
Using fUML as Semantics Specification Language in
Model Driven Engineering

Tanja Mayerhofer

Business Informatics Group, Vienna University of Technology, Austria
mayerhofer@big.tuwien.ac.at

Abstract. In model-driven engineering (MDE), software is developed based on
models which hence constitute the central artifacts in the software development
process. Consequently, tools supporting MDE, such as model editors, interpreters,
and debuggers are crucial in MDE. For developing such tools efficiently, model-
ing languages have to be defined formally. While for formally defining a mod-
eling language’s syntax standard means exist, this is not the case for defining
its semantics. This impedes the efficient development of tools which build upon
the modeling language’s semantics, such as model interpreters, debuggers, and
testing environments. To overcome this limitation, we present an approach for
formally defining the semantics of modeling languages making use of the stan-
dardized and UML 2 compliant action language foundational UML (fUML).

1 Problem and Motivation
Over the past years, the software development methodology model-driven engineer-
ing (MDE) gained significant popularity as it is a promising approach to address the
growing complexity of the software systems that have to be built today [17]. In MDE,
models are specified using modeling languages to define the structure and behavior of
the software to be built. Model transformations and code generation are used to gen-
erate different kinds of software artifacts from these models, such as source code and
deployment scripts. Because models constitute the central artifacts in MDE, its success
depends significantly on the availability of adequate tool support for creating, explor-
ing, analyzing, and utilizing models. In order to develop such tools1 in an efficient way,
modeling languages (i.e., their syntax and semantics) have to be defined formally [1].

The abstract syntax of a modeling language defines the modeling language’s con-
cepts and their relations. For formally defining the abstract syntax, metamodels are the
standard means. MOF [13] constitutes a standardized, well established, and widely ac-
cepted metamodeling language for this purpose. Furthermore, MOF laid the ground
for the emergence of a variety of tools building upon the abstract syntax definition of a
modeling language, such as techniques for deriving modeling editors from a metamodel
and generic components for model serialization, comparison, and transformation.

The behavioral semantics of a modeling language defines the execution behavior
of conforming models. A formal specification of the behavioral semantics is not only
needed for precisely and unambiguously defining the behavior of models, but also to

1 In the remainder of this paper we will refer to tools for MDE, which are based on the definition
of a modeling language, as model-based tools.

establish the basis for an efficient development of model-based tools which build upon
the behavioral semantics of a modeling language, such as model interpreters, debuggers,
and testing environments [1]. Having the behavioral semantics of a modeling language
explicitly and formally defined enables to automate the development of such tools. Un-
fortunately, no standard way for defining a modeling language’s behavioral semantics
explicitly and formally has been established yet. Hence, formalizing the behavioral se-
mantics of modeling languages remains a core challenge in MDE [1]. To address this
challenge we propose to use the standardized and UML 2 compliant action language
foundational UML (fUML) [15] as semantics specification language in MDE.

2 Background and Related Work
The behavioral semantics of many modeling languages, including widely adopted lan-
guages such as UML [14], are only informally defined in natural language. This may
lead to several problems, such as to ambiguities in the semantic meaning of the lan-
guage’s modeling concepts. Furthermore, the behavior of models conforming to the
modeling language cannot be formally analyzed and the models cannot be executed.
Moreover, building tools, such as model debuggers and interpreters, is problematic if
the language’s semantics is only defined in natural language.

A commonly used approach to make models executable is to utilize code generators
or to develop model interpreters with general-purpose programming languages (GPLs).
However, in this approach the behavioral semantics is encoded in the manually con-
structed code generation templates or model interpreter implementations and hence is
only defined implicitly. A problem that arises is that the behavior of models can again
not be analyzed easily. Furthermore, the semantics can hardly be extended and reused
which makes it costly to create and maintain.

To overcome these limitations, adequate techniques for formally and explicitly spec-
ifying the behavioral semantics of modeling languages are needed. This need stimulated
intensive research resulting in various approaches proposed in the past which can be di-
vided into translational approaches and operational approaches.

In translational approaches, models conforming to a modeling language are trans-
lated into models conforming to another language whose semantics is formally and
explicitly defined. The advantage of this approach is that tools available for the target
language can be used for the translated models. Its drawback, however, is that a transla-
tion from the source into the target language as well as a mapping of results obtained for
the translated models to the original models have to be developed. Examples for trans-
lational approaches are the work of Chen et al. [2] and Di Ruscio et al. [4] using the
Abstract State Machine formalism as target language, Rivera et al. [16] using Maude,
Kühne et al. [9] using Petri nets, and Rumpe et al. [7] using their System Model.

In the operational approach, the behavioral semantics is directly introduced into the
modeling language without moving to another language. This can be done by utilizing
graph transformations as for instance proposed by Engels et al. [6]. Another way is to
introduce operations into the metaclasses of a modeling language’s metamodel and pro-
vide their implementations using a dedicated action language. Several action languages
and GPLs have been proposed for this purpose, such as Kermeta [12], Smalltalk [5],
xCore [3], and EOL [8].

3 Approach and Uniqueness

Despite the fact that several approaches for formally and explicitly specifying the be-
havioral semantics of modeling languages exist, none of these approaches is widely
adopted especially in industry. Moreover, the challenge of automatically generating
model-based tools from semantics specifications is only addressed by few approaches
which provide only partial solutions [1]. We advocate for operational semantics spec-
ification approaches because instead of translating models into a different language,
the behavioral semantics is directly attached to the modeling language. We also believe
that a standardized action language should be employed for this purpose. The action
languages proposed until now are either GPLs (e.g., Smalltalk), proprietary languages
(e.g., Kermeta), or adapted versions of standardized languages (e.g., xOCL integrated
in xCore). In contrast, we propose to use fUML, a standardized and UML 2 compliant
action language, for specifying the behavioral semantics of modeling languages. fUML
defines the semantics of a subset of UML consisting of concepts for modeling classes
and activities formally and provides a virtual machine (VM) for executing compliant
models. As both MOF and fUML are standardized by OMG, fUML may be considered
as promising candidate for becoming a standardized action language in metamodeling.

To use fUML as semantics specification language and leverage the semantics speci-
fication of a modeling language to execute conforming models, the following challenges
had to be addressed. First, fUML had to be integrated with existing metamodeling lan-
guages. Second, state-of-the-art metamodeling methodologies and environments had
to be adequately extended to support a systematic and efficient development of behav-
ioral semantics specifications based on fUML. Third, a generic model interpreter had
to be developed to enable the execution of models based on the behavioral semantics
specification of the modeling language they conform to.

To enable the usage of fUML for specifying the behavioral semantics of modeling
languages, we identified two strategies: a transformation-based and an integration-based
strategy [11]. Because of the better integration with existing metamodeling environ-
ments, we decided to apply the integration-based strategy. In this approach, a meta-
modeling language is extended with the behavioral part of fUML in a way that enables
to specify the behavior of the operations introduced for the metaclasses of a modeling
language using fUML activities. By applying this approach we extended Ecore, which
is integrated with the Eclipse Modeling Framework (EMF) [18] and which constitutes
the most prominent implementation of MOF. Thereby we obtained a new metamodeling
language which we called executable MOF (xMOF) that enables to specify a modeling
language’s abstract syntax using the modeling concepts stemming from Ecore and its
behavioral semantics using the modeling concepts stemming from fUML.

Based on xMOF we elaborated a tool-supported methodology for developing the
behavioral semantics of modeling languages (cf. Figure 1). The input for the semantics
specification is the Ecore-based metamodel of a modeling language. As preparatory
step we automatically generate a subclass for each metaclass defined in the metamodel.
The language designer then adds operations and their implementations in the form of
activities to these subclasses, which specify the behavior of the metaclasses. By sub-
classing the metaclasses for specifying their behavioral semantics, the behavioral se-
mantics specification is clearly separated from the abstract syntax specification. This

fUML Model Execution
Output

Execution
Trace

Execution
Events

Modeling Language Definition
(xMOF)

Semantics
(fUML)

Syntax
(Ecore)

Model

Model
Execution

Artifact

Task
Automated

Caption:

in/out relation

xMOF2fUML
Conversion

Instance
Conversion

Semantics
Initialization

Semantics
Specification

Semantics Specification

Model Execution

Semantics
(fUML)

[initial]

Syntax
(Ecore)

Semantics
(fUML)

[complete]

Model-based Tools

Model
Debugging

Model
Testing

Model
Analysis

…

Task
Manual

fUML Input
Values

Fig. 1: Overview of our semantics specification approach based on fUML.

fosters reusability and flexibility in the semantics specification and facilitates the seam-
less integration of the development of a modeling language’s behavioral semantics into
existing metamodeling methodologies and environments which are by our methodology
only extended concerning the semantics specification.

Having the behavioral semantics of a modeling language defined using xMOF, our
approach enables to execute conforming models based on this semantics specification
by leveraging the fUML VM2. For this, we automatically convert the modeling lan-
guage definition into an fUML compliant model. In this conversion, metaclasses are
converted into fUML classes and the implementations of the metaclasses’ operations
(in the form of activities) are converted into fUML activities. Furthermore, the ele-
ments of the model to be executed are converted into corresponding fUML objects, i.e.,
instances of the fUML classes generated for the metaclasses of the model elements, and
are provided as input to the fUML VM. The fUML VM interprets the activities and
manipulates the objects, which represent the executed model, accordingly. The primary
output of the model execution is the set of manipulated objects which represents the
runtime state of the executed model after the model execution finished and is provided
to the user in the form of model annotations. For enabling the observation and anal-
ysis of a model execution being carried out we extended the fUML VM in previous
work [10] with an event mechanism and a trace model. These outputs of the model
execution can be utilized by model-based tools building upon the modeling language’s
behavioral semantics, such as model debuggers, testing environments, and analyzers.

4 Results and Contributions
Formalizing the behavioral semantics of modeling languages and leveraging this for-
malization for automatically generating model-based tools building upon the modeling
languages’ semantics is an open challenge in MDE [1]. Our previous research aiming
at addressing this challenge resulted in the following contributions3. (i) A strategy was

2 Our implementation is based on the reference implementation of the fUML VM provided at
http://fuml.modeldriven.org

3 The metamodel of xMOF, the source code of our tool support, as well as demos and case
studies can be found at our project website http://www.modelexecution.org.

proposed to integrate the standardized action language fUML with existing metamod-
eling languages enabling the specification of the behavioral semantics of modeling lan-
guages in an operational way. This strategy was applied to integrate fUML with Ecore,
which is the most prominent implementation of MOF, resulting in the metamodeling
language xMOF. (ii) Based on xMOF, a tool-supported methodology was elaborated
for developing behavioral semantics specifications of modeling languages which inte-
grates seamlessly with existing metamodeling methodologies and environments. (iii) A
generic model interpreter was developed which enables the execution of models based
on the modeling language’s semantics specification by leveraging the fUML VM.

To qualitatively evaluate the applicability of our semantics specification approach
based on fUML, we carried out case studies in which we developed the behavioral se-
mantics specifications of distinct modeling languages using xMOF. In summary, the
case studies confirmed that the proposed metamodeling language xMOF as well as its
accompanying tool-supported methodology are applicable for defining the behavioral
semantics of different kinds of modeling languages. Moreover, by utilizing the generic
model interpreter based on the fUML VM it was possible to execute models conform-
ing to the modeling languages by interpreting their semantics specifications. Regarding
the suitability of fUML as action language for metamodeling we come to the conclu-
sion that due to its object-oriented and imperative nature, fUML is highly suitable as
semantics specification language. The case studies also revealed possible improvements
of our approach regarding the reusability of semantics specifications and tooling. Fur-
thermore, we recognized that the runtime information about the execution of a model
provided by our generic model interpreter in the form of execution events and an execu-
tion trace helps in debugging and analyzing the xMOF-based semantics specification as
they provide detailed information about the executed fUML activities contained in the
semantics specification. However, to also provide this detailed runtime information to
the modeler, the execution events and trace should be tailored to the respective modeling
language as the modeler is only concerned with the concepts of the modeling language
and not with its semantics specification in terms of fUML activities.

5 Conclusion and Future Work
Our research is concerned with formally specifying the behavioral semantics of mod-
eling languages using fUML and utilizing the semantics specifications for efficiently
developing model-based tools building upon the behavioral semantics of modeling lan-
guages. Our implementation of a generic model interpreter capable of executing models
based on the semantics specification of the used modeling language defined with fUML
is only the first step towards addressing the challenge of generating model-based tools
from a modeling language’s semantics specification. We will, in future work, further in-
vestigate methods for generating model-based tools from fUML-based semantics spec-
ifications. In particular, we are currently investigating the semi-automatic generation
of model debuggers. Furthermore, we will carry out a large-scale case study applying
our proposed semantics specification approach to fUML itself. This case study serves
two purposes; first, we will evaluate the applicability and scalability of our semantics
specification approach and second, having defined the behavioral semantics of fUML in
fUML enables to bootstrap fUML’s model execution capabilities for instance to support
a larger subset of UML without extending the fUML VM itself.

References
1. B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and G. Karsai. Challenges and

Directions in Formalizing the Semantics of Modeling Languages. Computer Science and
Information Systems, 8(2):225–253, 2011.

2. K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic Anchoring with Model
Transformations. In Proceedings of the 1st European Conference on Model Driven Archi-
tecture - Foundations and Applications (ECMDA-FA), pages 115–129. Springer, 2005.

3. T. Clark, A. Evans, P. Sammut, and J. Willans. Applied Metamodelling: A Foundation for
Language Driven Development. Ceteva, Sheffield, 2004.

4. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. Extending AMMA for
Supporting Dynamic Semantics Specifications of DSLs. Technical Report, INRIA/LINA,
Università degli Studi di L’Aquila, 2006.

5. S. Ducasse and T. Gı̂rba. Using Smalltalk as a Reflective Executable Meta-language. In
Proceedings of the 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 604–618. Springer, 2006.

6. G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML. In Proceedings of
the 3rd International Conference on the Unified Modeling Language (UML), pages 323–337.
Springer, 2000.

7. H. Grönniger, J. O. Ringert, and B. Rumpe. System Model-Based Definition of Model-
ing Language Semantics. In Proceedings of the Joint 11th IFIP International Conference
FMOODS and 29th IFIP International Conference FORTE (FMOODS/FORTE), pages 152–
166. Springer, 2009.

8. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL). In Pro-
ceedings of the 2nd European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), pages 128–142. Springer, 2006.

9. T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit Transformation
Modeling. In Models in Software Engineering: Reports and Revised Selected Papers of
Workshops and Symposia at MoDELS 2009, pages 240–255. Springer, 2009.

10. T. Mayerhofer, P. Langer, and G. Kappel. A Runtime Model for fUML. In Proceedings of
the 7th Workshop on Models@run.time (MRT) @ MoDELS’12, pages 53–58. ACM, 2012.

11. T. Mayerhofer, P. Langer, and M. Wimmer. Towards xMOF: Executable DSMLs based
on fUML. In Proceedings of the 12th Workshop on Domain-Specific Modeling (DSM) @
SPLASH’12, pages 1–6. ACM, 2012.

12. P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving Executability into Object-Oriented
Meta-languages. In Proceedings of the 8th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS), pages 264–278. Springer, 2005.

13. Object Management Group. OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1, August 2011. http://www.omg.org/spec/MOF/2.4.1.

14. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.4.1, August 2011. http://www.omg.org/spec/UML/2.4.1.

15. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0, February 2011. http://www.omg.org/spec/FUML/1.0.

16. J. E. Rivera, F. Durán, and A. Vallecillo. On the Behavioral Semantics of Real-Time Domain
Specific Visual Languages. In Proceedings of the 8th International Workshop on Rewriting
Logic and Its Applications (WRLA) @ ETAPS’10, pages 174–190. Springer, 2010.

17. D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

18. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2nd edition, 2008.

