On Rewriting and Answering Queries
in OBDA Systems for Big Data (Short Paper)

Diego Calvanese?, Ian Horrocks?, Ernesto Jimenez-Ruiz3, Evgeny Kharlamov®,

3

Michael Meier! Mariano Rodriguez-Muro?, Dmitriy Zheleznyakov?®

! fluid Operations AG, ? Free University of Bozen-Bolzano, ® Oxford University

Abstract. The project Optiqueaims at providing an end-to-end solution for scal-
able access to Big Data integration, were end users will formulate queries based
on a familiar conceptualization of the underlying domain. From the users queries
the Optique platform will automatically generate appropriate queries over the un-
derlying integrated data, optimize and execute them. In this paper we discuss Op-
tique’s automatic generation of queries and two systems to support this process:
QUEST and PEGASUS The automatic query generation is important and chal-
lenging, especially when the queries are over heterogeneous distributed databases
and streams, and Optique will provide a scalable solution for it.

1 Introduction

A typical problem that end-users face when dealing with Big Data is the data access
problem, which arises due to the three dimensions (so-called “3V”) of Big Data: vol-
ume, since massive amounts of data have been accumulated over the decades, veloc-
ity, since the amounts keep increasing, and variety, since the data are spread over vast

Q £

end-user IT-expert
Application Query Ontology & Mapping
Formulation Mangement
§ X \ / (I)
= e Ontology Mappings
n <

Query Transformation

Distributed Query Optimization and Processing

.} alg

heterogeneous
streaming data data sources

Fig. 1. General architecture of the Optique OBDA system

variety of formats and sources.
In the context of Big Data, ac-
cessing the relevant information
is an increasingly difficult prob-
lem.

Existing approaches to data
access limit it to a restricted set
of predefined quires. In the sit-
uation when an end-user needs
data that current applications
cannot provide, the help of an
IT-expert is required. The IT-
expert translates the information
need of the end-user to special-
ized queries and optimize them
for an efficient execution. One
of the major flaws of this ap-
proach is that accessing data
can take several days. In data-
intensive industries, engineers
spend up to 80% of their time on
data access problems [4]. Apart
from the enormous direct cost,

freeing up expert time would lead to even greater value creation through deeper analysis
and improved decision making.

The approach, known as “Ontology-Based Data Access” (OBDA) [13l2], has the
potential to address the data access problem by automating the translation process of the
users information needs. The key idea is to use an ontology that confronts the user with a
conceptual model of the problem domain. The user formulates their information needs,
that is, requests in terms of the ontology and then receives the answers in the same
understandable form. These requests should be executed over the data automatically,
without the intervention of IT-experts. To this end, a set of mappings is maintained
which describes the relationship between the terms in the ontology and data sources.

Automating the translation from users’ requests expressed, e.g., in SPARQL, to
highly optimized executable code over data sources, e.g., SQL queries, is a key chal-
lenge in development of OBDA systems. In this paper we will discuss this automation
in the context of the recently started EU project Optique [6]. We will present the Query
Transformation component of the Optique OBDA platform. More generally, Optique
aims at developing an OBDA system of the new generation integrated via the Informa-
tion Workbench platform [7](cf. Figure [I). It will address a number of issues besides
the automated query translation. In particular, it will address: (i) user-friendly query for-
mulation interface, (ii) maintenance of an ontology and mappings (iii) processing and
analytics over streaming data, and (iv) distributed query optimization and execution.

In Section 2] we present the architecture of Optique’s query transformation mod-
ule. In Section [2.1] we present typical scenarios for the use of its component. In Sec-
tions we introduce the QUEST system [13] that is intended to be the core of the
Optique’s query transformation solution. In Section we present a promising new
system PEGASUS, which we plan to use to support the Optique’s query transformation.

2 Architecture

In Figure[I] you can see a general, conceptual overview of the Optique OBDA system.
Due to this, it mentions only main components of the system, while the system includes
more component, and shows the data flow, depicted with arrows.

Let us now see in details how the Query Transformation (QT) module works. You
can find its architecture in Figure [2| Note that the figure mentions only those com-
ponents that are relevant to the Query Transformation. The meaning of the arrows in
Figure [2]is the following: an arrows goes from a (sub-)module X to a (sub-)module Y’
if X can call Y during the run.

The Query Transformation component includes the following subcomponents:

The Setup module can be thought of as the initialization module of the system. Its task
is to receive configurations from the Configuration module (which is an Optique com-
ponent external to the QT module) beforehand the actual query transformation happens,
and distribute this configuration to the other modules of the QT module (cf. Section[2.T).

The Semantic indexing and Materialization modules are in charge of creation and
maintenance of so-called semantic index [[13].

The Query Transformation Manager is the main QT submodule. It coordinates the
work of the other submodules and manages the query transformation process.

"Integrated via Information Workbench
Presentation eﬂ'
Layer

: Ontology Processing : Stream Analytics
: : Query Formulation
: Ontology reasoners : P —

N

Optique's configuration
interface

Infor. Workbench
frontend API*

. | Ontology modularization | : \l/
s — ‘ — Sesame
Query Transformation ,—‘
Setup
l Module
Syntactic QOpt
1time Q | Stream Query
SPARQL Q iti i
Query rewriting Transformation Sem indexing
1-ime Q | Stream Manager e a T Sveam
Semantic QOpt. [«—1 sPARaL | a s | e
Ttime Q | Stream
SPARQL Q v 1’
Federation Query execution Materialization
S module 1timeQ | Stream module g
SPARQL Q 3
— | k]
—l—|= =

 —

Distributed Query

Shared
database
Optimization and

Application Processing

Layer

S - / _________ T - - - - - - - - - - - -—-—-——- a
JDBC, Teiid tream connector

Data,
Resource 4 4 RDBs, trilpg)eBstores, data streams
Layer 1y & temporal DBs, etc.
Components Colouring Convention Applcations Users
i - Group of Front end: Optique solution Receivin Expert
[Jcomponent | " components () mainly Web-based External solution Answersg users

Fig. 2. Query transformation component of the Optique OBDA system

The Query rewriting module is in charge of query rewriting process. It transforms
queries from the ontological vocabulary, e.g., SPARQL queries, into a format which is
required to query the data sources, e.g., SQL (see Section [2.1| for details).

The Syntactic Query Optimization and Semantic Query Optimization modules are
subroutines of the Query rewriting. They perform query optimization during query
rewriting process (see Section [2.1] for details).

The Query execution module is in charge of the actual query evaluation.

The Federation module is a subroutine of the Query execution module that is needed
to perform query answering over federated databases.

The Analytics module analyzes answers to a query and decides how to proceed with
them further (see Section[2.1]for details).
Also, the QT module interacts with other components of the Optique OBDA system:

The Query Formulation module provides a query interface for end-users. This module
receives queries from end-users and send them to the QT module, e.g., via Sesame API.

The Configuration module provides the configuration for the QT module that is re-
quired for query transformation performance.

The Ontology Processing is a group of components such as ontology reasoners, modu-
larization systems, etc. It is called by the QT module to perform semantic optimization.

The Distributed Query Optimization and Processing component receives rewritten
queries from the QT module and performs their evaluation over data sources.

The Shared database contains the technical data required for data answering process,
such as semantic indices, answers to queries, etc.

The Shared triple store contains the data that can be used by (the most of) the com-
ponents of the Optique OBDA system. E.g., it contains the ontology, the mappings, the
query history, etc. The QT module calls this store, for example, for reasoning over the
ontology during the semantic optimization process.

The Stream analytics module provides analysis of answers to the stream quires.

Data sources (RDBs, triple stores, data streams) can be also accessed by the QT module
during the query execution (see Section [2.1] for details).

2.1 Query Transformation Process

In this section we will discuss how the QT module performs the query transformation
task. This process can be divided into several stages. Assume that the QT module re-
ceives a query from the Query Formulation module. Then the first stage of the query
transformation process is the initialization of the process.

Initialization. At this stage the Configuration module sends the configuration to the
Setup module, which, in turn, configure the other modules of the QT module. The ini-
tialization includes several steps in which the input ontology and mappings get ana-
lyzed and optimized so as to allow the rewriting and optimization algorithms to be fast,
and the query evaluation over the data sources to be more efficient (find more details
in [14412]). This includes the application of the Semantic Index technic.

Query rewriting. After the initialization, the query transformation itself starts. The
Query Transformation Manager receives a (SPARQL) query @ from the Query Formu-
lation module. Then it resends the query to the Query Rewriting module that rewrites the
query in the required format, e.g., SQL for querying relational databases, or Streaming
SPARQL for querying data streams. Further, for the sake of simplicity, we will assume
that the target query format is SQL. Along with the rewriting, the Query Rewriting
module optimizes the rewritten query both syntactically and semantically.

Syntactic optimization. During the transformation process, the initial query may be
turned into a number of SQL queries (1, ..., Q, such that their union is equivalent
to @. In the Syntactic optimization stage, these queries get optimized to improve the
performance, e.g., redundant joins, conditions, etc. within this SQL queries are deleted.
The methods, used to detect what parts of the queries have to be optimized, are syntacti-
cal, that is they are based only on the shape of a query and do not involve any reasoning.

Semantic optimization. Then the semantic optimization of the queries is performed. The
queries get optimized in the similar manner as in the case of Syntactic optimization. The
difference is that the methods, used in Semantic optimization, are semantic, that is they
take into account query containment, integrity constraints of the data sources, etc.

Query execution. After rewriting and optimization, the queries Q; ,...,Q; are re-

turned to the Query Transformation Manager. It sends them to the Query Execution
module. This module decides what queries of Q; ,...,Q; , if any, need to be eval-
uated using distributing query execution, and what can be evaluated directly by the
standard query answering facilities. In the former case, the corresponding queries are
sent to the Distributed Query module. In the latter case, the corresponding queries are
evaluated over the data sources by standard means. If some of the queries have to be
evaluated over over a federated database system, the Query Execution module entrusts
this task to the Federation module.

Query answer management. After the query evaluation process, the answers to the
queries, that has been sent directly to the data sources, are returned to the Query Trans-
formation Manager. The manager transform them into the required format and send
them back to the Query Formulation module, which takes care of representing the an-
swers to end-users.

The queries that have been sent to the Distributed Query Optimization and Pro-
cessing module do not necessarily go directly to the Query Transformation Manager,
but rather to the Shared database. The reason is that the answer can be very big (up
to several GBs), so sending them directly to the QT component would hang the sys-
tem. The Query Transformation Manager receives the signal that the answers are in the
Shared database, and some metadata about the answer. Then, together with the Ana-
lytics module, it decides how to proceed further. The answers to one-time queries, e.g.
SQL queries over relational databases, eventually go to the Query Formulation module,
while the answers to stream queries go to the Stream analytics module.

3 Possible Implementations

In this section we will discuss two options for the implementation of the Query Trans-
formation component: QUEST and PEGASUS.

3.1 Quest

One of the options for the QT module is the QUEST implementation [14]. QUEST can
be used in several stages of the query transformation process. In particular, it performs
the following tasks: (i) the initialization stage of the process in the manner described
in Section [2.1} (ii) query execution that is based on standard relational technologies;
(iii) rewriting and optimization. We will consider the last task in more details.

Rewriting and optimization. Also, QUEST performs query rewriting and optimization
for one-time queries, which is done in QUEST by means of query rewriting into SQL.
Given an input query @, two steps are performed at query transformation time: (i) query
rewriting, where () is transformed into a new query @)y that takes into account the
semantics of the OBDA ontologys; (ii) query unfolding, where ()q is transformed into a
single SQL query using the mappings of the OBDA system. We provide now an intuitive
description of these two steps.

— Query rewriting. [3] Query rewriting uses the ontology axioms to compute a set
of queries that encode the semantics of the ontology, such that if we evaluate the
union of these queries over the data, we will obtain sound and complete answers.
The query rewriting process works using the ontology axioms and unification to

generate more specific queries from the original, more general query. In QUEST,
this process is iterative, and stops when no more queries can be generated.

We note that the query rewriting algorithm is a variation of the TreeWitness
rewriter [8] optimized in order to obtain a fast query rewriting procedure that gen-
erates a minimal amount of queries.

— Query unfolding. Query unfolding uses the mapping program (see [[14]]) to trans-
form the rewritten query into SQL. First, QUEST transforms the rewritten query
into a Datalog program. Then, the program is resolved [9] against the mapping
program, until no resolution step can be applied. At each resolution step, QUEST
replaces an atom formulated in terms of ontology predicates, with the body of a
mapping rule. In case there is no matching rule for an atom, that sub-query is logi-
cally empty and is eliminated. Finally, when no more resolution steps are possible,
we have a new Datalog program, formulated in terms of database tables, that can be
directly translated into a union of select-project-join SQL queries. Also at this step,
QUEST makes use of query containment w.r.t. dependencies to detect redundant
queries and to eliminate redundant join operations in individual queries (i.e., using
primary key metadata). Last, QUEST always attempts to generate simple queries,
with no sub-queries or structurally complex SQL. This is necessary to ensure that
most relational database engines are able to generate efficient execution plans.

3.2 Pegasus

Another option for the query transformation phase is the PEGASUS implementation
[L1]. PEGASUS adapts the well-known Chase & Backchase (C&B) algorithm [S] and
outperforms existing C&B implementations by usually two orders of magnitude. Orig-
inally, C&B was introduced in the context of semantic query optimization minimizing
conjunctive queries under integrity constraints. Just recently, it was proved that C&B
can be reconfigured for OBDA. More precisely, it can be used to compute perfect re-
formulations exploiting its logical properties. Thus, PEGASUS can be used in several
stages of the query transformation process:
— semantic query optimization at SPARQL level, thus removing redundant join oper-
ations w.r.t the ontology,
— query rewriting, i.e. computing the perfect reformulation, and
— semantic query optimization at SQL level, i.e. optimizing SQL queries according
to the constraints encoded in a database schema.

Generally speaking, C&B takes a basic graph pattern query and an ontology as input
and applies two phases to optimize the input query: (i) the classical chase procedure
[[LO/1]] is used to deploy a preprocessing step in which a universal plan is computed and
(ii) then in the proceeding backchase phase all (exponentially many) subqueries of the
universal plan are enumerated and checked for equivalence to the original query, i.e. the
backchase phase is the actual optimization process.

C&B makes use of the classical chase algorithm, which does not necessarily termi-
nate. While semantic query optimization typically assumes a finite chase, OBDA does
not necessarily do so. Thus, C&B have been extended in such a way that it can han-
dle infinite chase sequences e.g. for DL-Lite ontologies. Furthermore, C&B have been
extended to handle SPARQL 1.1 queries beyond basic graph patterns.

PEGASUS works in a bottom-up manner, i.e. during the Backchase phase it enumer-
ates subqueries by increasing number of triple patterns. However, this is not done in a
naive way. PEGASUS heavily makes use of pruning and optimization strategies to avoid

inspecting a large portion of unnecessary queries at all. The main optimization steps in
PEGASUS can be summarized as follows:
— The guided backchase avoids inspecting subqueries that will be subsumed by other

queries in the perfect rewriting.

— Avoiding containment checks between queries with many triple patterns by reduc-

ing containment checks to sets of queries with few triple patterns only.

— A necessary condition for query containment that can be easily computed. PEGA-

Sus performs full containment checks only when this condition is satisfied.

Applying these optimization steps input SPARQL (or SQL) queries can be effi-

ciently rewritten to a form in which they can then be further processed.

4

Conclusions

In this paper we considered the query transformation and optimization problems in
context of query answering in the Optique OBDA system. We introduced the Query
Transformation component of the system and discussed the options of how this com-
ponent can be implemented: QUEST and PEGASUS. We briefly introduced these two
implementations and discussed their peculiarities.

References

11.
12.

13.

14.

. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. J. ACM 31(4), 718-741
. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,

Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access.
Semantic Web 2(1), 43-53 (2011)

. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reasoning

and Efficient Query Answering in Description Logics: The DL-Lite Family. JAR 39(3) (2007)

. Crompton, J.: Keynote talk at the W3C Workshop on Semantic Web in Oil & Gas Indus-

try: Houston, TX, USA, 9—-10 December (2008), available from http://www.w3.0rg/
2008/12/ogws—-slides/Crompton.pdf

. Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints, and optimization

with universal plans. pp. 459-470. VLDB °99 (1999)

. Giese, M., Calvanese, D., Haase, P., Horrocks, 1., loannidis, Y., Kllapi, H., Koubarakis, M.,

Lenzerini, M., Méller, R., Ozep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Schmidt,
M., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra Akerkar: Big
Data Computing. Florida : Chapman and Hall/CRC. To appear. (2013)

. Haase, P, Schmidt, M., Schwarte, A.: The information workbench as a self-service platform

for linked data applications. In: COLD (2011)

. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive Query Answering with OWL 2

QL. In: KR (2012)

. Leitsch, A.: The resolution calculus. Texts in theoretical computer science, Springer (1997)
. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies. ACM

Trans. Database Syst. 4(4), 455-469 (1979)

Meier, M.: The backchase revisited. Submitted for Publication (2013)

Rodriguez-Muro, M., Calvanese, D.: Dependencies: Making Ontology Based Data Access
Work. In: AMW (2011)

Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over DL-Lite On-
tologies. In: KR (2012)

Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL Reasoner for Ontology-based
Data Access. In: OWLED (2012)

http://www.w3.org/2008/12/ogws-slides/Crompton.pdf
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf

	On Rewriting and Answering Queries in OBDA Systems for Big Data (Short Paper)

