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Abstract 

This paper describes the initial state of 

development adaptive approximate algorithm for 

join combining three modifications of the 

traditional techniques 

The main result of the research will be the new 

algorithm suitable for pipelined inputs, a cost 

model for this algorithm as well as experimental 

evaluation to estimate the accuracy of cost model 

and identification the various properties of the 

algorithm. 

1 Introduction 

In this paper we consider query evaluation in the 

distributed heterogeneous systems, real-time systems, 

mobile systems or environment with data 
1
of varying 

intensity. In all these cases we would like to perform 

queries with in predictable response time and perhaps 

not exactly because of lack of resources or time 

constraints. 

In contrast with traditional databases this context 

creates additional challenges. 

As a consequence it is clear that the approximate 

algorithms for computationally intensive operations are 

unavoidable in modern environments. 

In the context of complex queries, join is one of the 

most important and intensively used operations in the 

users’ search operations. 

There are three types of algorithms in traditional 

databases for join and all three algorithms are designed 

to obtain the exact answer. Adaptive execution of join 

will combine all the benefits of the existing standard 

algorithms, whether sorted inputs, the presence of 

permanent indexes for one or two threads or a different 

input sizes of the unsorted pipelines.  

It is significant that we call the input data - pipelined 

data, there is one difference between stream and 

pipelined data. To use our adaptive algorithm we have 

to know the right and left streams’ sizes to choose the 

right strategy. Nevertheless the processing of incoming 

objects will be the same as work with streaming data, 
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which gives an advantage in the sense that we can 

pipeline a result, even without getting all the data. 

Also a new algorithm will be approximate; it means 

that the quality of the final result depends on the 

amount of allocated resources. Or rather, in this case,  

the term approximate means incomplete result that 

is some of relevant output tuples may be missed in the 

result and all pairs that will be included definitely will 

satisfy the join predicate. 

The exact definition and method of measuring the 

quality of result we are planning for the future work. 

Considering quality very tentatively, it looks like the 

precision. We use the term precision in the usual sense: 

it is the ratio between obtained tuples and all the pairs 

that fit the predicate.  

The abstract concept of term “resource” may include 

several different performance measures of a query 

execution. Usually the most important is the execution 

time (either CPU or elapsed), amount of I/O, or, in a 

distributed mobile environment, the battery energy. 

That is, with limited resources, the answer will be 

incomplete. However, those properties provide control 

trade-off between quality and cost. 

The following section overviews the different 

variation of join algorithms such as adaptive and 

similarity schemes. Modifications of the three standard 

algorithms for join you can find in part 3. The section 4 

introduces a small description and main idea of the new 

join technique. The last part of this paper offers our 

conclusions and certain ideas for future work. 

2 ReleatedWork 

The inspiration of this work was the work of [5]. It 

formed the basis of the main idea of the new algorithm 

for the approximate join. 

Author is building an effective technique for 

adaptive query, based on the standard algorithms, and 

taking the best of all of them. In contrast to this paper 

the algorithm is not designed to work with the streams 

and quality management through resources. 

An adaptive algorithm for similarity join evaluation 

can be found in [6]. 

The proposed technique is designed similar to those 

and suitable to the pipelined architecture. It means that 

the algorithm is incremental and begins returning results 

even before streams have completely been consumed. 
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This method is an aggregation of the best from 

SHJoin [9] and SSJoin [2]. 

An adaptive nested loop-based algorithm for stream 

input was presented in [1]. The main advantage over 

traditional join techniques is that this algorithm can start 

producing join results as soon as the first input object 

are available, thus improving pipelining by smoothing 

join result production and by masking source or 

network delays. 

Then the authors present a sophisticated version of 

the algorithm suitable for multiple input streams. 

Thereby this research exploits temporary delays when 

new data is not available for processing data obtained. 

A stream input for join algorithm with emphasis on 

the limited internal memory was discussed in [3].  

The authors consider the task of sliding windows 

join. In case of resource shortage, tuples have to be 

dropped before they expire thus this algorithm can be 

called approximate. The same authors propose a way to 

estimate the error of the executed operation. 

The join algorithm suitable for integration was 

introduced in [7]. The authors propose the trade-offs 

between the completeness of a join result, and its 

execution efficiency: users can choose a faster 

execution, at the price of missing more matches, 

resulting in a lower result completeness; or a more 

complete join result, at the cost of lower performance. 

 That proposal looks like one of our future goals. At 

the same time, the term adaptive means no variation 

between the three standard algorithms for join, and 

aggregation exact join and similarity join, what 

distinguishes this paper from our own. 

The [10] introduces the adaptive hash join algorithm 

in connection with a problem of multiuser environment. 

Authors present a modified join technique that is 

designed to work with dynamic changes in the amount 

of available memory.  

A general aim of this work is to regulate resource 

usage and to provide the way that allows query 

execution to run concurrently with other applications. 

Therefore there is a wide range of very different 

algorithms for the join operation. However almost all of 

them are tailored for either similarity join or to join for 

stream input. As well as some of algorithms represent 

an adaptive technique for the exact query execution.  

While the ultimate goal of this work is the detailed 

approximate adaptive algorithm for join. 

3 Traditional Basic Algoritms 

Detailed description of the following standard 

algorithms with history, options and optimization and 

cost models can be found in [5].  

Here we will describe the properties of modified 

algorithms that will be the basis of a new adaptive 

algorithm. 

3.1 Hash-based join 

We choose the symmetric hash join modification for 

this section. As introduced in [9] this method has a 

similar behavior to the standard hash join with some 

peculiarities. 

First of all the normal join uses only one hash table 

to calculate its results, while the symmetric hash join 

uses two tables, one for each input. Second, the normal 

join is a blocking operator and as a consequence not 

suitable for pipelined architectures. 

 To begin yielding results it has to entirely build a 

hash table over one of the inputs, meaning that no result 

is returned before at least one of the tables has been 

completely read. The symmetric hash join on the other 

hand is a non blocking operator. The two hash tables are 

built in parallel while reading the objects from both 

inputs. 

The algorithm is able to return result as soon as first 

objects are coming from both streams. It does not need 

to wait for complete input.  

3.2 Nonblocking merge-based join 

That is probably the easiest algorithm to modify to 

approximate mode. There are sorted input pipelines, and 

their size. For the approximate performance we stop the 

execution when the resources allocated to the operation 

(for example, time) running out. 

It should be noted that if the input data are not 

sorted, this algorithm cannot be used because it is not 

possible to sort the pipelined data.  

3.3 Nonblocked nested loop-based join 

Since we have a normal, two-input, join, respectively, 

there are also two cycles in nested loop. Here it is 

necessary to consider the following cases.  

1. There are the pipelines without any index and 

the one of the threads is much smaller than the 

other and we have the sufficient amount of 

resources. Then, for each obtained object in the 

big pipeline algorithm takes a loop with already 

read data from small input, until allocated time 

runs out. 

2. There are two small pipelines and we have 

sufficient amount of resources to read and 

process it. Hence, it will be exact query 

execution with exact standard nested loop  

3. There are two pipelines and its sizes are not 

allowed to read pipeline completely because of 

lack of resources. Then the algorithm turn scans 

each obtained object by comparing it with those 

of the objects from another pipeline, which we 

have already obtained. When the resources run 

out, the algorithm will stop, and we will get an 

approximate result. 

4 Description of the new algorithm 

The choice of the strategy depends on the properties 

of the input data: how much different in size input 

pipelines and how many pipelines are sorted, and how 

many resources were allocated for the join execution. 

If both pipelines are sorted by the join attribute, then 

the new algorithm is similar to the non blocked merge 

join, referred to in 3.2. 



If only one of the pipelined inputs is sorted, the 

algorithm behaves like an aggregation from the merge 

join and the nested loop. In this case an algorithm has 

different behaviors depending on the input size and 

resources available for the operation: 

 The sorted input fits into the memory 

which allocated for join execution. And we 

have sufficient (that term will be specify in 

cost model in the future work) amount of 

processing resources which allows read all 

this small input. Then algorithm reads this 

input and after that reads as many objects 

from other inputs as can be located in the 

remaining memory. The algorithm sorts 

read objects from second input and makes 

sort-merge join of those two sets of objects. 

After that if we still have the resources the 

algorithm reads other block of objects from 

second and sorts it etc. 

 The sorted inputs can fit into the memory 

but we haven’t sufficient amount of 

processing resources. The algorithm 

receives part of first input and part of 

second input, sorts it and performs sort-

merge join of those two sets. 

 Any of inputs cannot fit into the memory 

and we have the sufficient amount of 

resources. Then the algorithm reads several 

blocks from sorted input and block from 

unsorted input sorts this block and makes 

sort-merge join. As long as there are 

resources the technique obtains the blocks 

of both inputs and makes merge sort. 

 If any of pipelines are not sorted the algorithm’s 

behavior looks like in the previous case. The 

difference is in the number of objects and loops 

which algorithms makes and reads in given amount 

of resources. 

5 Conclusion and future work 

We are going to implement our algorithm with 

assumption that the algorithm of join will be used in the 

context of [8]. 

The optimization is essential for any high-

performance querying system. Actually, the task of a 

query optimizer is to choose an algebraic expression of 

minimal execution cost among several equivalent 

expressions. Because of any high-quality optimizer is 

inevitably a cost-based one and, hence, the cost model 

is one of the critical core components of the optimizer 

we are going to develop a cost model for our new 

algorithm. 

As the query evaluation is approximate, the quality 

of the output can be lower than the exact. Hence it is 

necessary to estimate an adequate quality of the result 

which will determine the accuracy of the obtained 

answer. 

As a result it will be possible to control trade-off 

between resource and quality. 

And at the end we are going to conduct the 

experiments for both estimate the accuracy of the 

constructed cost model and to compare the performance 

of different implementations approximate join with our 

algorithm. 

For example, it will be interesting to see how the 

number of found pairs of answer is depending on the 

initial data: sorted and unsorted input pipelines, small 

and large amount of input data, the large difference in 

the amount of input data or the comparable size of the 

right and left thread.  

Such experimental results can show that sensible 

savings in join execution time can be achieved in 

practice; at the expense of a modest reduction in result 

completeness. Those experiments will be assigning to 

determine the characteristics and properties of the new 

algorithm. 
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