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Abstract. Searching and browsing relationships between entities is an
important task in many domains. To support users in interactively ex-
ploring a large set of relationships, we present a novel relationship search
engine called RelClus, which automatically groups search results into a
dynamically generated hierarchy with meaningful labels. This hierarchi-
cal clustering of relationships exploits their schematic patterns and a
similarity measure based on information theory.
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1 Introduction

Many information needs in various domains can be met by using an information
system that supports searching and browsing relationships (a.k.a. associations)
between entities, which are represented as paths in RDF graph. Whereas path
finding has been efficiently implemented (e.g. [4]), a major challenge that re-
mains is how to organize the results, which could be a large set of relationships
and cause information overload. To address this issue, efforts (e.g. [1]) have been
made to rank the results according to various criteria. Another line of work such
as [3], inspired by recent advances in exploratory search [2], provides faceted cat-
egories to organize search results into groups and serve as filters, each of which
characterizes a common feature of the underlying relationships such as their
length, or a type of a node (i.e. a class) or edge (i.e. a property) involved. Differ-
ently, in this demo we will present a relationship search engine called RelClus1

that practices another implementation of exploratory search, namely clustering.
RelClus measures the similarity between relationships based on their schematic
patterns by using information theory, and returns a dynamically generated hi-
erarchical clustering with meaningful labels, to effectively guide the exploration
of search results. Figure 1 shows a screenshot of the system.

2 Design and Implementation

RelClus is based on the DBpedia data set (dbpedia.org), and consists of four
components: keyword mapping, path finding, relationship clustering, and result
presentation, which will be detailed in the following.

1 http://ws.nju.edu.cn/relclus/.



Fig. 1. A screenshot of RelClus.

2.1 Keyword Mapping

User interaction starts with two keyword phrases, e.g. Sydney and Melbourne
in Fig. 1, describing two entities between which the relationships are request-
ed. Featured by the autocomplete functionality implemented based on Apache
Lucene (lucene.apache.org), RelClus can help the user conveniently determine
the mapping from keyword phrases to entities. In addition, when necessary, the
user can change the default length limit on the relationships to be returned, by
choosing an appropriate value from the drop-down list next to the search button.

2.2 Path Finding

Once the search button is clicked, RelClus will start to find all the paths (subject
to a length limit) between the two entities specified by the user. In particular,
edges in a relationship are not required to go the same direction because the
inverse of a property also has meaning for human readers. Figure 2 illustrates
an RDF graph containing five relationships, R1–R5, from Sydney to Melbourne,
as our running example.

Paths are found by using bidirectional breadth-first search (bi-BFS), which
runs two simultaneous searches from the two entities given and finds paths when
the two meet in the middle. According to our experimental results, bi-BFS is
generally faster than a single BFS or DFS, though requiring more memory than
DFS. To further reduce the time needed, our bi-BFS runs concurrently in multi-
ple threads. Besides, a cache is used to avoid repeated path finding for repeated
queries in the future.

2.3 Relationship Clustering

As a key step of RelClus, all the relationships found by bi-BFS will be clustered
into a hierarchy. For simplicity, the relationships are firstly grouped by length,
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Fig. 2. An RDF graph containing five relationships from Sydney to Melbourne.

and then each group is processed individually. We will illustrate our clustering
algorithm by using R1–R5 in Fig. 2, all of which are of length three.

Our clustering algorithm follows an agglomerative manner; that is, each re-
lationship starts in its own cluster, and a hierarchy of clusters is built by pro-
gressively merging the most similar pair of clusters.

Before describing the similarity measure, we need to introduce how we assign
a meaningful and representative label to each cluster. The label of a cluster is a
relationship pattern, which is a high-level abstraction of relationships where the
nodes can be either entities or classes, and the directions of edges are omitted;
the label of a singleton cluster is just the unique relationship it contains. For
instance, in Fig. 3, R4 labels the singleton cluster {R4}; P1 is a relationship
pattern that labels the cluster {R4, R5}, where ⊤P denotes the top property
that is a superproperty of all the properties.

We call P1 a superpattern of R4 and R5 in the sense that for each entity, class,
and property in R4 and R5, the element in the corresponding position in P1

is either the same or its type, superclass, and superproperty, respectively; in
particular, it is the least common element among the possibilities. For instance,
Leslie Cody in R4 and William Bowrey in R5 are instances of both Person and
Athlete, and we choose Athlete in P1 because it is the least common type given
Athlete being a subclass of Person, and thus contains the most information
content as discussed in [5].

We define the similarity between two clusters as the information content
associated with the relationship pattern that labels their union, which indicates
how many commonalities the two clusters share. The information content as-
sociated with a relationship pattern is the sum of the information contents of
its elements. So, at the beginning of the clustering process in our running ex-
ample, {R4} and {R5} are merged before {R1} and {R2} because the label of
{R4, R5}, which would be P1, contains more information content than P2 which
would label {R1, R2}, mainly because P2 contains one more top property, the
information content of which is trivially zero.

In addition, after successively forming {R4, R5} labeled with P1 and {R1, R2}
labeled with P2, we will immediately merge {R1, R2} and {R3} into {R1, R2, R3},
still labeled with P2, because R3 also matches this pattern. Finally, the two
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Fig. 3. A hierarchical clustering of five relationships from Sydney to Melbourne.

clusters labeled with P1 and P2 are merged into the root cluster labeled with P3,
and a hierarchy is formed.

2.4 Result Presentation

A hierarchical clustering is visualized as a collapsible/expandable tree, as illus-
trated in Fig. 1. Each entity is prefixed by a thumbnail if available; each class
is prefixed by some; the top property is omitted; and the top class is shown as
something. Each non-singleton cluster is suffixed by its size in parentheses, and
sibling clusters are sorted by their sizes decreasingly.
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