
A Method to Develop Description Logic Ontologies Iteratively
Based on Competency Questions: an Implementation

Yuri Malheiros1,2, Fred Freitas1

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brazil

2Departamento de Ciências Exatas – Universidade Federal da Paraı́ba (UFPB)
Rio Tinto – PB – Brazil

yuri@dce.ufpb.br, fred@cin.ufpe.br

Abstract. Many methodologies and tools are proposed to improve and make
easy the process of develop ontologies. We are proposing a system to develop
ontologies iteratively using competency questions. The system works as follows:
a user asks a question to the system, and it tries to answer the question with the
knowledge encoded in an ontology. If it cannot answer correctly, the system
generates new questions to ask the user for more axioms. Then, the process
restarts, until the system can answer all the generated questions, including the
first one. Thus, we are creating a way to define requirements, evaluate, and to
add new axioms to an ontology using natural language.

1. Introduction
Since the 90’s, ontology development was more like a craft or an arcane art form than
engineering, because there are no patterns to guide engineers and each development
team followed its own rules [Guarino et al. 2002] [Gómez-Pérez et al. 2004]. In a clear
sign of progress, systematic methodologies have been proposed to support ontology
development. These methodologies address the tasks of creating and maintaining an
ontology; thus, they specify an ontology lifecycle, define how to describe the ontol-
ogy scope and requirements (this latter consisting of the competency questions (CQs)
[Gruninger and Fox 1995]), the ontology specification itself, and its evolution, etc.

Many methodologies have been proposed to date to build an ontology, for instance,
Methontology [Fernandez-Lopez et al. 1997], On-To-Knowledge [Staab et al. 2001], and
Ontology 101 [Noy and McGuinness 2008], to cite but a few. They define the steps
that an ontology engineer should follow to create and maintain an ontology. A note-
worthy fact is that these methodologies are slightly different, but share many com-
mon features. Two important ones consist of the iterative way of development,
and the use of CQs to define requirements. There are also many tools to as-
sist ontology development. Protégé [Gennari et al. 2003], OntoStudio1, NeOn Toolkit
[del Carmen Suárez-Figueroa et al. 2008], OntoEdit [Sure et al. 2002] and WebODE
[Arpı́rez et al. 2001] are among the most employed tools that facilitate the process of
creating an ontology.

In this paper, we present a system to build ontologies from scratch or evolve an
existing ontology iteratively using CQs and their respective answers. The system uses

1http://www.semafora-systems.com/en/products/ontostudio/

142

http://www.a-pdf.com

CQs written in English to check OWL DL ontologies automatically using reasoning. This
is different from many works that usually check the ontologies manually or at most use
SPARQL queries. The user do not need to know DL syntax or other complex language to
use the system, because all the interaction is made by natural language, thus there is not
barriers to nonexperts users. Furthermore, the iterative nature of the system fits in many
methodologies, then it can improve well-known development processes.

The basic methodology can be described as follows: the user asks a CQ to the
system, and it tries to answer the question with the knowledge encoded in an ontology. If
it cannot answer correctly, a system that implements the method asks the user for some
more axioms, and generates other auxiliary CQs that the user can modify and answer; then
the process restarts, until it can answer all the generated CQs, including the first. We also
present here a first implementation of the method, which receives CQs in natural language
of various types (which are described along the article) and convert them to OWL DL.

The remainder of this paper is organized as follows: Section 2 provides a back-
ground about description logic ontologies, ontology engineering and competency ques-
tions; Section 3 presents our proposal of the system to build ontologies iteratively using
competency question; Section 4 details the implementation of the system; In section 5 we
show the results of tests using the system; Section 6 discusses related work; and, Section
7 concludes the paper and presents some ideas for future works.

2. Background
To set the scene of the rest of this paper, the next three sections elucidate concepts related
to description logic ontologies, ontology engineering and competency questions. These
concepts serve as foundation of this work.

2.1. Description Logic Ontologies

Description Logics (DLs) are a family of knowledge representation formalisms that have
been gaining growing interest in the last two decades, particularly after OWL (Ontol-
ogy Web Language) [Patel-Schneider et al. 2004], was approved as the W3C standard for
representing the most expressive layer of the Semantic Web.

One of the most used DL languages isALC, due to its good trade-off between ex-
pressivity and reasoning costs. We will describe in the following since this is the language
used throughout the paper. An ontology or knowledge base in ALC is a set of axioms ai
defined over the triple (NC , NR, NO) [Baader et al. 2003], where NC is the set of concept
names or atomic concepts (unary predicate symbols), NR is the set of role or property
names (binary predicate symbols); NO the set of individual names (constants), instances
of NC and NR: NCO is the set of classes’ instances and NRO the set or role instances, with
NCO∪NRO = NO. NC contains concepts (like Bird, Animal, etc) as well as other concept
definitions as follows. If r is a role (r ∈ NR) and C and D are concepts (C, D ∈ NC)
then the following definitions belong to the set of ALC concepts: (i) C uD (intersection
of two concepts); (ii) CtD (union of two concepts); (iii) ¬C (complement of a concept);
(iv) ∀r.C (universal restriction of a concept by a role); (v) ∃r.C (existential restriction of
a concept by a role); (vi)>, the universal concept that subsumes all concepts, and (vii)⊥,
the bottom concept that is subsumed by all concepts. Note that, in the definitions above,
C and D can be inductively replaced by other complex concept expressions.

143

There are two axiom types allowed in ALC: (i) Assertional axioms, which are
concept assertions C(a), or role assertions r(a, b), where C ∈ NC , r ∈ NR, a, b ∈
NO and (ii) Terminological axioms, composed of any finite set of GCIs (general concept
inclusion) in one of the forms C v D or C ≡ D, the latter meaning C v D and
D v C, C and D being concepts. An ontology or knowledge base (KB) is referred to as
a pair (T ,A), where T is the terminological box (or TBox) which stores terminological
axioms, and A is the assertional box (ABox) which stores assertional axioms. T may
contain cycles, in case at least in an axiom of the form C v D, D can be expanded to an
expression that contains C.

ALC semantics is formally defined in terms of interpretations, model, fixpoints,
interpretation functions, etc, over a domain or discourse universe ∆ [Baader et al. 2003].

2.2. Ontology engineering

According to Gómez-Perez and colleagues, ontology engineering refers to the activities
related to the process, lifecycle, methods, methodologies, tools, and languages to sup-
port the ontology development [Gómez-Pérez et al. 2004]. Devedzic defines that ontol-
ogy engineering covers the set of activities done during the conceptualization, design,
implementation, and deployment [Devedzić 2002].

In some ways, the methodologies to develop ontologies are similar to the ones for
software engineering. They provide guidance to developers and are divided in phases, for
example, specification, execution, and evaluation. Besides, the process is usually itera-
tive, and the ontology can evolve during its lifetime in a very similar way of a software,
in the sense that it requires maintenance, versioning, etc. Since the early 90’s, several
methodologies to build ontologies have been defined, with activities like requirements
definition, implementation, and evaluation.

2.3. Competency questions

Competency questions [Gruninger and Fox 1995] are a set of questions that the ontology
must be capable to answer using its axioms. The questions can be used to specify the
problems an ontology or a set of ontologies must solve. Thus, they work as requirements’
specification of one or more ontologies. With a set of CQs at hand, it is possible to know
whether an ontology was created correctly, if it contains all the necessary and sufficient
axioms that correctly answer the CQs.

Many works propose the use of CQs for ontology engineering, but they usually
used them to check ontologies manually, or, at most, express them as SPARQL queries.
In the case of answers that arise from more complex DL reasoning, in which the answers
are not present in the ontology but can be entailed by it, no other option is yet offered,
but to check CQs manually, what constitutes a slow and expensive process that could be
impracticable with very large ontologies or when the quantity of CQs is huge.

3. Proposal: Method to Develop Ontologies Iteratively Based on CQs
We developed a method and a system implementation to build ontologies iteratively using
CQs and their respective answers. It is based on the idea of Uschold [Uschold 96], which
was never tried in the Semantic Web context. Yet, all the questions and answers are
written in English. The method’s algorithm is given by the Figure 1:

144

Figure 1. Algorithm

This algorithm is recursive and receives a CQ in natural language or DL, converts
it to DL when needed, and, in case it is not satisfied yet, asks for more knowledge, gener-
ates a new CQ that should help the ontology O to satisfy the original CQ and restarts this
process all over again. Note that the algorithm assumes that the oracle function generate
is available. For our current implementation, we assume that the user will do this job.

Example 1. An ontology with the following axioms is loaded:

Herbivorous ≡ Animal u ∀eats.¬meat

Cow ≡ Animal u ∀eats.grass
Then, a CQ states “Are cows herbivorous?”, where the expected answer is “true”.

A system implementing the method tries to answer the question, but fails, because
the ontology lacks the necessary axioms to infer that Cows v Herbivorous. Next, the
system generates a new CQ for the user, for instance, “are grass and meat disjoint?”. If the
user answers “yes” the system includes in the ontology an axiom stating that the classes
Grass and Meat are disjoint (Grass v ¬Meat). Now, the ontology has the necessary
axioms to answer the initial question correctly. �

Using this iterative process, a user can evaluate if an ontology has the necessary
axioms to answer questions, and can add new knowledge, “teaching” it through the an-
swers to the CQ made by the method/system. In the current version, our system can
answer many types of questions using natural language and can add new axioms to an
ontology according to the answers to questions. The question generation by the system is

145

still being studied since it indeed represents a new DL problem, which requires additional
specific research to determine for which DL languages the problem is decidable, and in
case they are, the problem’s computability. Currently, we are assuming that an oracle for
that problem exists indeed, in this implementation, the user provides the questions.

In the next sections, we describe a first implementation of the method with its two
components: the natural language query component and the ontology builder.

4. Implementation
The system includes three core components:

• Natural language query: in the system, the user can write CQs in natural language.
This component parses the query, uses the knowledge specified in an ontology, and
returns an answer;
• Question generator: when the system cannot answer a question, because the on-

tology does not have the necessary knowledge, it generates questions for the user,
to gather more knowledge to answer the initial question;
• Ontology builder: all the new knowledge learned through the questions generated

by the previous component are added to the ontology. This component is respon-
sible for transforming the information of the previous component to an ontology
specification language.

4.1. Natural language query
After loading an ontology, the next step of the process to build or evolve an ontology with
the proposed system is to write a CQ in natural language. We choose this approach to
compose a CQ, because it is easier to use natural language than description logics.

In the system, there are predefined types of questions that it understands. The
types are defined by rules, and each rule is defined using grammatical tags (nouns, ad-
jectives, verbs, etc.) and regular expression operators (*, +, ?, and |). Each word of a
question is labeled using the NLP Stanford POS Tagger [Toutanova et al. 2003]. The la-
bels are the grammatical category of the word. Then, the component verifies if the words
and its POS tags match with some question rule. If it satisfies a rule, the component will
perform the operations to retrieve information of the ontology according to the question
type. Otherwise, the system returns that it does not understand what the user asks.

The component can find names defined in the ontology even though they are writ-
ten in the question in plural, or separated by spaces, or with different capitalizations. For
example, “red wine” in a question can be matched with a class “RedWine” in the ontol-
ogy, or the word “cows” in a question can be matched with a class “Cow”. The component
tests many variations of names in the question to find the correct match in the ontology.
Thus, the user can make questions in a very natural way regardless the specific notation
used to specify the ontology.

This component uses OWL API [Horridge and Bechhofer 2011] and HermiT
OWL reasoner [Shearer et al. 2008] to search for answers. Thus, it can infer informa-
tion that is not explicitly defined in an ontology to give the correct answer.

The following are the types of questions supported. There are three simple types
of CQs to check different characteristics of an ontology. We present a general explanation
of each rule, usage examples, the regular expression rules and the type of answers.

146

4.1.1. Is-a question

The first type of question verifies if a class is subclass of another class.

Example: Is red wine a wine?
Rule: is (Noun|Adjective|Number)+ (a|an) (Noun|Adjective|Number)+
Answers: Yes, no, true or false.

Both (Noun|Adjective|Number)+ in the rule refer to classes names in the ontology.
Then, this question type supports class names composed by nouns and adjectives. For
example, “red wine” is a valid class name, because red is an adjective and wine a noun.
The order is unimportant, thus a class name can start with a noun or an adjective. The
quantity of nouns and adjectives does not matter too. The class name must have at least
one word, but all combinations of nouns and adjectives with any number of words (greater
than one) are possible.

4.1.2. Property value question

This type of question verifies if a property of an instance has a specified value. The system
will answer “yes” or “true” if the property of the instance indeed has the specified value,
and “no” or “false” in the opposite case. Property value questions have two distinct rules.

Examples: Does bancroft chardonnay have color white?
Do birds eat animals?

Rules:
(does|do) (Noun|Adjective|Number)+ have Noun (Noun|Adjective|Number)+
(does|do) (Noun|Adjective|Number)+ Verb (Noun|Adjective|Number)+

Answers: Yes, no, true or false.

In both rules the instance name is defined by the first (Noun|Adjective|Number)
and the second (Noun|Adjective|Number)+ defines the value of the property. The first
rule verifies only properties names starting with “has” followed by a noun. Properties like
“hasColor”, “hasPart”, etc., are common in ontologies; therefore we created a special rule
for such cases. In the second rule, the property name is a verb.

4.1.3. Existence question

The existence questions have two rules too. This type of question verifies which sub-
classes of a class exist. These questions support DL existential and universal restrictions.
The system will answer the list of the subclasses found.

Examples: Which wines exist?
Which wines have sugar dry?

Rules:
which (Noun|Adjective|Number)+ exist
which (Noun|Adjective|Number)+ have (Noun|Verb) (some|only)?
(Noun|Adjective|Number)+

Answers: A list of classes separated by commas or the word “and”. For example, “red
wine, white wine”.

147

In the rules, the first (Noun|Adjective|Number)+ defines the class name. The sec-
ond rule expects extra information: a property name starting with “has” followed by a
noun or a verb. In the end of the second rule, there is another (Noun|Adjective|Number)+,
which defines the property’s value. The user can write the words “only” or “some” op-
tionally to specify existential and universal restrictions respectively.

4.2. Ontology builder

The goal of the ontology builder component is to add new knowledge to an ontology.
Answering questions generated by the system, the user acts as a teacher to the system,
that stores what it learns in the ontology. The system has predefined types of questions it
can generate. These questions are called system’s questions (SQ), a competency question
generated by the system. In this case, there are not rules for each SQ, because the system
knows exactly the format of the question it will generate. The user only needs to answer
the question properly.

The following are the types of SQs supported. We present a general explanation
of each SQ, usage examples, axioms generated, and answers’ types they expect.

4.2.1. Is-a system’s question

The system uses this type of SQ when it needs to know about the subclass relation of two
classes, if it is true or false.

Example: Is red wine a wine?
Answers: Yes, no, true or false.
Axiom: RedWine v Wine

4.2.2. Property value system’s question

In this type of SQ, the system looks for knowledge about the value of some property.
When answering this question positively, the user specifies that a class has a certain prop-
erty and that this property has a certain range of values. It is also possible to make SQs
using universal and existential restrictions.

Examples: Does bancroft chardonnay have color white?
Does bird eat some grass?

Answers: Yes, no, true or false.
Axioms:

BancrofChardonnay v ∀hasColor.White
Bird v ∃eat.Grass

4.2.3. Existence system’s question

The last type of SQ is similar to the first, but it is concerned with the multiple relation
of classes and a superclass. When answering this SQ, the user is specifying that multiple
classes are subclasses of one class.

148

Table 1. Natural language query tests with wine ontology
Competency Question Answer

Is red wine a wine? true

Does bancroft chardonnay have color white? true

Which red wines exist? Beaujolais, CabernetFranc, CabernetSauvignon, Chianti, CotesDOr, DryRed-
Wine, Margaux, Medoc, Meritage, Merlot, Pauillac, PetiteSyrah, PinotNoir,
Port, RedBordeaux, RedBurgundy, RedTableWine, StEmilion, and Zinfandel

Which wines have sugar sweet? IceWine, LateHarvest, Port, Sauternes, and SweetRiesling

Table 2. Natural language query tests with pizza ontology
Competency Question Answer

Is napoletana a cheesey pizza? true

Which spicy pizzas exist? AmericanHot, Cajun, CheeseyVegetableTopping, IceCream, PolloAdAstra, and
SloppyGiuseppe

Which meaty pizza has topping some ham topping? Capricciosa, CheeseyVegetableTopping, IceCream, LaReine, Parmense, and Si-
ciliana

Example: Which wines exist?
Answers: A list of classes separated by commas or the word “and”. For example, “red

wine, white wine”.
Axioms:

RedWine v Wine
WhiteWine v Wine

5. Results
We have some preliminary results using the components detailed in the previous section.
For the natural language query component we performed three rounds of tests, each one
with a different ontology. The used ontologies were the wine ontology, the pizza ontology,
and the travel ontology, all available in the Protégé website2. For each round, we used at
least one CQ for each type, except in for the pizza ontology, because it lacks individuals
with properties. For the ontology builder, we test each type of SQ using the wine ontology.

5.1. Natural language query tests

In the tests of the natural language query component, we used three different ontologies.
For each ontology, we show the CQs used, and the answers for them. First, we tested the
wine ontology, the Table 1 displays the results using it. Further, the Table 2 has the results
for the pizza ontology. Last, the Table 3 displays the results for the travel ontology.

5.2. Ontology builder

For present the results of the SQs, we created a new class in the wine ontology called
TestWine. Nothing was specified about this class, only that it exists. Then, we make SQs
and answer them as follow:

1. Is test wine a wine? True.
2. Does test wine have color white? True.

2http://protege.stanford.edu/download/ontologies.html

149

Table 3. Natural language query tests with travel ontology
Competency Question Answer

Is yoga an activity? true

Does four seasons have rating three star rating? true

Which adventures exist? BunjeeJumping, and Safari

Which accommodations has rating one star rating? Campground, and Safari

3. Which test wines exist? Red wine.

For the first question, the system wrote OWL code in the ontology to define that
TestWine is subclass of Wine. The code written was:
Class: vin:TestWine

SubClassOf:
vin:Wine

Answering the question two positively the component wrote the definition that
TestWine class has the property hasColor with value White. After, the code for the Test-
Wine class was:
Class: vin:TestWine

SubClassOf:
vin:Wine
vin:hasColor only vin:White

For the last question, the answer specified that RedWine is subclass of TestWine.
Then, the class code changed to:
Class: vin:RedWine

EquivalentTo:
vin:Wine
and (vin:hasColor value vin:Red)

SubClassOf:
vin:TestWine

5.3. Discussion of the results

In the first CQ tested in the wine ontology, we can already see the importance of the
reasoner. In the ontology, there is no code defining directly that the class RedWine is
subclass of Wine. However, the system answers true. It seems correct, because RedWine
is indeed a type of Wine, but if the ontology does not specify this, the answer must be
false. What happened was that the system ran the HermiT reasoner before search for an
answer. The reasoner infers that RedWine is subclass of Wine, then the answer is really
correct. In the test of the pizza ontology, we got some strange results. For example, in the
CQ “Which meaty pizza has topping some ham topping?”, one of the classes listed in the
answer was IceCream. It seems a wrong answer, but the ontology was created in a way
that the reasoner infers this awkward relation between IceCream and MeatyPizza.

The ontology builder component is working correctly for the defined SQs. The
OWL API allows the system write new axioms flawlessly. Then, we only need to extend
this component to support the inclusion of more types of axioms in the future.

150

6. Related work

This work was inspired by the iterative way of develop ontologies proposed by many
methodologies in literature, and by the use of CQs to evaluate and define requirements.

Methontology [Fernandez-Lopez et al. 1997] defines activities to perform during
the ontology development and it defines the ontology life cycle too. During its life, an
ontology moves through the following states: specification, conceptualization, formaliza-
tion, integration, implementation, and maintenance. This life cycle seems analogous to
the waterfall life cycle in software engineering [Royce 1987], however the authors make
it clear that it is not an adequate path to develop an ontology. Then, it is proposed an
evolving life cycle that allows the engineer to go back from any state to other if it is nec-
essary. Thus, this life cycle permits inclusion, removal, or modification anytime during
the development. The Ontology 101 methodology [Noy and McGuinness 2008] defines
an iterative process. The engineer starts with a simple model and refines it during the
development. The steps of this process are: determine the domain and scope, consider
reusing ontologies, enumerate important terms, define the classes and the class hierar-
chy, define the properties, define the facets of the slots, and create instances. The authors
suggest to use CQs in the first step to determine the scope of the ontology.

Other methodologies to build ontologies emerged since 1990. Lenat and
Guha presented the steps of Cyc development in one of the first works in this area
[Lenat and Guha 1989]. Uschold and Gruninger contribute in many papers to evolve the
ontology engineering field, proposing and refining guidelines [Gruninger and Fox 1995]
[Uschold and King 1995] [Uschold et al. 1996]. In 2001, the On-To-Knowledge method-
ology appeared, it was a result of the project with the same name [Staab et al. 2001].

During the emergence of the methodologies, many tools to support the ontology
development process are proposed. The first was the OntolinguaServer in the beginning
of 1990. It started only with a simple editor, and later other components were added,
such an equation solver and an ontology merge tool [Farquhar et al. 1997]. The WebOnto
tool was developed in 1997, its main innovation was the collaborative edition of ontolo-
gies [Domingue 1998]. Protégé, an ontology editor with extensible architecture, is one
of the most popular ontology tools nowadays. This tool supports the creation of on-
tologies in multiple formats [Gennari et al. 2003]. In the first years of 2000, WebODE
[Arpı́rez et al. 2001] and OntoEdit [Sure et al. 2002] appeared. The WebODE supports
multiple formats of ontology, it has an editor, and components to evaluate and merge
ontologies. Also, WebODE supports most of the activities and steps of Methontology.
Last, the OntoEdit has similar characteristic of the previous tools, for example, extensible
architecture, ontology editor, etc.

All these works presented tried to improve the way of develop ontologies. In this
paper, we are not proposing a new full featured ontology editor, neither a new methodol-
ogy to create ontologies, but we are creating a system to support some phases of iterative
methodologies and it may be integrated in some existing tools.

7. Conclusion

In this paper, we presented our progress in developing a method and its respective system
to support a novel process of DL ontology building. Two key components are already

151

operating, the natural language query and the ontology builder. The former is responsible
to process a natural language CQs and tries to answer it using the knowledge specified in
a DL ontology. The latter is concerned with incorporating new knowledge in an ontology;
it uses answers stated by the users to CQs generated by the system. We also defined the
process to build or evolve an ontology iteratively using the system.

There are still limitations in the work. Each component needs to evolve. The
natural language query component must support more types of question and treat more
intrinsic details of the written language. The ontology builder needs to support more SQs
too. Finally, we need to study the problem and develop the automatic question generation
when some knowledge is missing in the ontology and the system cannot answer a question
correctly. For now, this process is made manually.

As future work, besides evolving the system’s components, we intend to build
a complete tool for ontology engineers based on the proposed method. Then, they can
create or evolve an ontology using all the process defined in this paper. The tool may be
integrated with popular ontology environments like Protégé and NeOn.

References

Arpı́rez, J. C., Corcho, O., Fernández-López, M., and Gómez-Pérez, A. (2001). Webode:
a scalable workbench for ontological engineering. In Proceedings of the 1st interna-
tional conference on Knowledge capture, K-CAP ’01, pages 6–13, New York, NY,
USA. ACM.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., ed-
itors (2003). The description logic handbook: theory, implementation, and applica-
tions. Cambridge University Press, New York, NY, USA.

del Carmen Suárez-Figueroa, M., de Cea, G. A., Buil, C., Dellschaft, K., Fernández-
López, M., Garcı́a, A., Gómez-Pérez, A., Herrero, G., Montiel-Ponsoda, E., Sabou,
M., Villazon-Terrazas, B., and Yufei, Z. (2008). D5.4.1 neon methodology for building
contextualized ontology networks.

Devedzić, V. (2002). Understanding ontological engineering. Commun. ACM, 45(4):136–
144.

Domingue, J. (1998). Tadzebao and webonto: Discussing, browsing, and editing ontolo-
gies on the web. In In Proceedings of the 11th Knowledge Acquisition for Knowledge-
Based Systems Workshop.

Farquhar, A., Fikes, R., and Rice, J. (1997). The ontolingua server: a tool for collaborative
ontology construction. Int. J. Hum.-Comput. Stud., 46(6):707–727.

Fernandez-Lopez, M., Gomez-Perez, A., and Juristo, N. (1997). Methontology: from
ontological art towards ontological engineering. In Proceedings of the AAAI97 Spring
Symposium, pages 33–40, Stanford, USA.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson,
H., Noy, N. F., and Tu, S. W. (2003). The evolution of protege: an environment for
knowledge-based systems development. Int. J. Hum.-Comput. Stud., 58(1):89–123.

152

Gómez-Pérez, A., Fernández-López, M., and Corcho, O. (2004). Ontological Engineer-
ing: With Examples from the Areas of Knowledge Management, E-Commerce and the
Semantic Web. Advanced Information and Knowledge Processing. Springer.

Gruninger, M. and Fox, M. S. (1995). Methodology for the design and evaluation of
ontologies.

Guarino, N., Welty, C., and Common, E. (2002). Evaluating ontological decisions with
ontoclean.

Horridge, M. and Bechhofer, S. (2011). The owl api: A java api for owl ontologies.
Semant. web, 2(1):11–21.

Lenat, D. B. and Guha, R. V. (1989). Building Large Knowledge-Based Systems; Repre-
sentation and Inference in the Cyc Project. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition.

Noy, N. F. and McGuinness, D. L. (2008). Ontology development 101: A guide to creating
your first ontology.

Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2004). OWL web ontology
language semantics and abstract syntax. W3C recommendation, W3C. Pub-
lished online on February 10th, 2004 at http://www.w3.org/TR/2004/
REC-owl-semantics-20040210/.

Royce, W. W. (1987). Managing the development of large software systems: concepts
and techniques. In Proceedings of the 9th international conference on Software Engi-
neering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA. IEEE Computer Society
Press.

Shearer, R., Motik, B., and Horrocks, I. (2008). HermiT: A Highly-Efficient OWL Rea-
soner. In Ruttenberg, A., Sattler, U., and Dolbear, C., editors, Proc. of the 5th Int.
Workshop on OWL: Experiences and Directions (OWLED 2008 EU), Karlsruhe, Ger-
many.

Staab, S., Studer, R., Schnurr, H.-P., and Sure, Y. (2001). Knowledge processes and
ontologies. IEEE Intelligent Systems, 16(1):26–34.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D. (2002). Ontoedit:
Collaborative ontology development for the semantic web. In Proceedings of the First
International Semantic Web Conference on The Semantic Web, ISWC ’02, pages 221–
235, London, UK, UK. Springer-Verlag.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Uschold, M., Gruninger, M., Uschold, M., and Gruninger, M. (1996). Ontologies: Prin-
ciples, methods and applications. Knowledge Engineering Review, 11:93–136.

Uschold, M. and King, M. (1995). Towards a methodology for building ontologies. In
In Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction
with IJCAI-95.

153

