
An Adaptive Approximate Algorithm For Join

Oxana Dolmatova

Saint Petersburg State University

oxana.dolmatova@gmail.com
Advisor: Boris Novikov

Abstract

This paper describes the initial state of

development adaptive approximate algorithm for

join combining three modifications of the

traditional techniques

The main result of the research will be the new

algorithm suitable for pipelined inputs, a cost

model for this algorithm as well as experimental

evaluation to estimate the accuracy of cost model

and identification the various properties of the

algorithm.

1 Introduction

In this paper we consider query evaluation in the

distributed heterogeneous systems, real-time systems,

mobile systems or environment with data
1
of varying

intensity. In all these cases we would like to perform

queries with in predictable response time and perhaps

not exactly because of lack of resources or time

constraints.

In contrast with traditional databases this context

creates additional challenges.

As a consequence it is clear that the approximate

algorithms for computationally intensive operations are

unavoidable in modern environments.

In the context of complex queries, join is one of the

most important and intensively used operations in the

users’ search operations.

There are three types of algorithms in traditional

databases for join and all three algorithms are designed

to obtain the exact answer. Adaptive execution of join

will combine all the benefits of the existing standard

algorithms, whether sorted inputs, the presence of

permanent indexes for one or two threads or a different

input sizes of the unsorted pipelines.

It is significant that we call the input data - pipelined

data, there is one difference between stream and

pipelined data. To use our adaptive algorithm we have

to know the right and left streams’ sizes to choose the

right strategy. Nevertheless the processing of incoming

objects will be the same as work with streaming data,

Proceedings of the Ninth Spring Researcher's Colloquium

On Database and Information Systems SYRCoDIS,

Kazan, Russia, 2013

which gives an advantage in the sense that we can

pipeline a result, even without getting all the data.

Also a new algorithm will be approximate; it means

that the quality of the final result depends on the

amount of allocated resources. Or rather, in this case,

the term approximate means incomplete result that

is some of relevant output tuples may be missed in the

result and all pairs that will be included definitely will

satisfy the join predicate.

The exact definition and method of measuring the

quality of result we are planning for the future work.

Considering quality very tentatively, it looks like the

precision. We use the term precision in the usual sense:

it is the ratio between obtained tuples and all the pairs

that fit the predicate.

The abstract concept of term “resource” may include

several different performance measures of a query

execution. Usually the most important is the execution

time (either CPU or elapsed), amount of I/O, or, in a

distributed mobile environment, the battery energy.

That is, with limited resources, the answer will be

incomplete. However, those properties provide control

trade-off between quality and cost.

The following section overviews the different

variation of join algorithms such as adaptive and

similarity schemes. Modifications of the three standard

algorithms for join you can find in part 3. The section 4

introduces a small description and main idea of the new

join technique. The last part of this paper offers our

conclusions and certain ideas for future work.

2 ReleatedWork

The inspiration of this work was the work of [5]. It

formed the basis of the main idea of the new algorithm

for the approximate join.

Author is building an effective technique for

adaptive query, based on the standard algorithms, and

taking the best of all of them. In contrast to this paper

the algorithm is not designed to work with the streams

and quality management through resources.

An adaptive algorithm for similarity join evaluation

can be found in [6].

The proposed technique is designed similar to those

and suitable to the pipelined architecture. It means that

the algorithm is incremental and begins returning results

even before streams have completely been consumed.

mailto:oxana.dolmatova@gmail.com

This method is an aggregation of the best from

SHJoin [9] and SSJoin [2].

An adaptive nested loop-based algorithm for stream

input was presented in [1]. The main advantage over

traditional join techniques is that this algorithm can start

producing join results as soon as the first input object

are available, thus improving pipelining by smoothing

join result production and by masking source or

network delays.

Then the authors present a sophisticated version of

the algorithm suitable for multiple input streams.

Thereby this research exploits temporary delays when

new data is not available for processing data obtained.

A stream input for join algorithm with emphasis on

the limited internal memory was discussed in [3].

The authors consider the task of sliding windows

join. In case of resource shortage, tuples have to be

dropped before they expire thus this algorithm can be

called approximate. The same authors propose a way to

estimate the error of the executed operation.

The join algorithm suitable for integration was

introduced in [7]. The authors propose the trade-offs

between the completeness of a join result, and its

execution efficiency: users can choose a faster

execution, at the price of missing more matches,

resulting in a lower result completeness; or a more

complete join result, at the cost of lower performance.

 That proposal looks like one of our future goals. At

the same time, the term adaptive means no variation

between the three standard algorithms for join, and

aggregation exact join and similarity join, what

distinguishes this paper from our own.

The [10] introduces the adaptive hash join algorithm

in connection with a problem of multiuser environment.

Authors present a modified join technique that is

designed to work with dynamic changes in the amount

of available memory.

A general aim of this work is to regulate resource

usage and to provide the way that allows query

execution to run concurrently with other applications.

Therefore there is a wide range of very different

algorithms for the join operation. However almost all of

them are tailored for either similarity join or to join for

stream input. As well as some of algorithms represent

an adaptive technique for the exact query execution.

While the ultimate goal of this work is the detailed

approximate adaptive algorithm for join.

3 Traditional Basic Algoritms

Detailed description of the following standard

algorithms with history, options and optimization and

cost models can be found in [5].

Here we will describe the properties of modified

algorithms that will be the basis of a new adaptive

algorithm.

3.1 Hash-based join

We choose the symmetric hash join modification for

this section. As introduced in [9] this method has a

similar behavior to the standard hash join with some

peculiarities.

First of all the normal join uses only one hash table

to calculate its results, while the symmetric hash join

uses two tables, one for each input. Second, the normal

join is a blocking operator and as a consequence not

suitable for pipelined architectures.

 To begin yielding results it has to entirely build a

hash table over one of the inputs, meaning that no result

is returned before at least one of the tables has been

completely read. The symmetric hash join on the other

hand is a non blocking operator. The two hash tables are

built in parallel while reading the objects from both

inputs.

The algorithm is able to return result as soon as first

objects are coming from both streams. It does not need

to wait for complete input.

3.2 Nonblocking merge-based join

That is probably the easiest algorithm to modify to

approximate mode. There are sorted input pipelines, and

their size. For the approximate performance we stop the

execution when the resources allocated to the operation

(for example, time) running out.

It should be noted that if the input data are not

sorted, this algorithm cannot be used because it is not

possible to sort the pipelined data.

3.3 Nonblocked nested loop-based join

Since we have a normal, two-input, join, respectively,

there are also two cycles in nested loop. Here it is

necessary to consider the following cases.

1. There are the pipelines without any index and

the one of the threads is much smaller than the

other and we have the sufficient amount of

resources. Then, for each obtained object in the

big pipeline algorithm takes a loop with already

read data from small input, until allocated time

runs out.

2. There are two small pipelines and we have

sufficient amount of resources to read and

process it. Hence, it will be exact query

execution with exact standard nested loop

3. There are two pipelines and its sizes are not

allowed to read pipeline completely because of

lack of resources. Then the algorithm turn scans

each obtained object by comparing it with those

of the objects from another pipeline, which we

have already obtained. When the resources run

out, the algorithm will stop, and we will get an

approximate result.

4 Description of the new algorithm

The choice of the strategy depends on the properties

of the input data: how much different in size input

pipelines and how many pipelines are sorted, and how

many resources were allocated for the join execution.

If both pipelines are sorted by the join attribute, then

the new algorithm is similar to the non blocked merge

join, referred to in 3.2.

If only one of the pipelined inputs is sorted, the

algorithm behaves like an aggregation from the merge

join and the nested loop. In this case an algorithm has

different behaviors depending on the input size and

resources available for the operation:

 The sorted input fits into the memory

which allocated for join execution. And we

have sufficient (that term will be specify in

cost model in the future work) amount of

processing resources which allows read all

this small input. Then algorithm reads this

input and after that reads as many objects

from other inputs as can be located in the

remaining memory. The algorithm sorts

read objects from second input and makes

sort-merge join of those two sets of objects.

After that if we still have the resources the

algorithm reads other block of objects from

second and sorts it etc.

 The sorted inputs can fit into the memory

but we haven’t sufficient amount of

processing resources. The algorithm

receives part of first input and part of

second input, sorts it and performs sort-

merge join of those two sets.

 Any of inputs cannot fit into the memory

and we have the sufficient amount of

resources. Then the algorithm reads several

blocks from sorted input and block from

unsorted input sorts this block and makes

sort-merge join. As long as there are

resources the technique obtains the blocks

of both inputs and makes merge sort.

 If any of pipelines are not sorted the algorithm’s

behavior looks like in the previous case. The

difference is in the number of objects and loops

which algorithms makes and reads in given amount

of resources.

5 Conclusion and future work

We are going to implement our algorithm with

assumption that the algorithm of join will be used in the

context of [8].

The optimization is essential for any high-

performance querying system. Actually, the task of a

query optimizer is to choose an algebraic expression of

minimal execution cost among several equivalent

expressions. Because of any high-quality optimizer is

inevitably a cost-based one and, hence, the cost model

is one of the critical core components of the optimizer

we are going to develop a cost model for our new

algorithm.

As the query evaluation is approximate, the quality

of the output can be lower than the exact. Hence it is

necessary to estimate an adequate quality of the result

which will determine the accuracy of the obtained

answer.

As a result it will be possible to control trade-off

between resource and quality.

And at the end we are going to conduct the

experiments for both estimate the accuracy of the

constructed cost model and to compare the performance

of different implementations approximate join with our

algorithm.

For example, it will be interesting to see how the

number of found pairs of answer is depending on the

initial data: sorted and unsorted input pipelines, small

and large amount of input data, the large difference in

the amount of input data or the comparable size of the

right and left thread.

Such experimental results can show that sensible

savings in join execution time can be achieved in

practice; at the expense of a modest reduction in result

completeness. Those experiments will be assigning to

determine the characteristics and properties of the new

algorithm.

References

[1] Mihaela A. Bornea, Vasilis Vassalos, Yannis

Kotidis, Antonios Deligiannakis: Adaptive

Join Operators for Result Rate Optimization on

Streaming Inputs.IEEE Trans. Knowl. Data

Eng. (TKDE) 22(8):1110-1125 (2010)

[2] S. Chaudhuri, V. Ganti, and R. Kaushik. A

primitive operator for similarityjoins in data

cleaning. In L. Liu, A. Reuter, K.-Y. Whang,

and J. Zhang,editors, ICDE, page 5. IEEE

Computer Society, 2006.

[3] Abhinandan Das, Johannes Gehrke, Mirek

Riedewald: Approximate Join Processing Over

Data Streams. SIGMOD 2003:40-51

[4] Oxana Dolmatova, Anna Yarygina, Boris

Novikov: Cost Models for Approximate Query

Evaluation Algorithms. DB&Local

Proceedings 2012:20-28

[5] Goetz Graefe: New algorithms for join and

grouping operations. Computer Science - R&D

27(1): 3-27 (2012)

[6] Roald Lengu, Paolo Missier, Alvaro A. A.

Fernandes, Giovanna Guerrini, Marco Mesiti:

Symmetric set hash join: A pipelined

approximate join algorithm,

http://unina.stidue.net/Universita'%20di%20Ge

nova/GuerriniG/reports/sshjoinTR.pdf

[7] Paolo Missier, Alvaro A. A. Fernandes, Roald

Lengu, Giovanna Guerrini, Marco Mesiti: Data

Quality support to on-the-fly data integration

using Adaptive Query Processing. SEBD

2009: 213-220

[8] Boris Novikov, Natalia Vassilieva, Anna

Yarygina: Querying big data. CompSysTech

2012: 1-10

[9] A. N. Wilschut and P. M. G. Apers. Dataflow

query execution in a parallelmain-memory

environment. In PDIS, pages 68{77. IEEE

Computer Society,1991

[10] Hansjörg Zeller, Jim Gray: An Adaptive Hash

Join Algorithm for Multiuser Environments.

VLDB 1990: 186-197

http://www.dblp.org/db/indices/a-tree/b/Bornea:Mihaela_A=.html
http://www.dblp.org/db/indices/a-tree/v/Vassalos:Vasilis.html
http://www.dblp.org/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.dblp.org/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.dblp.org/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.dblp.org/db/indices/a-tree/d/Deligiannakis:Antonios.html
http://www.dblp.org/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.dblp.org/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.dblp.org/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.dblp.org/db/indices/a-tree/d/Das:Abhinandan.html
http://www.dblp.org/db/indices/a-tree/g/Gehrke:Johannes.html
http://www.dblp.org/db/indices/a-tree/r/Riedewald:Mirek.html
http://www.dblp.org/db/indices/a-tree/r/Riedewald:Mirek.html
http://www.dblp.org/db/indices/a-tree/r/Riedewald:Mirek.html
http://www.dblp.org/db/conf/sigmod/sigmod2003.html#DasGR03
http://www.dblp.org/db/indices/a-tree/d/Dolmatova:Oxana.html
http://www.dblp.org/db/indices/a-tree/y/Yarygina:Anna.html
http://www.dblp.org/db/indices/a-tree/n/Novikov:Boris.html
http://www.dblp.org/db/indices/a-tree/n/Novikov:Boris.html
http://www.dblp.org/db/conf/balt/dbis2012l.html#DolmatovaYN12
http://www.dblp.org/db/conf/balt/dbis2012l.html#DolmatovaYN12
http://www.dblp.org/db/conf/balt/dbis2012l.html#DolmatovaYN12
http://www.informatik.uni-trier.de/~ley/db/journals/ife/ife27.html#Graefe12
http://www.informatik.uni-trier.de/~ley/db/journals/ife/ife27.html#Graefe12
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fernandes:Alvaro_A=_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lengu:Roald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lengu:Roald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lengu:Roald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Guerrini:Giovanna.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mesiti:Marco.html
http://www.informatik.uni-trier.de/~ley/db/conf/sebd/sebd2009.html#MissierFLGM09
http://www.informatik.uni-trier.de/~ley/db/conf/sebd/sebd2009.html#MissierFLGM09
http://www.informatik.uni-trier.de/~ley/db/conf/sebd/sebd2009.html#MissierFLGM09

