].

5

2 Overview of “Tagged PDF”

A brief history of Adobe’s PDF format and specification was given by the author
at the CICM 2009 meeting, and published as [5]. Rather than repeat this here,
the basic structure of “Tagged PDF” can be understood using the diagram,
reproduced from [5] and shown as Figure 2. This has been described as a “double-
tree” structure. The ‘Pages’ tree is indicated by the top rows of blue boxes,
headed as ‘Page ...’, each having another box headed as ‘Contents ...’ which denotes
the ‘page content’ streams; that is, the low-level commands to select fonts and
place text on the page. Relevant documentation and format specifications are
listed in the bibliography, as [1,2,3,4,8].

The 2nd tree is the ‘Structure Tree’ which is much richer, represented by the
lower rows of blue boxes. Leaf-nodes for this tree consist of the tags show as
yellow rectangles within the blue ‘Contents ...’ boxes, each with labels including
‘MCID ...’. All the other yellow rectangles represent data structures required to do
the ‘book-keeping’ of how these two tree structures intersect. In an actual Tagged
PDF document, these allow for navigation and selection of the content using the
‘structure elements’, as shown in Figure 1, and for extraction of individual pages
so as to preserve that part of the structure that is present on the specific page.

A useful way to see these two tree structures together is provided by the
‘Tags’ view, in Adobe’s Acrobat Pro software. See Figure 1 for an example of
how this can appear.

3 Example of Tagged content within a ‘page stream’

As with XML and HTML, tags can have attributes to help reader software tools
construct a more appropriate representation of the content. Two such attributes
are the ‘/Alt’ text and ‘/ActualText’ character strings. The former is used to pro-
vide a short textual description of the content of an image, just as with HTML for
web-pages. But this attribute is available for any content, so is particularly useful
with mathematics to provide an audible description of the names of symbols or
their uses. On the other hand, the ‘/ActualText’ is used with text-extraction, to
provide a mapping from characters shown onscreen to a friendlier representation;
e.g., the old German ß character may be mapped to ‘ss’, or to the Unicode point
U+00DF when the font used in the document is coded in a non-standard way. For
mathematical symbols, this can be used to map variable names x, y, a, b, etc.
into mathematical alpha-numerics, such as U+1D465 etc., when the document
font uses ASCII positions, as in the following example.

A portion of the page stream corresponding to part of the content which
renders as

(
4
3πR

3
)

is shown in Figure 3. The lines which contain ‘/MCID’ and
those following up to ‘EMC’ are what determine the tagging of content. All
other lines are as would appear without tagging, apart from line-ends being
removed to allow this code sample to fit on the printed page. Notice the use of
hexadecimal strings for ‘/ActualText’ and plain English words for ‘/Alt’ text, which
are the ‘Accessible Text’ words that will be vocalised by screen-reader software.
The ‘/mi’, ‘/mn’ clearly corresponds to MathML tagging of the content. For this
example the MathML description used is shown in Figure 4.

6

1 0 0 1 301.237 0 cm

/Artifact << /Type/Layout/ActualText<FEFF0028> >>BDC

1 0 0 1 1.992 11.557 cm

BT /F27 9.9626 Tf [(\020)]TJ ET EMC

1 0 0 1 7.146 -6.849 cm

/mn <</MCID 6 /ActualText<FEFF0034>/Alt(: open bracket: four)>>BDC

BT /F19 7.9701 Tf [(4)]TJ ET EMC

q 1 0 0 1 0 -1.719 cm

[]0 d 0 J 0.398 w 0 0 m 4.234 0 l S

Q 1 0 0 1 0 -8.83 cm

/mn <</MCID 7 /ActualText<FEFF0033>/Alt(thirds)>>BDC

BT /F19 7.9701 Tf [(3)]TJ ET EMC

1 0 0 1 5.43 4.122 cm

/mo <</MCID 8 /ActualText<FEFF2062>/Alt(times)>>BDC

BT /F76 1 Tf [()]TJ ET EMC

/mi <</MCID 9 /ActualText<FEFF03C0>/Alt(pi)>>BDC

BT /F21 11.9552 Tf [(\031)]TJ ET EMC

1 0 0 1 7.069 0 cm

/mi <</MCID 10 /ActualText<FEFFD835DC45>/Alt(capital R)>>BDC

BT /F21 11.9552 Tf [(R)]TJ ET EMC

1 0 0 1 9.008 4.339 cm

/mn <</MCID 11 /ActualText<FEFF0033>/Alt(cubed, close bracket:)>>BDC

BT /F19 7.9701 Tf [(3)]TJ ET EMC

Fig. 3. Portion of the PDF page-stream contents for a piece of inline mathemat-
ics:

(
4
3πR

3
)
. White-space, as line-ends, has been massaged for convenience of

display. The ‘Accessible Text’ as read by a screen reader is visible in the /Alt
attributes. This combines to produce ‘ : open bracket: four thirds times pi capital R

cubed, close bracket: ’, with each ‘:’ character inducing a slight pause. Font char-
acters are accompanied by /ActualText replacements which allow copy/paste
to provide correct Unicode points. Brackets must be tagged as /Artifact since
they do not correspond to tagged content within the MathML description (see
Figure 4); words to be read are shifted to the nearest enclosed content.

<math xmlns="http://www.w3.org/1998/Math/MathML"

style="font-size: xx-small">

<mfenced separators="">

<mfrac> <mn>4</mn> <mn>3</mn> </mfrac>

<mo>⁢<!-- ⁢ --></mo>

<mi>π<!-- π --></mi>

<msup> <mi>R</mi> <mn>3</mn> </msup>

</mfenced>

</math>

Fig. 4. MathML representation of the same piece of mathematics:
(
4
3πR

3
)
, used

to create the PDF portion shown in Figure 3. White-space has been massaged
for display purposes.

7

\SMC{attr{/Type/Layout/ActualText<FEFF0028>} }{-1}{Artifact}%

\left(% start of fence

\EMA

\TPDFfbrack

\tfrac{

\pdfinterwordspaceoff

\SMC{attr{/ActualText<FEFF0034>\TPDFaloud{0034}} }{5}{mn}%

4%

\EMC

}{%

\SMC{attr{/ActualText<FEFF0033>\TPDFspeak{\TPDFthirds}} }{6}{mn}%

3%

\EMC

}%

\SMC{attr{/ActualText<FEFF2062>\TPDFaloud{2062}} }{7}{mo}%

\pdffakespace

\EMC

\SMC{attr{/ActualText<FEFF03C0>\TPDFaloud{03C0}} }{8}{mi}%

\pi%

\EMC

\SMC{attr{/ActualText<FEFFD835DC45>\TPDFaloud{1D445}} }{10}{mi}%

R%

^{%

\EMC

\TPDFcubed

\TPDFpopfence

\SMC{attr{/ActualText<FEFF0033>\TPDFaloud{0033}} }{11}{mn}%

3%

\EMC

}%

\SMC{attr{/Type/Layout/ActualText<FEFF0029>} }{-1}{Artifact}%

\right)% end of fence

\EMA

\SSE{attr{/Type/StructElem/S/math

/A<</O/XML-1.00/xmlns(http://www.w3.org/1998/Math/MathML)

/style(font-size: xx-small)>>}\TPDFaloudtag{math}{2}}{1}{0}{2}%

\SSE{attr{/Type/StructElem/S/mfenced

/A<</O/XML-1.00/separators()>>}\TPDFaloudtag{mfenced}{3}}{2}{2}{3}%

\SSE{attr{/Type/StructElem/S/mfrac}\TPDFaloudtag{mfrac}{4}}{1}{3}{4}%

\SSE{attr{/Type/StructElem/S/mn}\TPDFaloudtag{mn}{5}}{2}{4}{5}%

\SSE{attr{/Type/StructElem/S/mn}\TPDFaloudtag{mn}{6}}{3}{4}{6}%

\SSE{attr{/Type/StructElem/S/mo}\TPDFaloudtag{mo}{7}}{2}{3}{7}%

\SSE{attr{/Type/StructElem/S/mi}\TPDFaloudtag{mi}{8}}{3}{3}{8}%

\SSE{attr{/Type/StructElem/S/msup}\TPDFaloudtag{msup}{9}}{4}{3}{9}%

\SSE{attr{/Type/StructElem/S/mi}\TPDFaloudtag{mi}{10}}{2}{9}{10}%

\SSE{attr{/Type/StructElem/S/mn}\TPDFaloudtag{mn}{11}}{3}{9}{11}%

\TPDFcleanread {11}%

Fig. 5. Output from texmmljoin merging TEX source with the MathML content
from Figure 4. The original LATEX source can be read down the left-hand edge, as
\left (\frac 43 \pi R^3 \right). The lower portion builds the structure
tree, using tag indices which are interpreted relative to an offset.

8

39 0 obj << /K [34 0 R 35 0 R] /P 37 0 R

/Type/StructElem/S/msup >> endobj

38 0 obj << /K [29 0 R 30 0 R] /P 37 0 R

/Type/StructElem/S/mfrac >> endobj

37 0 obj << /K [38 0 R 31 0 R 32 0 R 39 0 R] /P 36 0 R

/Type/StructElem/S/mfenced /A<</O/XML-1.00/separators()>> >> endobj

36 0 obj << /K [37 0 R] /P 27 0 R

/Type/StructElem/S/math /A<</O/XML-1.00

/xmlns(http://www.w3.org/1998/Math/MathML)

/style(font-size: xx-small)>> >> endobj

35 0 obj << /K [11] /Pg 5 0 R /P 39 0 R

/Type/StructElem/S/mn >> endobj

34 0 obj << /K [10] /Pg 5 0 R /P 39 0 R

/Type/StructElem/S/mi >> endobj

32 0 obj << /K [9] /Pg 5 0 R /P 37 0 R

/Type/StructElem/S/mi >> endobj

31 0 obj << /K [8] /Pg 5 0 R /P 37 0 R

/Type/StructElem/S/mo >> endobj

30 0 obj << /K [7] /Pg 5 0 R /P 38 0 R

/Type/StructElem/S/mn >> endobj

29 0 obj << /K [6] /Pg 5 0 R /P 38 0 R

/Type/StructElem/S/mn >> endobj

27 0 obj << /K [36 0 R] /P 26 0 R

/Type/StructElem/S/Formula /ID(Math0.1)/T(InlineMath 0.1)

/A<</O/XML-1.01 /TeX(sphere_volume-1.tex) /MathML(sphere_volume-1.txt)>>

>> endobj

Fig. 6. Portion of the PDF structure tree for a piece of inline mathematics with
MathML tagging as in Figure 4, corresponding to the bottom output lines from
texmmljoin as shown in Figure 5. White-space has been massaged for convenience
of display. Each structure node is represented as a PDF dictionary object with
keys for the ‘/Type’, structure-type ‘/S’, any attributes ‘/A’, parent ‘/P’, page
reference ‘/Pg’ and ‘/Kids’ array. The latter contains either the ‘/MCID’ numbers
for the leaf-node ‘marked content’, as seen in Figure 3, and/or object-references
for any sibling structure-nodes, listed in order within the structure tree. The
root-node of this portion of the structure tree is a ‘/Formula’, whose parent is
the surrounding paragraph. This has an index ‘/ID’ and title ‘/T’ which can be
used by PDF browser clients for lists of the structure, and extra non-standard
tags ‘/TeX’ and ‘/MathML’ giving the local names of the files which were used to
produce the merged content of Figure 5.

4 Encoding the tagging with LATEX

Starting from the LATEX source $\left (\frac 43 \pi R^3 \right)$, and
a MathML description obtained using TEX-to-MathML conversion software, as
shown in Figure 4, these two descriptions which capture the same mathematical
content need to be merged. This is done using a Perl program, written by the

9

author, called texmmljoin. For the specific code sample its output includes the
TEX-like coding shown in Figure 5.

The original LATEX source for the mathematics can be seen down the left-
hand edge. Also, ‘/ActualText’ attributes are clearly seen, but what about the
‘/Alt’ attribute? This is built from the \TPDFaloud, \TPDFaloud and other spe-
cial command sequences such as \TPDFfbrack, \TPDFthirds, \TPDFcubed and
\TPDFpopfence. Using TEX macro coding, \TPDFaloud{1D445} expands into
something specific to the unicode point U+1D445 which is an uppercase (or ‘cap-
ital’) letter ‘R’. This is what is spoken in English, but that could be replaced
with whatever is appropriate for another spoken language, simply using macro
definitions — the output from texmmljoin does not need to be changed. Macros
\TPDFcubed and \TPDFpopfence add words to become part of the ‘/Alt’ attribute
for the subsequent piece of content, or the previous when there is no more. These
also may be customised for languages other than English, or to change what is
to be spoken according to the mathematical context of their use. For example,
{...} might be notation for a ‘set’ in one piece of mathematics, but in another it
could be denoting a ‘Lie bracket’. Through macro definitions, the spoken version
can be adapted to provide the appropriate words.

The lower part of the output from texmmljoin, as shown in Figure 5, contains
information on how to build the structure tree. These have the form of a TEX
macro (\SSE) taking four arguments, the first indicating the MathML tag type
along with any attributes, with final three being bracketed numbers. The last
of these is a unique index for the structure tag, with the preceding one being
the index of its parent structure tag. Before these, the first bracketed number
is an index which affects the ordering of those structure tags having the same
parent; lower numbers occur earlier within the structure tree. The PDF objects
that record this information within the PDF file are shown in Figure 6.

For a specific math-environment the parent and structure tag indices as
shown here are not used directly, but are first incremented by an offset de-
termined as the environment is encountered. This offset is essentially the high-
est tag index encountered so far, ensuring that the index used is unique for
all structure tags within the same document, allowing the structure tree to
be faithfully constructed internally by pdfTEX. The numerical argument to
\TPDFcleanread conveys the total number of new structure tags defined within
the math-environment, so that the offset can be incremented correctly for sub-
sequent tagged content.

5 Automatic generation of MathML

Previous work done by the author [6] detected all the math-environments in a
LATEX document, writing the contents into an external file before creating button
annotations to show/hide textual fields displaying these original source code
snippets. This work has now been adapted to prepare source for TEX to MathML

translation software; e.g., based upon TEX4HT. Thus now an existing LATEX
document can be processed, detecting the math-environments and initiating a

10

conversion to MathML. Then texmmljoin is run to merge the resulting pair of
files having LATEX and MathML descriptions of the same piece of mathematics,
creating new LATEX source enriched with full structure and content tagging.

Since TEX4HT needs a complete run of LATEX on the source snippet, followed
by further post-processing to generate an XML file containing the MathML de-
scription of the mathematics, this process can typically take many seconds. To
avoid repeating this work on each run of LATEX over the document source, an
indexing mechanism has been developed, which associates the specific source
coding with the name prefix of the files created in the translation and merging
processes. Having created enriched source for a piece of mathematics, there is no
need to redo it, unless the content is changed by edited. Due to the use of tag
index offsets, as described in Section 4, editing which simply reorganises the or-
der of appearance of pieces of mathematics does not need to initiate re-tagging.
Using a different offset, the internal index remains unique for all structure tags.

<file>2013-Assign2-soln-inline-1</file><code>\(k \in \RR \) </code>

<file>2013-Assign2-soln-inline-2</file><code>\(\begin {cases}\begin

{aligned} x - y & = 2 \\ 3\,x - 3\,y & = k \end {aligned}\end {cases}

\) </code>

<file>2013-Assign2-soln-display-1</file><code>\[\left (\begin {array}

{rr | c} 1 & -1 & 2 \\ 3 & -3 & k \end {array} \right) \;\; \sim \;\;

\left (\begin {array}{rr | c} 1 & -1 & 2 \\ 0 & 0 & k-6 \end {array}

\right)\,. \] </code>

<file>2013-Assign2-soln-inline-3</file><code>\(k \not = 6 \) </code>

<file>2013-Assign2-soln-inline-4</file><code>\(k \) </code>

<file>2013-Assign2-soln-inline-5</file><code>\(k=6 \) </code>

<file>2013-Assign2-soln-inline-6</file><code>\(y \) </code>

<file>2013-Assign2-soln-inline-7</file><code>\((x\,,y)= (2+\lambda

\,, \lambda) \) </code>

<file>2013-Assign2-soln-inline-8</file><code>\(\lambda \in \RR \)

</code>

<file>2013-Assign2-soln-inline-9</file><code>\(\RR ^2 \) </code>

Fig. 7. Portion of the index of math content seen in Figure 1, with line-breaks
massaged for readability.

One further advantage of this is that if the same piece of mathematics is
used repeatedly within a document, the generation and merging with MathML

need only be performed once. The previous output from texmmljoin may sim-
ply be reused with different offsets ensuring that the resulting PDF document
is correctly formed. Thus much time-consuming work needs to be done only
once. Furthermore the way that the indexing is constructed, making use of the
\detokenize primitive of e-TEX and scanning to reduce runs of multiple spaces
to a single token, means that nearly identical math environments can be treated
as being actually identical for tagging purposes. The index of the mathematical

11

content is written to an external file, which is then read at the beginning of the
next LATEX run. This allows the association to be made early between a piece of
mathematics and the files required for its enrichment. Figure 7 shows a portion
of the index file, used with the document seen in Figure 1.

Of course the tagged math-environments have to be fitted into the structure
tagging of the document as a whole, generally as siblings of the surrounding
paragraph, which may or may not finish with the mathematics. Details of the
TEX coding to achieve this is beyond the scope of this report. This should be
discussed in a later report, delivered perhaps at a different forum.

References

1. Adobe Systems Inc.; PDF Reference 1.7, November 2006.
http://www.adobe.com/devnet/pdf/pdf_reference.html. Also available as [3].

2. ISO 19005-1:2005; Document Management — Electronic document file format for
long term preservation — Part 1: Use of PDF 1.4 (PDF/A-1);
http://www.iso.org/iso/catalogue_detail?csnumber=38920.

3. ISO/DIS 32000; Document management — Portable document format (PDF 1.7).
July 2008. http://www.iso.org/iso/catalogue_detail?csnumber=51502.

4. Technical Implementation Guide; AIIM Global Community of Information
Professionals. http://www.aiim.org/Research-and-Publications/standards/

committees/PDFUA/Technical-Implementation-Guide.
Also available as ISO 14289-1:2012; http://www.iso.org/iso/home/store/

catalogue_tc/catalogue_detail.htm?csnumber=54564.
5. Moore, Ross R.; Ongoing efforts to generate “tagged PDF” using pdfTEX, in DML

2009, Towards a digital Mathematics Library, Proceedings, Petr Sojka (editor),
Muni Press, Masaryk University, 2009. ISBN 978-80-20-4781-5.
Reprinted as: TUGboat, Vol 30, No. 2 (2009), pp. 170–175.
http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf.

6. Moore, Ross R.; serendiPDF, with searchable math-fields in PDF documents; TUG-
boat, Vol 23, No. 1 (2002), pp. 65–69.
http://www.tug.org/TUGboat/tb23-1/moore.pdf.

7. Policies Relating to Web Accessibility; W3C Web Accessibility Initiative.
http://www.w3.org/WAI/Policy/.

8. Achieving WCAG 2.0 with PDF/UA; AIIM Global Community of Information
Professionals. http://www.aiim.org/Research-and-Publications/standards/

committees/PDFUA/WCAG20-Mapping.
9. Web Content Accessibility Guidelines (WCAG) 2.0. W3C Web Content Accessibil-

ity Guidelines Working Group. http://www.w3.org/TR/WCAG20/.
Also available as ISO/IEC 40500:2012; http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=58625.

10. Statement about WCAG 2.0 compliance, in accordance with the Disability Dis-
crimination Act 1992. http://australia.gov.au/about/accessibility.

11. Guidance on Implementing the Standard on Web Accessibility; Treasury Board of
Canada Secretariat.
http://www.tbs-sct.gc.ca/ws-nw/wa-aw/wa-aw-guid-eng.asp

12. Wikipedia entry for ‘PDF/Universal Accessibility (PDF/UA)’. Quotations
taken from: http://en.wikipedia.org/wiki/PDF/UA#Description and http://

en.wikipedia.org/wiki/PDF/UA#Audience_.26_Benefits.

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.iso.org/iso/catalogue_detail?csnumber=38920
http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/Technical-Implementation-Guide
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/Technical-Implementation-Guide
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54564
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54564
http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf
http://www.tug.org/TUGboat/tb23-1/moore.pdf
http://www.w3.org/WAI/Policy/
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/WCAG20-Mapping
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/WCAG20-Mapping
http://www.w3.org/TR/WCAG20/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58625
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58625
http://australia.gov.au/about/accessibility
http://www.tbs-sct.gc.ca/ws-nw/wa-aw/wa-aw-guid-eng.asp
http://en.wikipedia.org/wiki/PDF/UA#Description
http://en.wikipedia.org/wiki/PDF/UA#Audience_.26_Benefits
http://en.wikipedia.org/wiki/PDF/UA#Audience_.26_Benefits

	Tagged Mathematics in PDFs for Accessibility and other purposes
	Ross Moore

