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Abstract. This paper describes the use and evolution of discrete event simula-
tors and models throughout CNES, its various space system developments, dis-
ciplines and related life-cycles and teams. Simulators and models are built in 
the first place to ensure that the organization improves it competences in a 
number of key areas. It presents how a careful federation of means, know-how 
and models using a bottom-up approach, will meet one day the top-down Sys-
tem of Systems approach. 
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1 Introduction 

In a large engineering enterprise, such as Centre National d’Etudes Spatiales 
(CNES), there are many simulators used and developed. The most demanding is the 
operational simulator as it has to be representative for a satellite as seen from the 
ground and because it is used in many verification and qualification chains for control 
centres, mission control centres and payload control centres. For those qualifications, 
the real satellite is only used rarely as incurs very expensive operations with many 
constraints, while introducing risks on damage and planning. Moreover, testing with 
real satellites still has limited representativity and fault injection is even more cum-
bersome. Nowadays, the operational simulators fly many months before the satellite is 
launched. 

The significant efforts to develop such large operational simulators have not only 
led to a better understanding of the problematic and to better technical solutions, as 
described in subsequent sections. It equally triggered the awareness of the value of 
models that contain part of the company’s memory and its patrimony and a means of 
communication and specification of behaviour. The validation and qualification of 
models takes often much more resources than the development itself, so that reuse is 
much more rewarding than traditional reuse of software components. But most im-
portantly, models and simulators are creating some sort of biotope that allow improv-
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ing key competences and facilitates cooperation between people having various ex-
pertise and project roles. 

2 Operational Simulators 

2.1 Main Requirements 

Operational simulators have the following key requirements: 

• From the point of view of operators, the simulator should be indistinguishable from 
the real satellite 

• Causality must be respected and all runs must be reproducible 
• Failure, fault and reproducible noise injection without changing models 
• Fine control and visibility on internals (introspection) 
• Formal and automated procedures for model and simulator validation 
• Save/restore of context to allow bypassing operational test lead-in times of several 

days 
• Perennity guarantees for 15+ years: Linux, mainstream PC’s, Open source versus 

COTS, heritage/reuse of 15 years 

2.2 Content and Performance Requirements 

• Independent models in C, Fortran, Matlab, Scilab, object format (industrial secret). 
• Start script based model instantiations and connection of model variables without 

compilation (using naming database) 
• Computer emulators are loaded with the production version of the ROM images 

(1750, ERC32, LEON, …) 
• Performance: minimum is guaranteed real-time, 3 to n times real-time for increased 

productivity 

Although the main content of an operational simulator revolves around its computer 
simulator, many disciplines are present: on-board software, command and control, 
guidance and attitude, mechanics, thermal, electric, power … 
 
 As an example, the Pleiades operational simulator contains: 

─ 200 models, model frequencies of 1 to 128 Hz 
─ 7 processor emulators, globally up to 80 million of OBSW instructions/sec 
─ Up to 200 events in scheduler 
─ 10.000 events per simulated second 

Its performance is:  

─ minimum 2 times real-time 
─ 10 times real-time preferred (possibly with models that support reduced repre-

sentativity) 
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─ 100.000 events per executed second 

The Argos study simulators contain 100.000 models and manage 200.000 events in 
the scheduler. They run 5 to 500 times the real-time speed, executing 500.000 events 
per second. 
 
Large simulators tend to have separate specialized teams to  

• Develop and validate models, covering various disciplines (mechanics, thermal, 
power, dynamics, …) 

• Configure, integrate and validate simulators for the specific needs 
• Deploy simulators for use in the various operational chains and execute the needed 

scenarios 

2.3 Life Cycles 

The life of a satellite simulator has many dimensions as can be seen in the pictures 
below. 

 
Fig. 1. Life cycles of a spacecraft 
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Fig. 2. CNES main simulator needs during a spacecraft life cycle 

 
Other dimensions along the project phases are:  

• Instruments that range from simple acquisition subsystems to complex instruments, 
such as GPS, star trackers, Gyros, … 

• The several space platforms for the various product lines (mini-satellites, micro-
satellites) 

• Within operational phases, different configurations of the simulators are used, 
called variants. Typically, representativity and scope is reconfigured as to provide 
optimal performance for the tests at hand. 

All these dimensions need a well thought out approach for testing, validation, con-
figuration management and maintenance. 

2.4 Integration with Other Components 

Obviously, operational simulators need to have flexible interfaces to connect with 
the control and operational centres. It must be possible to route those interfaces direct-
ly or via the receiving station, through real RF equipment or through Spacelink simu-
lators when representativity is paramount. 

Co-simulation with other specialized simulators, such as Saber, is achieved through 
the use of standard interfaces, such as HLA. In the long run, hardware-in-the-loop 
will be needed for some components such as instruments and payloads. 
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3 Towards Better Use and Continuity of Means. 

The development of operational simulators is on a crossroad where many project 
phases, disciplines, models and people come together. Nevertheless, it was observed 
that the re-use of models, know-how and tools was far from optimal. So it was further 
investigated. 

3.1 Identified Problems and Barriers 

The main identified problem is due to the partitioning barriers caused by the many 
dimensions of the life cycles, project teams, disciplines, platforms. 

Building a simple discrete event simulator is not that complex, so that there are 
many such simulators developed throughout the company. As usually with software, 
those simple simulators evolve quickly to more complete in-house products and test 
environments. The more they evolve, the less the models tend to be reusable and the 
more difficult it becomes to move to a common platform. 

3.2 BASILES 

To improve the situation, in a first phase, BASILES (BAncs SImulateurs et Logiciels 
d’Etude de Satellite) has been created. It is a common simulation platform to promote 
models and simulation reuse among space programs and among the different simula-
tors that are created during the lifecycle of a project. BASILES provides a methodology 
and a standard for CNES simulators. 

First of all, BASILES is a simulation framework to develop, configure and run simu-
lators. It allows representing complex systems using discrete event simulation. It con-
tains the simulation kernel in charge of time and events handling, logger service, inte-
grators, processor emulator management, distributed simulation handling, etc. 

Concerning the development of a new simulator, BASILES features help to easily 
develop prototypes with basic programming knowledge in a short period of time and 
with a good level of accuracy. Models are simply configurable. Concerning the exe-
cution of a simulator, BASILES provides a great number of self-functionalities to inter-
act and introspect the models and simulation. 

Finally, BASILES is also a model library in order to share and reuse models and 
simulators among space programs. 

In order to extend its user base, CNES accepts to attribute licenses of the product to 
other industries, thereby stressing the system more to achieve quicker full maturity 
and to expose the product to new user requirements and ideas. 

3.3 SMP2 

For several years now, the European Cooperation for Space Standardization (ECSS) 
has taken the initiative to develop the SMP standard (Simulation Model Portability). 
The aim of this standard is to allow models to be portable among different simulation 
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infrastructures. Interfaces are specified by SMP independently of simulation infra-
structures. 

BASILES evolved to the SMP standard and all new developments are SMP based. 

3.4 Study Simulators 

One of the other families of discrete events simulators is MACSIM, basically used 
as study simulator, and having a large patrimony of existing models. Study simulators 
tend to be developed starting with few and relatively basic models in an incremental 
and iterative way: the developer improves or refines the model, runs it, validates it 
and restart improving it. The MACSIM environment has been successfully integrated 
in BASILES. 

3.5 Hardware in the Loop 

Ideally, many of the models should be replaceable by hardware equipment, alt-
hough this adds significant constraints. This allows using real equipment, to raise the 
level of representativity and expose the used models to a broader range of environ-
ments. 

Such operations have been successfully performed integrating real payloads with 
the simulator via Mil 1553. The new Nosyca balloon flight computer has been inte-
grated with BASILES via a number of interfaces. In that case, BASILES became a test 
bench, environment simulator and controller of the Nosyca flight computer. 

3.6 Software Validation Facilities 

BASILES has been augmented with non-intrusive flight software gdb debugging ca-
pabilities on the used processor emulators. That means that breakpoints can be set on 
specific instructions or data accesses. When such a breakpoint is hit, the clock of the 
processor and the simulator is frozen and the gdb interface is warned and normal de-
bugging can take place. All external BASILES interfaces remain functional and time 
progress continues when the processor is released by the debugger. 

3.7 Towards New Generation of Modular Real-time Benches 

A demonstrator has been build that shows the distributed real-time capability of 
modern systems. It runs BASILES simulators on different mainstream PC’s running 
standard Linux connected via HLA. Measurements have shown that all simulators 
were capable of generating output with a time precision and jitter that is better than 50 
µseconds. 

It is believed that test systems will become more modular and cheaper. In fact, 
many of the typical test systems are based on huge acquisition and driving front-ends, 
along with custom interfaces and uncommon processors and real-time RTOS with 
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specialised drivers. Such complex equipment creates a major constraint on re-use,  
maintenance and perennity.  

For the Nosyca system, interfaces have been made using a series of small micro-
controllers such as the PIC32, complemented with the needed connectors and small 
interface logic and shaping. These little 50€ low power boards (power via USB), with 
a 20 cm2 footprint, contain a 80 MHZ CPU, significant memory and interface variety, 
including Ethernet. Because the microcontrollers are dedicated to one single function, 
they are simple, while in many cases, specific interface FPGA’s can be avoided as the 
microcontroller can achieve a time resolution well below the µsecond. An approach 
that uses multiple small systems is better manageable than huge complex and hierar-
chical systems. 

3.8 Defining Simulator Strategy. at Day One of Each Project 

From the many experiments and domains BASILES has been used in, it became 
clear that a complete simulator planning is better studied by the very beginning of 
each space related project. As has been shown in the Argos and SMAR project, a first 
global system simulator allows for better dimensioning of many components of the 
system and helps to create a common understanding of the project.  

4 On-going Developments and R&D 

4.1 Thematic 

There are several R&D projects and investigations going concerning microscopic 
traffic simulation (one model per car), Software Validation Facilities for Proba and 
MTg, missile test planning, FDIT management, TDM space communication and im-
proved thermal simulation.  

Indeed, precise thermal simulation used to be extremely processing hungry. CNES 
is in the process of developing fast thermal simulation technology that will allow 
simulating the thermal behaviour of major satellite components with a precision of a 
couple of degrees. 

4.2 Parallel Processing 

Parallel processing of several processor simulators has been proven as an important 
performance gain. Using the theory of “separability”, developed at CNES, we are in a 
good starting point to engineer the parallelization. Currently, a methodology is being 
developed to detect model dependencies and allow for parallelization by configura-
tion, without changing the models. This step can be taken when the normal non-
parallel simulator is validated. 

Another form of parallel work under investigation is the running of a simulator in 
parallel with the real system. The use would be twofold: 
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• In a first phase, to dynamically validate (and improve) the simulator versus the real 
system. 

• In a second phase, to compare the real system against the simulator as to warn the 
operator when something is out of limits. Obviously, such system could have a far 
more refined warning capability than existing supervision systems.  

A frequent context save of such systems would allow to jump backwards in time for 
deeper investigation of out of limit behaviour and perform what-if scenarios based on 
a saved context. 

4.3 Processor Emulators 

Processing emulators are the critical path in operational simulators, so significant 
efforts are devoted to them.  

Current emulators decode each instruction to be executed, which limit their speed 
to around 70 MHz. 

One trail concerns the dynamic translation or Just in Time compilation of flight 
software. It has been demonstrated that such emulators have the capability to reach 
500 MHz emulation capability. 

Another trail concerns the emulation of multi-core processors exploiting the multi-
ple cores of the PC. 

Another domain being investigated concerns the emulation of the space variant of 
ARINC 653 (also called TSP and IMA). In IMA, application layers are isolated in 
partitions that are time sliced by a hypervisor. Such partitions could probably simulat-
ed in parallel as by design, they have much fewer interdependencies. 

 

Proceedings of the Posters Workshop at CSD&M 2013 174

Simulation for all components, phases and life-cycles of complex space systems


