
A Multiparadigm Approach to Integrate
Gestures and Sound in the Modeling Framework

Vasco Amaral1, Antonio Cicchetti2, Romuald Deshayes3

1 Universidade Nova de Lisboa, Portugal vasco.amaral@fct.unl.pt
2 Malardalen Research and Technology Centre (MRTC), Vasteras, Sweden

antonio.cicchetti@mdh.se
3 Software Engineering Lab, Université de Mons-Hainaut, Belgium

romuald.deshayes@umons.ac.be

Abstract. One of the essential means of supporting Human-Machine
Interaction is a (software) language, exploited to input commands and
receive corresponding outputs in a well-defined manner. In the past,
language creation and customization used to be accessible to software
developers only. But today, as software applications gain more ubiquity,
these features tend to be more accessible to application users themselves.
However, current language development techniques are still based on tra-
ditional concepts of human-machine interaction, i.e. manipulating text
and/or diagrams by means of more or less sophisticated keypads (e.g.
mouse and keyboard).
In this paper we propose to enhance the typical approach for dealing with
language intensive applications by widening available human-machine in-
teractions to multiple modalities, including sounds, gestures, and their
combination. In particular, we adopt a Multi-Paradigm Modelling ap-
proach in which the forms of interaction can be specified by means of
appropriate modelling techniques. The aim is to provide a more advanced
human-machine interaction support for language intensive applications.

1 Introduction

The mean of supporting Human-Machine interaction are languages: a well-
defined set of concepts that can be exploited by the user to compose more or less
complex commands to be input to the computing device. Given the dramatic
growth of software applications and their utilization in more and more complex
scenarios, there has been a contemporary need to improve the form of interaction
in order to reduce users’ e↵ort. Notably, in software development, it has been in-
troduced di↵erent programming language generations, programming paradigms,
and modelling techniques aiming at raising the level of abstraction at which the
problem is faced. In other words, abstraction layers have been added to close
the gap between machine language and domain-specific concepts, keeping them
interconnected through automated mechanisms.

While the level of abstraction of domain concepts has remarkably evolved,
the forms of interaction with the language itself indubitably did not. In partic-
ular, language expressions are mainly text-based or a combination of text and

Proceedings of MPM 2013 57



diagrams. The underlying motivation is that, historically, keyboard and mouse
have been exploited as standard input devices. In this respect, other forms of
interaction like gestures and sound have been scarcely considered. In this paper
we discuss the motivations underlying the need of enhanced forms of interaction
and propose a solution to integrate gestures and sound in modeling frameworks.
In particular, we define language intensive applicative domains the cases where
either the language evolves rapidly, or language customizations are part of the
core features of the application itself.

In order to better grasp the previously mentioned problem, we consider a
sample case study in the Home Automation Domain, where a language has to be
provided as supporting di↵erent automation facilities for a house, ranging from
everyday life operations to maintenance and security. This is a typical language
intensive scenario since there is a need to customize the language depending on
the customer’s building characteristics. Even more important, the language has
to provide setting features enabling a customer to create users’ profiles: notably,
children may command TV and lights but they shall not access kitchen equip-
ment. Likewise, the cleaning operator might have access to a limited amount of
rooms and/or shall not be able to deactivate the alarm.

In the previous and other language intensive applicative domains it is incon-
ceivable to force users to exploit the “usual” forms of interaction for at least two
reasons: i) if they have to digit a command to switch on the lights they could
use the light switch instead and hence would not invest money in these type
of systems. Moreover, some users could be unable to exploit such interaction
techniques, notably disabled, children, and so forth; ii) the home automation
language should be easily customizable, without requiring programming skills.
It is worth noting that language customization becomes a user’s feature in our
application domain, rather than a pure developer’s facility. If we widen our rea-
soning to the general case, the arguments mentioned so far can be referred to
as the need of facing accidental complexity. Whenever a new technology is pro-
posed, it is of paramount importance to ensure that it introduces new features
and/or enhances existing ones, without making it more complex to use, otherwise
it would not be worth to be exploited.

Our solution is based on Multi-Paradigm Modelling (MPM) principles, i.e.
every aspect of the system has to be appropriately modeled and specified, com-
bining di↵erent points of view of the system being then possible to derive the
concrete application. In this respect, we propose to precisely specify both the
actions and the forms of language interactions, in particular gestures and sound,
by means of models. In this way, flexible interaction modes with a language are
possible as well as languages accepting new input modalities such as sounds and
gestures.

The remaining of the paper is organized as follows: sec. 2 discusses the state-
of-the-art; sec. 3 presents the communication between a human and a machine
through a case study related to home automation; sec. 4 introduces an interaction
metamodel and discusses how it can be used to generate advanced concrete
syntaxes relying on multiple modalities; finally, sec. 5 concludes.

Proceedings of MPM 2013 58

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



2 State of the Art

This section describes basic concepts and state-of-the-art techniques typically
exploited in sound/speech and gesture recognition together with their combina-
tions created to provide advanced forms of interaction. Our aim is to illustrate
the set of concepts usually faced in this domain and hence to elicit the require-
ments for the interaction language we will introduce in Section 4.

Sound and speech recognition

Sound recognition is usually used for command-like actions; a word has to be
recognized before the corresponding action can be triggered. With the Vocal
Joystick [1] it is possible to use acoustic phonetic parameters to continuously
control tasks. For example, in aWIMP (Windows, Icons, Menus, Pointing device)
application, the type of vowel can be used to give a direction to the mouse cursor,
and the loudness can be used to control its velocity.

In the context of environmental sounds, [2, 3] proposed di↵erent techniques
based on Support Vector Machines and Hidden Markov Models to detect and
classify acoustic events such as foot steps, a moving chair or human cough. De-
tecting these di↵erent events help to better understand the human and social ac-
tivities in smart-room environments. Moreover, an early detection of non-speech
sounds can help to improve the robustness of automatic speech recognition al-
gorithms.

Gesture recognition

Typically, gesture recognition systems resort to various hardware devices such
as data glove or markers [4], but more recent hardware such as the Kinect or
other 3D sensors enable unconstrained gestural interaction [5]. According to a
survey of gestural interaction [6], gestures can be of 3 types :

– hand and arm gestures: recognition of hand poses or signs (such as recogni-
tion of sign language);

– head and face gestures: shaking head, direction of eye gaze, opening the
mouth to speak, happiness, fear, etc;

– body gestures: tracking movements of two people interacting, analyzing
movement of a dancer, or body poses for athletic training.

The most widely used techniques for dynamic gestural recognition usually involve
hidden Markov models [7], particle filtering [8] or finite state machines [9].

Multimodal systems

The ”Put-that-there” [10] system, developed in the 80’s, is considered to be
the origin of human-computer interaction regarding the use of voice and sound.
Vocal commands such as ”delete this elements” while pointing at one object

Proceedings of MPM 2013 59

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



displayed on the screen can be correctly processed by the system. According to
[11], using multiple modalities, such as sound and gestures, helps to make the
system more robust and maintainable. They also proposed to split audio sounds
in two categories: human speech and environmental sounds.

Multimodal interfaces involving speech and gestures have been widely used
for text input, where gestures are usually used to choose between multiple possi-
ble utterances or correct recognition errors [12, 13]. Some other techniques pro-
pose to use gestures on a touchscreen device in addition to speech recognition
to correct recognition errors [14]. Both modalities can also be used in an asyn-
chronous way to disambiguate between the possible utterances [15].

More recently, the SpeeG system [16] has been proposed. It is a multimodal
interface for text input and is based on the Kinect sensor, a speech recognizer and
the Dasher [17] user interface. The contribution lies in the fact that, unlike the
aforementioned techniques, the user can perform speech correction in real-time,
while speaking, instead of doing it in a post processing fashion.

Human-computer interaction modeling

In the literature, many modeling techniques have been used to represent interac-
tion with traditional WIMP user interfaces. For example, statecharts have been
dedicated to the specification and design of new interaction objects or widgets
[18].

Targetting virtual reality environment, Flownets [19] is a modeling tool, re-
lying on high-level Petri nets, based on a combination of discrete and continuous
behavior to specify the interaction with virtual environments. Also based on
high-level Petri nets for dynamic aspects and an object oriented framework, the
Interactive Cooperative Objects (ICO) formalism [20] has been used to model
WIMP interfaces as well as multimodal interactions in virtual environments. In
[4], a virtual chess game was developed in which the user can use a data glove to
manipulate virtual chess pieces. In [21], ICO has been used to create a framework
for describing gestural interaction with 3D objects has been proposed.

Providing a UML based generic framework for modeling interaction modal-
ities such as speech or gestures enables software engineers to easily integrate
multimodal HCI in their applications. That’s the point defended by [22]. In
their work, the authors propose a metamodel which focuses on the aspects of
an abstract modality. They distinguish between simple and complex modalities.
The first one represents a primitive form of interaction while the second inte-
grates other modalities and uses them simultaneously. With the reference point
being the computer, input and output modalities are defined as a specification of
simple modality. Input modalities can be event-based (e.g. performing a gesture
or sending a vocal command) or streaming based (e.g. drawing a circle or in-
putting text using speech recognition) and output modalities are used to provide
static (e.g. a picture) or dynamic (e.g. speech) information to the user.

Proceedings of MPM 2013 60

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



Fig. 1. A more advanced support of Human-Machine Interaction

3 Human-Machine Communication

As discussed so far, di↵erent techniques supporting more advanced forms of inter-
action between humans and machines have already been proposed. Nonetheless,
their exploitation in current software languages has been noticeably limited.
This work proposes to widen the modalities of human-machine interaction as
depicted in Fig. 1. In general, a human could input information by means of
speech, gestures, texts, drawings, and so forth. The admitted ways of interac-
tion are defined in an interaction model, which also maps human inputs into
corresponding machine readable formats. Once the machine has completed its
work, it outputs the results to the user through sounds, diagrams, texts, etc.;
also in this case the interaction model prescribes how performed computations
should be rendered to a human comprehensible format.

A software language supports the communication between humans and ma-
chines by providing a set of well-defined concepts that typically abstract real-life
concepts. Hence, software language engineering involves the definition of three
main aspects: i) the internal representation of the selected concepts, understand-
able by the machine and typically referred to as abstract syntax ; ii) how the
concepts are rendered to the users in order to close the gap with the applica-
tive domain, called concrete syntax ; iii) how the concepts can be interpreted to
get/provide domain-specific information, referred to as semantics. Practically, a
metamodel serves as a base for defining the structural arrangement of concepts
and their relationships (abstract syntax), the concrete syntax is “hooked” on
appropriate groups of its elements, and the semantics is generically defined as
computations over elements.

In order to better understand the role of these three aspects, Fig. 2 and 1
illustrate excerpts of the abstract and concrete syntaxes, respectively, of a sample
Home Automation DSL. In particular, a home automation system manages a
House (see Fig. 2 right-hand side) that can have several rooms under domotic
control (i.e. Room and DomoticControl elements in the metamodel, respectively).

Proceedings of MPM 2013 61

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



Fig. 2.Metamodel (abstract syntax) of a simple illustration DSL for Home Automation

The control is composed by several devices and actions that can be performed
with them. Notably, a Light can be turned on and o↵, while a Shutter can be
opened and closed.

It is easy to notice that the abstract syntax representation would not be
user-friendly in general, hence a corresponding concrete syntax can be defined
in order to provide the user with easy ways of interaction. In particular, Prog.
1 shows an excerpt of the concrete syntax definition for the home automation
DSL using the Eugenia tool4. The script prescribes to depict a House element as
a graph node showing the rooms defined for the house taken into account.

Prog. 1 Concrete Syntax mapping of the DSL for Home Automation with Eu-
genia
@gmf.node(label="HouseName", color="255,150,150", style="dash")
class House {
@gmf.compartment(foo="bar")
val Room[*] hasRooms;
attr String HouseName;

}

Despite the remarkable improvements in language usability thanks to the ad-
dition of a concrete syntax, the malleability of interaction modalities provided by
Eugenia and other tools (e.g. GMF5) is limited to the standard typing and/or

4 http://www.eclipse.org/epsilon/doc/eugenia/
5 http://www.eclipse.org/modeling/gmp/

Proceedings of MPM 2013 62

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



Fig. 3. A possible language to define enhanced concrete syntaxes for DSL

drawing graphs. Such a limitation becomes evident when needing to provide
users with extended ways of interaction, notably defining concrete syntaxes as
sounds and/or gestures. For instance, a desirable concrete syntax for the home
automation metamodel depicted in Fig. 2 would define voice commands for turn-
ing lights on and o↵, or alternatively prescribe certain gestures to do the same
operations.

By embracing the MPM vision, which prescribes to define any aspect of the
modeling activity as a model, next Section introduces a language for defining ad-
vanced human-machine interactions. In turn, such a language can be combined
with abstract syntax specifications to provide DSLs with enhanced concrete syn-
taxes.

4 Interaction Modeling

The proposed language tailored to enhanced human-machine interaction con-
crete syntax definition is shown in Fig. 3. In particular, it depicts the meta-
model to define advanced concrete syntaxes, encompassing sound and gestures,
while the usual texts writing and diagrams drawing are treated as particular
forms of gestures. Going deeper, elements of the abstract syntax can be linked
to (sequences of) activities (see Activity on the bottom-left part of Fig. 3). An
activity, in turn, can be classified as a Gesture or a Sound.

Proceedings of MPM 2013 63

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



Fig. 4. A possible instance model defining the Concrete Syntax of a concept

Regarding gestures, the language supports the definition of di↵erent types
of primitive actions typically exploited in gesture recognition applications. A
Gesture is linked to the BodyPart that is expected to perform the gesture. This
way we can distinguish between performed actions, for example, by a hand or a
head. Move is the simplest action a body part can perform, it is triggered for each
displacement of the body part. Dragging (Drag) can only be triggered by a hand
a represents a displacement of a closed hand. ColinearDrag and NonColinearDrag

represent a movement of both hands going in either the same or opposite di-
rections while being colinear or not colinear, respectively. Open and Close are
triggered when the user opens or closes the hand.

Sounds can be separated in two categories: i) Voice represents human speech,
which is composed of Sentences and/or Words. ii) Audio that relates to all non
speech sounds that can be encountered, such as knocking on a door, a guitar
chord or even someone screaming. As it is very generic, it is characterized by
fundamental aspects as tone, pitch, and intensity.

Complex activities can be created by combining multiple utterances of sound
and gestures. For example one could define an activity to close a shutter by
closing the left hand and dragging it from top to bottom while pointing at the
shutter and saying “close shutters”.

In order to better understand the usage of the proposed language, Fig. 4
shows a simple example defining the available concrete syntaxes for specifying
the turning the lights on command. In particular, it is possible to wave the right
hand, first left and then right to switch on light 1 (see the upper part of the
picture). Alternatively, it is possible to give a voice command made up of the
sound sequence “Turn Light 1 On”, as depicted in the bottom part of the figure.

It is worth noting that, given the purpose of the provided interaction forms,
the system can be taught to recognize particular patterns as sounds, speeches,

Proceedings of MPM 2013 64

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



gestures, or their combinations. In this respect, the technical problems related
to recognition can be alleviated. Even more important, the teaching process
discloses the possibility to extend the concrete syntax of the language itself,
since additional multimodal commands can be introduced as alternative ways of
interaction.

5 Conclusions

The ubiquity of software applications is widening the modeling possibilities of
end users who may need to define their own languages. In this paper, we defined
these contexts as language-intensive applications given the evolutionary pressure
the languages are subject to. In this respect, we illustrated the needs of having en-
hanced ways of supporting human-machine interactions and demonstrated them
by means of a small home automation example. We noticed that in general con-
crete syntaxes usually refer to traditional texts writing and diagrams drawing,
while more complex forms of interaction are largely neglected. Therefore, we
proposed to extend the current concrete syntax definition approaches by adding
sounds and gestures, but also possibilities to compose them with traditional in-
teraction modalities. In this respect, by adhering to the MPM methodology we
defined an appropriate modeling language for illustrating concrete syntaxes that
can be exploited later on to generate corresponding support for implementing
the specified interaction modalities.

As next steps we plan to extend the Eugenia concrete syntax engine in or-
der to be able to automatically generate the support for the extended human-
machine interactions declared through the proposed language. This phase will
also help in the validation of the proposed concrete syntax metamodel shown in
Fig. 3. In particular, we aim at verifying the adequacy of the expressive power
provided by the language and extend it with additional interaction means.

This work constitutes the base to build-up advanced modeling tools relying
on enhanced forms of interaction. Such improvements could be remarkably im-
portant to widen tools accessibility to disabled developers as well as to reduce
the accidental complexity of dealing with big models.

References

1. J. Bilmes, X. Li, J. Malkin, K. Kilanski, R. Wright, K. Kirchho↵, A. Subra-
manya, S. Harada, J. Landay, P. Dowden, and H. Chizeck, “The vocal joystick: A
voice-based human-computer interface for individuals with motor impairments,”
in HLT/EMNLP. The Association for Computational Linguistics, 2005.

2. A. Temko, R. Malkin, C. Zieger, D. Macho, and C. Nadeu, “Acoustic event de-
tection and classification in smart-room environments: Evaluation of chil project
systems,” Cough, vol. 65, p. 6, 2006.

3. S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acoustical sound
database in real environments for sound scene understanding and hands-free speech
recognition,” in LREC. European Language Resources Association, 2000.

Proceedings of MPM 2013 65

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework



4. D. Navarre, P. Palanque, R. Bastide, A. Schyn, M. Winckler, L. Nedel, and C. Fre-
itas, “A formal description of multimodal interaction techniques for immersive vir-
tual reality applications,” in INTERACT, ser. Lecture Notes in Computer Science,
M. F. Costabile and F. Paternò, Eds., vol. 3585. Springer, 2005, pp. 170–183.

5. Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recognition with
kinect sensor,” in ACM Multimedia, 2011, pp. 759–760.

6. S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans. on Sys-
tems, Man and Cybernetics - part C, vol. 37, no. 3, pp. 311–324, 2007.

7. J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential
images using hidden Markov model,” in Proceed. IEEE Conf. Computer Vision
and Pattern Recognition, 1992, pp. 379–385.

8. M. Isard and A. Blake, “Condensation - conditional density propagation for visual
tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

9. P. Hong, T. S. Huang, and M. Turk, “Gesture modeling and recognition using
finite state machines,” in FG. IEEE Computer Society, 2000, pp. 410–415.

10. R. Bolt, “Put-that-there: Voice and gesture at the graphics interface,” in Pro-
ceed. 7th annual conference on Computer graphics and interactive techniques, ser.
SIGGRAPH ’80. New York, NY, USA: ACM, 1980, pp. 262–270.

11. B. Demiroz, I. Ar, A. Ronzhin, A. Coban, H. Yalcn, A. Karpov, and L. Akarun,
“Multimodal assisted living environment,” in eNTERFACE 2011, The Summer
Workshop on Multimodal Interfaces, 2011.

12. N. Osawa and Y. Y. Sugimoto, “Multimodal text input in an immersive envi-
ronment,” in ICAT 2002, 12th International Conference on Articial Reality and
Telexistence, 2002, pp. 85–92.

13. K. Vertanen, “E�cient computer interfaces using continuous gestures, lan-
guage models, and speech,” http://www.cl.cam.ac.uk/TechReports/UCAM-CL-
TR-627.pdf, Computer Laboratory, University of Cambridge, Tech. Rep. UCAM-
CL-TR-627, 2005.

14. D. Huggins-Daines and A. I. Rudnicky, “Interactive asr error correction for touch-
screen devices,” in ACL (Demo Papers). The Association for Computer Linguis-
tics, 2008, pp. 17–19.

15. P. O. Kristensson and K. Vertanen, “Asynchronous multimodal text entry using
speech and gesture keyboards,” in INTERSPEECH. ISCA, 2011, pp. 581–584.

16. L. Hoste, B. Dumas, and B. Signer, “Speeg: a multimodal speech- and gesture-
based text input solution,” in AVI, G. Tortora, S. Levialdi, and M. Tucci, Eds.
ACM, 2012, pp. 156–163.

17. D. J. Ward, A. F. Blackwell, and D. J. C. MacKay, “Dasher - a data entry interface
using continuous gestures and language models,” in UIST, 2000, pp. 129–137.

18. D. A. Carr, “Specification of interface interaction objects,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’94. New York, NY, USA: ACM, 1994, pp. 372–378. [Online]. Available:
http://doi.acm.org/10.1145/191666.191793

19. S. Smith and D. Duke, “Virtual environments as hybrid systems,” in Proceedings
of Eurographics UK 17th Annual Conference (EG-UK99), E. U. K. Chapter, Ed.,
United Kingdom, 1999.

20. P. A. Palanque and R. Bastide, “Petri net based design of user-driven interfaces
using the interactive cooperative objects formalism,” in DSV-IS, 1994, pp. 383–400.

21. R. Deshayes, T. Mens, and P. Palanque, “A generic framework for executable
gestural interaction models,” in Proc. VL/HCC, 2013.

22. Z. Obrenovic and D. Starcevic, “Modeling multimodal human-computer interac-
tion,” IEEE Computer, vol. 37, no. 9, pp. 65–72, 2004.

Proceedings of MPM 2013 66

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework


