
SLUBM: An Extended LUBM Benchmark for
Stream Reasoning

Tu Ngoc Nguyen, Wolf Siberski

L3S Research Center
Leibniz Universitat Hannover

Appelstrasse 9a D-30167, Germany
{tunguyen, siberski}@l3s.de

Abstract. Stream reasoning is now emerging as a hot topic in the con-
text of Semantic Web. As the number of data sources that continuously
generates data streams emulating real-time events are increasing (and
getting more diverse, i.e., from social networks to sensor networks), the
task of exploiting the temporal aspects of these dynamic data becomes
a real challenge. Stream reasoning is another form of the traditional rea-
soning, that works with streaming (dynamic, temporal) data over an
underlying (static) ontology. There have been many existing reasoning
systems (or newly proposed) trying to cope with the problems of stream
reasoning but there is yet no standard to measure the performance and
scalability of such systems. This paper proposes a benchmarking sys-
tem, which is an extension to the well-known benchmark for traditional
reasoning, Lehigh University Benchmark (LUBM), to make it work for
stream-based experiments while retaining most of the LUBM’s old stan-
dards.

1 Introduction

RDF Data have been prevailing in the era of Semantic Web and now has be-
come a major part of the World Wide Web. Together with the growth in size of
RDF data, there appears a constant need of processing heterogeneous and noisy
RDF in a stream-based approach, as the problem is faced in many different ap-
plications [1,2,3] such as social networks, feeds, sensor data processing, network
monitoring, network traffic engineering and financial markets. There are several
approaches [4,5,2,6,3] in coping with the challenges of stream reasoning, where
the robustness against inconsistent and continuous RDF data and the ability to
preserve useful past computations and incremental reasoning are crucial. In this
paper, we propose an enhancement of the existing predominant benchmark for
static inference engines, LUBM [7] to make it a new version for assessing the
performance of these engines in the context of stream reasoning. For simplicity,
we will use the terms stream reasoning and incremental reasoning interchangeably
throughout the paper, although they do not necessarily have the same meaning.

There are two main contributions of this paper. First, we introduce a bench-
mark that is specifically designed for testing the performance of incremental



reasoning engines. To the best of our knowledge, this is the first benchmark
that provides a practical measuring method for assessing the capabilities of such
systems. Secondly, we conduct extensive experiments using our benchmark to
measure the performance of a number of state-of-the-art reasoning engines of dif-
ferent types (i.e., OWL-DL, rule-based) which are streamable or can be adapted
to process stream data. We are confident this will aid the improvement of these
tested engines toward the domain of stream reasoning.

2 Related Work

Stuckenschmidt et al. [6] analyzed the characteristics of existing reasoning sys-
tems towards expressive stream reasoning and proposed possible extensions to
overcome their drawbacks. They pointed out the technologies of C-SPARQL,
RETE and incremental reasoning in description logics (DL) can support incre-
mental reasoning but are not explicitly meant for processing data streams with
newer facts are more relevant. Accordingly, they proposed an ideal system con-
cept to cope with the complexity of reasoning with rapid changes. The proposed
architecture is used as the backbone of this paper, in building up our stream
reasoning benchmark.

There are plenty of different works that provide a benchmarking assessment
for RDF storage systems. We classify these systems into two different categories:
reasoning-based and SPARQL-based, since the semantics of RDF and RDFS are
omitted in the SPARQL specification [8].

2.1 Reasoning-based Benchmarks

LUBM [7] is a benchmark for OWL knowledge base systems, consisting of a
university ontology and an ABox of arbitrarily large scalability. LUBM pro-
vides a university database where the components i.e., university, departments,
professors, students can be polynomially generated. The benchmark ontology
is expressed in OWL Lite language. However, the reasoning in response to the
proposed queries does not require to support OWL Lite reasoning. Alternatively,
it can simply perform by realizing the Abox [9]. LUBM offers 14 well-designed
test queries1 that fully cover the features of a traditional reasoning system. One
disadvantage of LUBM is whereas the data volume can grow polynomially by
the number of university generated, the complexity of these queries remains due
to the sparseness of the data, reflecting by no connection links between the uni-
versity instances. UOBM [10] is an extension version of LUBM and addresses the
incompleteness of LUBM in fully supporting OWL Lite or OWL DL inference.
UOBM provides two different versions of the university ontology in OWL Lite
and OWL DL. External links between members in different university instances
are also added to create connected graphs rather than the old isolated ones in
LUBM. This exponentially raises up complexity for scalability testing.

1
http://swat.cse.lehigh.edu/projects/lubm/query.htm

http://swat.cse.lehigh.edu/projects/lubm/query.htm


2.2 SPARQL-based Benchmarks

SP2Bench [11], is a framework which measures the performance of triple stores in
response to specified query language, SPARQL. The framework consists of two
parts, the data generator, provide arbitrarily DBLP-like models in RDF format
and the collection of 17 benchmark queries, designed to test all strengths and
weaknesses of SPARQL engines. Berlin SPARQL benchmark (BSBM) [12], ad-
dresses the untapped part of SPARQL-to-SQL rewriting sytems of SP2Bench. It
provides a set of measurements of which, deep comparisons between native RDF
stores and systems rewriting SPARQL-to-SQL against its relational databases
are carried out. BSBM emulates e-commerce scenarios in which the query mix is
designed to follow a customer’s search and navigation pattern while looking for
a product. On the other hand, OpenRuleBench [13] provides a suite of bench-
mark for analyzing the performance and scalability of rule-based systems at Web
scale. OpenRuleBench partitions rule-based systems into five different categories:
Prolog-based systems, Deductive databases, Rule engines for triples, Production
and reactive rule systems, and Knowledge-base systems. The OpenRuleBench
test suite includes a set of test derived from LUBM, adopting three out of its 14
queries. The three adopted queries are Query1, Query2 with high selectivity (i.e.,
each tuple of a join of 2 relation is joined with only a small number of tuples in
the other relation) and Query3 with lower selectivity. Toward stream reasoning,
Zang et al. [14] proposed SRBench, an RDF/SPARQL benchmark framework
that covers dynamic reasoning in a stream-based context. However, the set of
SRBench queries is restricted to sensor domain and is not clear to be easily and
widely adapted like LUBM (e.g., to rule-based systems).

3 Systems Tested

In this work, we select the state-of-the-art reasoning engines for testing. The
engines are widely used in many applications, and they are either meant for or
adaptable for stream-based reasoning.

3.1 RDF Frameworks

Jena2 is the state-of-the-art Java framework for building Semantic Web appli-
cations. Jena provides functionalities for triplet store, RDFS/OWL processing,
reasoning and querying using SPAQRL. Jena reasoning module provides an in-
terface for easy plugging in of external inference engines. OWLAPI3 provides
a high level application programming interface for creating and manipulating
OWL Ontologies. Unlike Jena that support triple-based abstraction, OWLAPI
focuses on a higher level of OWL abstraction syntax, the axioms. In this work,
we study the two frameworks with an external reasoner component, Pellet.

2
http://jena.apache.org/

3
http://owlapi.sourceforge.net/

http://jena.apache.org/
http://owlapi.sourceforge.net/


3.2 Pellet

Pellet4 is an open source OWL-DL reasoner that supports incremental reasoning
via two different approaches: incremental classification for ABoxes and incre-
mental consistency checking for TBoxes. Incremental classification is a reason-
ing technique in Description Logic, which is used for incremental subsumption
checking. Whereas this approach incrementally checks for changes in relations
between classes in the ontology hierarchy (i.e., A subClassOf B or not), it re-
quires expensive computational cost that makes Pellet work inefficiently when
it comes to processing with continuous streams of data. Incremental consistency
checking is used to instantly detect the consistency between triples in the KB.
With that, Pellet removes the old triple facts that cause conflict with the newer
triple facts and continuously look for inconsistencies in the KB without running
all reasoning steps from scratch. This feature makes Pellet a potential candi-
date for stream reasoning, where the reasoner needs to be robust against the
upcoming facts into the dynamic KB.

3.3 C-SPARQL

C-SPARQL is a new query language designed for data stream processing, based
on the syntax of SPARQL with advanced features to support retrieving con-
tinuous results at runtime. The query range is applied on a specifiable sliding
time window, with respect to a data source of one or multiple registered data
streams combined with an optional static knowledge background. C-SPARQL
CONSTRUCT predicate, inherited from SPARQL syntax, allows query results
to be stored and registered as new streams on the fly, hence making it possi-
ble for C-SPARQL to describe production rules like inference rules. Figure 1
demonstrates the transitivity rule is constructed in C-SPARQL, the results are
contained in a newly defined stream, namely, inf. Barbieri et al. [2] introduced
further work on C-SPARQL in the domain of incremental reasoning, where each
triple (both explicitly inserted and entailed) is tagged with an expiration time
that describes the time the triple stays valid until it is retracted out of the infer-
ence engine. Incremental maintenance of materializations for a KB when facts
change is controlled by a set of declarative rules.

3.4 Jess

Jess5, Java expert system shell, is a popular rule based inference engine, built
upon the Rete network, provides support for both backward and forward chain-
ing. Because it is built upon the Rete Network, Jess supports incremental rea-
soning for forward inference. The backward chaining method in Jess requires a
special declarations to inform the Jess engine that a rule has to be fired in order
to acquire some facts. Facts in Jess are classified as ordered and unordered facts.

4
http://clarkparsia.com/pellet/

5
http://www.jessrules.com/

http://clarkparsia.com/pellet/
http://www.jessrules.com/


REGISTER STREAM inf COMPUTED EVERY
1s AS
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl>
CONSTRUCT {?z ?p ?y}
FROM <static source>
FROM STREAM <some stream> [RANGE 1s STEP 1s]
WHERE { ?x ?p ?y .
?z ?p ?x.
?p rdf:type owl:TransitiveProperty
}

Fig. 1. An example of describing a transitive inference rule using C-SPARQL

Data structure to describe unordered facts in Jess are defined by templates.
E.g. a template for RDF triple in Jess is : (deftemplate triple (slot subject)(slot
predicate)(slot object)

3.5 BaseVISor

BaseVISor [15] is a forward chaining inference engine, based on the Rete al-
gorithm, which is similar to Jess. However, BaseVISor is optimized specifically
for triple processing, the system uses a triple-based data structure with binary
predicates to express facts, hence simplifies the heavy work of pattern matching
being done by the Rete engine. BaseVISOr provides functionalities to convey
statements of n-ary predicate in RuleML and R-Entailment languages into its
native raw triple structure, the BaseVISor language. All these characteristics
make BaseVISor a good candidate for stream reasoning, where it has to deal
with stream of RDF triples.

4 Methodology

LUBM provides an university ontology where 43 classes are defined, of which
including department, course, student, professor etc. The benchmark generates
triple data regardless of time. We extend LUBM by plotting its static ontology
into a temporal semantic dimension, where we reconsider all possible triple data
with respect to time. RDF Streams [16] are triples with additional timestamp
annotation, as timestamp τ evolves monotonically in the stream.

... (< subji, predi, obji >, τi)
(< subji+1, predi+1, obji+1 >, τi+1) ...

RDF Streams generated from our modified data generator of LUBM followed
Barbieri et al.’s definition. The only difference we made is, as the KB is in a uni-
versity domain, we choose a semester as the time granularity. This allows triples
in the KB to retain their semantic meaning, adding the semester period when
they are valid. By this, the timestamp of triple facts still follows a monotonic



Object Property Temporal Type

has a degree from static
has as a member near-dynamic
has as a research project near-dynamic
has as an alumnus static
is a TA for dynamic
is about static
is affiliated with near-dynamic
is being advised by dynamic
is taking dynamic
publishes static
teaches dynamic
was written by static

Table 1. List of LUBM object Properties and their temporal types

evolution and are semantically validated by academic semesters. As the conse-
quence, there is a batch of facts corresponding to every semester. In this semester
timespan, a semester can be considered as a time slice where facts in the newest
time slice are all relevant. We dont use finer-grain time granularity to a semester
(e.g., day or week) because this time slide length ensures a good proportion of
dynamic data in a university data-generated context of LUBM.

... (<Department0.University0/GraduateStudent31, ub:takesCourse ,
Department1.University0/GraduateCourse1>, semester0 ) ...

As the time evolves, the benchmark re-generates university data recursively
as complete batches (complete university data) of information. After each recur-
sion, dynamic data in the KB of the previous semester are considered expired
and must be retracted and replaced by newer data (of the new semester). In
our system architecture described in Figure 2, the RDF Handler module only
accepts triples (generated from LUBM ABox) with temporal annotation after
the first recursion. This mechanism guarantees the inference engine does not
have to process duplicate static data (already there in the first round). Table
1 provides a list of all object properties provided in the LUBM Ontology. The
object properties are classified with regards to the change probability over time
of the according objects in its range. We heuristically define three distinct pred-
icate classes, namely static, near-dynamic and dynamic. Static is labeled for those
predicates which reflect facts that are true for the whole timespan, while dynamic
indicates those predicates that the fact validity changes constantly for every time
slice or every window of time slices in the case of near-dynamic. For example, has
a degree from refers to a constant fact where the object class of ub:University
is labeled as static, while a subject instance with teaches has a more subject to
change object instance (e.g., a teacher is assigned to teach different subjects in
different semester). Therefore, with respect to the time dimension of semester
unit, teaches is marked as dynamic. The temporal predicates (dynamic and near-
dynamic decides the proportion of dynamic data generated in each recursion, and
hence, the complexity of the temporal data (towards reasoning engines).



Stuckenschmidt et al. [6] described a conceptual view of a stream reasoner
where data streams are processed from high frequent fine grain data streams into
low frequent aggregated events. They also proposed a desired architecture for
stream reasoners to deal with the trade-of between its methods’ complexity and
the frequency of data stream (e.g., description logics are not able to deal with
high frequency data streams). On the lower level, raw data stream are fed into
a stream data management system that warps the data stream into a virtual
RDF data models, before being passed to higher levels of logic programs and
description logic. In our extended LUBM, we reduce the trivial work for tested
reasoners by omitting the bottom level of the cascading hierarchy of stream
reasoning. In particular, the benchmark provides a triple buffer (in RDFHandler
in Figure 2), where data streams generated directly from LUBM are processed
and from that RDF triples are consolidated and streamed into the reasoner.

Fig. 2. Extended LUBM for semantically temporal RDF Stream

In the communication module, we replace the original way of data transfer-
ing in traditional LUBM (which RDF data are serialized into files and the files
then will be read by the reasoner), by a stream-based protocol. Here, LUBM
data generator (the RDFWriter module in particular), is improved to estab-
lish a TCP/IP socket connection with experimented reasoners. To make it uni-
formly work, we introduce a data buffer that temporarily stores stream data
from LUBM, RDFHandler, where RDF stream is parsed into RDF triples and
these triples will be then fed into the tested reasoner via its API interface for
processing.

For stream reasoning, inference rules for rule-based reasoning engines are
redesigned. Table 2 contains a list of the most important inference rules and
introduces a time-to-last 4t which describes the expiration time of the conclu-
sions that derive from these first-order rules. Time-to-last 4t has a lower bound
of one semester, the time unit of the time dimension, and has no restriction in
the upper bound as a derived fact can last for several semesters. In our extended
LUBM, for consistency purpose, a time-to-last 4t of an inference rule is defined
as the minimum number of time units for facts that constitutes the first part of



Temporal
Inference Rule

Description

transitive (s0, p0, o0) (o0, p0,o1) (p0, rdf:type, owl:TransitiveProperty))
⇒ (assert ((s0, p0, o1), 4t))

subclass-type
transitive

(s0, rdfs:subClassOf, o0) (o0, rdf:type, o1) ⇒ (assert ((s0,
rdf:type, o1), 4t))

subproperty-type
transitive

(p0, rdfs:subPropertyOf, p1) (s0, p0, o0) ⇒ (assert ((s0, p1,
o0), 4t))

symmetry (p0, rdf:type, owl:SymmetricProperty) (s0, p0, o0) ⇒ (assert
(o0, p0, s0), 4t))

inverse (p0, owl:inverseOf, p1) (s0, p0, o0) ⇒ (assert (o0, p1, s0),
4t))

equivalent (o0, owl:equivalentClass, o1) (s0, rdf:type, o0) ⇒ (assert (s0,
rdf:type, o1), 4t))

Table 2. List of main temporal inference rules for LUBM queries

the inference rules stay in the system until one of them is removed out of the
KB (so that, the outdated inferenced fact is also removed).

5 Experiments

All experiments were conducted under Linux 2.6.x 64 bit, on top of a server com-
puter with an Intel(R) Xeon(R) E7520 1.87GHz processor and 80GB memory.
The Java engine was OpenJDK 1.6.0 24. We experimented with four different
reasoning engines, two of them are RETE-based (Jess, BaseVISOr), one de-
scription logic-based (Pellet, together with Jena and OWLAPI) and one is the
engine of C-SPARQL. 14 LUBM queries are re-used to assess the engine per-
formances in a stream-based approach. We measured the loading time, query
response time and the completeness and soundness of the returned results from
the tested engines. For simplicity, we chose takescourse as the only temporal
predicate (adding other predicates does not significantly change the complex-
ity of the system). Hence, there is approximately 10% of the generated data
are dynamic (measured by the proportion between the numbers of facts with
takescourse predicate and the total number of facts). We first experimented
with Jess engine for the load+inference (loading triple and inference on the fly)
of Stream LUBM (1,0,5),which is LUBM (1,0) running over 5 semester. The
results surprisingly show that Jess engine, based on the RETE algorithm (ideal
for real-time pattern matching [17]), gave a low performance for this test. It
took Jess 419,82s for the load+inference time and 414,14s for answering LUBM
Query 14 with 5403 results. For the same dataset, BaseVISor, a similar RETE-
based engine with optimization on triple processing, outperforms Jess, spending
11,33s for loading time and 0,14s for Query 14. Because of this, we decided to
omit further results of Jess in this paper.

BaseVISor, Pellet+Jena and Pellet+OWLAPI are fed with data from differ-
ent range. Figure 3 shows the response time on LUBM queries of BaseVISor for
Query 5, Query 6, Query 13 and Query 14. In general, BaseVISor performed well



in the incremental reason fashion as computation is reduced to minimal after
the first or second semester. We chose Query 14 for most of the test scenarios
(although it has the lowest complexity among LUBM 14 queries) because the
query guarantees a large result set that is in propositional to the size of the gen-
erated LUBM data. It can be seen that the accumulation of computation as the
engine takes more time on the first semester and takes significantly less time on
the following semesters. Figure 4 indicates the time BaseVISor uses to response
to Query 14, the longest query time among the LUBM queries for BaseVISor
over the dataset range from LUBM (1,0,5) to (50,0,5) in 5 semesters. The chart
shows the incremental behaviour of the RETE engine after semester 1, as the
computation time needed for the next semesters are similar regardless of the size
of the dataset, and is closed to zero. The results (detailed in Table 3) indicate
BaseVISor’s efficiency for stream reasoning.

Because Pellet+Jena and Pellet+OWLAPI are respectively founded on Jena
and OWLAPI for RDF processing, RDF triples cannot be directly fed into both
system. The statements of Jena and axioms of OWLAPI require elements of
RDF triples to be pre-classified as resources and properties of the predefined
ontology. For example, (ub:GraduateStudent0 ub:takesCourse http://www.Dep
artment0.University0.com/Course0) RDF triple, ub:GraduateStudent0 must be
recognized as an instance of ub:GraduateStudent class, similarly for the predi-
cate and object. Another medium module for triple classification is added for the
pre-processing. Pellet+Jena and Pellet+OWLAPI, are based on the Description
Logic reasoning engine of Pellet, show less significant figures than BaseVISor in
query time required to answer the 14 LUBM queries, however both take much
less time for data loading as tested with LUBM (5,0,5), (10,0,5), (20,0,5) and
(50,0,5) in Figure 7. Pellet+Jena and Pellet+OWLAPI performance on incre-
mental reasoning are measured as well as BaseVISor in Figure 5 and the results
show that the BaseVISor outperforms the two DL-based engines. We also pro-
vide the numerical figures in Table 3 where the systems are experimented with
Query 6, Query 13 and Query 14 and different settings for references.

We have also tested with the engine of C-SPARQL, an emerging and promis-
ing engine for stream RDF processing. With this engine, the data stream gener-
ated from our extended LUBM is registered as the only stream source. We have
created the inference rule set (as described in Table 2) using CONSTRUCT
predicate, in the same analogy to what we described in Figure 1. However, the
released package of C-SPARQL6 does not yet fully support stream reasoning
and as C-SPARQL returned results continuously over time, which requires a
different approach of querytime measurement to the rest of the tested systems,
thus we decided to present only the engine’s loading time. As shown in Figure
7, C-SPARQL takes the least time to load in the data.

6
http://streamreasoning.org/larkc/csparql/CSPARQL-ReadyToGoPack-0.8.zip

http://streamreasoning.org/larkc/csparql/CSPARQL-ReadyToGoPack-0.8.zip


Fig. 3. BaseVISor query-time for LUBM
queries for extended LUBM (1,0,5), which
is LUBM(1,0) over 5 semesters

Fig. 4. BaseVISor query-time for LUBM
query 14 for extended LUBM (1,0,5),
(5,0,5), (10,0,5) and (50,0,5)

Fig. 5. BaseVISor, Pellet+OWLAPI and
Pellet+Jena Query 14 time for extended
LUBM (10,0,5)

Fig. 6. Query time for extended LUBM
(1,0,5), (5,0,5), (10,0,5), (20,0,5) and
(50,0,5)

6 Conclusion

In this paper, we have introduced an extension of the well-known benchmark
(LUBM) for reasoning engines over static dataset, to make it suitable for test-
ing stream-based systems. The extension preserves the semantic of the LUBM
ontology while adding a time dimension (of semester unit) to the KB. We run
experiments on full and partial stream reasoning supported engines (i.e., Ba-
seVISor, Pellet and C-SPARQL)using our benchmark. The results reflect the
capabilities of each system in stream reasoning context, where BaseVISor out-
performs other engines in most of the test cases.

For future work, we will focus on three improvements. First, our current
approach is limited to control the complexity with time (e.g., increase the com-
plexity the system must handle in the next semester time units). Secondly, we
want to extend the benchmark to feature a more direct measurement of the time
saved by incremental reasoning (e.g., how much computation is saved after one
time unit). And lastly, we want to extend the benchmark to generate inconsis-
tent facts (e.g., from different sources) with a parameterized rate, in order to
closely simulate noisy real-world stream-based applications.



Fig. 7. Loading time for extended LUBM
(5,05), (10,0,5), (20,0,5) and (50,0,5)

7 Acknowledgement

This work is funded by BMBF under the project ASEV.

References

1. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. Intelligent Systems, IEEE 24(6)
(2009) 83–89

2. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: Proceedings of the 7th
international conference on The Semantic Web: research and Applications - Volume
Part I. ESWC’10, Berlin, Heidelberg, Springer-Verlag (2010) 1–15

3. Zeng, D., Chen, H., Lusch, R., Li, S.H.: Social media analytics and intelligence.
IEEE Intelligent Systems 25(6) (2010) 13–16

4. Della Valle, E., Ceri, S., Fensel, D., Harmelen, F., Studer, R., eds.: Common-
sense Spatial Reasoning about Heterogeneous Events in Urban Computing, CEUR
Workshop Proceedings (2009) First International Workshop on Stream Reasoning:
SR2009.

5. Heintz, F., Kvarnstrm, J., Doherty, P.: Stream-based reasoning in dyknow. In:
Proceedings of the Dagstuhl Workshop on Cognitive Robotics. (2010)

6. Stuckenschmidt, H., Ceri, S., Valle, E.D., van Harmelen, F.: Towards expressive
stream reasoning. In Aberer, K., Gal, A., Hauswirth, M., Sattler, K.U., Sheth,
A.P., eds.: Semantic Challenges in Sensor Networks. Number 10042 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2010)

7. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
J. Web Sem. 3(2-3) (2005) 158–182

8. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for rdf. W3C Rec-
ommendation 4 (2008) 1–106

9. Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL Reasoners. In van
Harmelen, F., Herzig, A., Hitzler, P., Lin, Z., Piskac, R., , Qi, G., eds.: Proceedings
of the ARea2008 Workshop. Volume 350., http://ceur-ws.org, CEUR Workshop
Proceedings (June 2008)



LUBM Query Dataset Engines Semester 1 Semester 2 Semester 3 Semester 4 Semester 5

Query 6

LUBM(1,0,5)
BaseVISor 0.0094 0.0128 0.0027 2.56E-03 1.70E-03
Pellet+OWLAPI 0.2904 0.0695 0.0541 0.0678 0.0657
Pellet+Jena 0.3250 0.2148 0.0657 0.0649 0.0580

LUBM(10,0,5)
BaseVISor 0.0752 0.0387 0.0376 0.0417 0.0421
Pellet+OWLAPI 1.0790 1.3778 0.9639 1.2473 0.9325
Pellet+Jena 0.8824 0.9220 0.9187 0.9683 0.9381

LUBM(50,0,5)
BaseVISor 0.2120 0.2186 0.2876 0.2920 0.2420
Pellet+OWLAPI 2.6468 5.0834 4.7486 7.0057 5.010
Pellet+Jena 2.8227 5.8366 3.9432 3.9606 4.6816

Query 13

LUBM(1,0,5)
BaseVISor 4.86E-04 2.59E-04 1.64E-04 2.67E-04 1.32E-04
Pellet+OWLAPI 0.6151 0.1142 0.099 0.1763 0.0129
Pellet+Jena 1.4611 0.1435 0.0579 0.0032 0.0419

LUBM(10,0,5)
BaseVISor 4.05E-04 3.85E-04 3.56E-04 4.10E-04 3.31E-04
Pellet+OWLAPI 1.8288 1.8845 1.9835 2.2229 1.8484
Pellet+Jena 7.4055 1.099 0.8322 0.7990 0.8555

LUBM(50,0,5)
BaseVISor 7.34E-04 5.39E-04 4.64E-04 6.17E-04 4.95E-04
Pellet+OWLAPI 6.2388 9.9391 12.0995 10.4035 9.8907
Pellet+Jena 48.2975 7.0330 6.1593 5.3822 5.0759

Query 14

LUBM(1,0,5)
BaseVISor 0.1429 0.0140 0.0037 0.0036 0.0026
Pellet+OWLAPI 0.0447 0.0318 0.0140 0.0145 0.0139
Pellet+Jena 0.0641 0.0329 0.0172 0.0175 0.0146

LUBM(10,0,5)
BaseVISor 1.397 0.0400 0.0400 0.0353 0.0360
Pellet+OWLAPI 0.3343 0.2774 0.2844 0.2437 0.2529
Pellet+Jena 0.2437 0.2789 0.2945 0.2952 0.2878

LUBM(50,0,5)
BaseVISor 9.3391 0.2015 0.2036 0.2688 0.2286
Pellet+OWLAPI 0.9989 1.5743 1.3088 1.3499 1.6095
Pellet+Jena 1.0327 1.5403 1.7234 1.3564 1.6448

Table 3. Query time evolves over semesters for LUBM Queries on extended LUBM
(1,0,5), (10,0,5) and (50,0,5) dataset in seconds

10. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete owl
ontology benchmark. In: Proceedings of the 3rd European conference on The
Semantic Web: research and applications. ESWC’06, Berlin, Heidelberg, Springer-
Verlag (2006) 125–139

11. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql performance
benchmark. CoRR abs/0806.4627 (2008)

12. Bizer, C., Schultz, A.: The berlin sparql benchmark. Int. J. Semantic Web Inf.
Syst. 5(2) (2009) 1–24

13. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the per-
formance of rule engines. In: Proceedings of the 18th international conference on
World wide web. WWW ’09, New York, NY, USA, ACM (2009) 601–610

14. Zhang, Y., Minh Duc, P., Corcho, O., Calbimonte, J.P.: Srbench: A Streaming
RDF/SPARQL Benchmark. In: Proceedings of International Semantic Web Con-
ference 2012. (November 2012)

15. Matheus, C., Baclawski, K., Kokar, M.: Basevisor: A triples-based inference engine
outfitted to process ruleml and r-entailment rules. In: Rules and Rule Markup
Languages for the Semantic Web, Second International Conference on. (2006) 67–
74

16. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql:
Sparql for continuous querying. In: Proceedings of the 18th international conference
on World wide web. WWW ’09, New York, NY, USA, ACM (2009) 1061–1062

17. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1) (1982) 17 – 37


	SLUBM: An Extended LUBM Benchmark for Stream Reasoning

