
LEC: Learning-Driven Data-path Equivalence
Checking

Jiang Long∗, Robert K. Brayton∗, Michael Case†
∗EECS Department, UC-Berkeley
{jlong, brayton}@eecs.berkeley.edu

†Calypto Design Systems
{mcase}@calypto.com

Abstract—
In the LEC system, we employ a learning-driven approach for

solving combinational data-path equivalence checking problems.
The data-path logic is specified using Boolean and word-level
operators in VHDL/Verilog. The targeted application area are C-
to-RTL equivalence checking problems found in an industrial set-
ting. These are difficult because of the algebraic transformations
done on the data-path logic for highly optimized implementations.
Without high level knowledge, existing techniques in bit-level
equivalence checking and QF BV SMT solving are unable to
solve these problems effectively. It is crucial to reverse engineer
such transformations to bring more similarity between the two
sides of the logic. However, it is difficult to extract algebraic
logic embedded in a cloud of Boolean and word-level arithmetic
operators. To address this, LEC uses a compositional proof
methodology and analysis beyond the bit and word level by incor-
porating algebraic reasoning through polynomial reconstruction.
LEC’s open architecture allows new solver techniques to be
integrated progressively. It builds sub-model trees, recursively
transformating the sub-problems to simplify and expose the
actual bottleneck arithmetic logic. In addition to rewriting
rules that normalize the arithmetic operators, LEC supports
conditional rewriting, where the application of a rule is dependent
on the existence of invariants in the design itself. LEC utilizes
both functional and structural information of the data-path
logic to recognize and reconstruct algebraic transformations. A
case-study illustrates the steps used to extract the arithmetic
embedded in a data-path design as a linear sum of signed
integers, and shows the procedures that collaboratively led to
a successful compositional proof.

I. INTRODUCTION

With the increasing popularity of high-level design method-
ologies there is renewed interest in data-path equivalence
checking [3][13][18][20]. In such an application, a design
prototype is first implemented and validated in C/C++, and
then used as the golden specification. A corresponding Ver-
ilog/VHDL design is implemented either manually or au-
tomatically through high-level synthesis tool [2][4][15]. In
both cases, a miter logic for equivalence checking is formed
to prove the correctness of the generated RTL model by
comparing it against the original C/C++ implementation.

The data-path logic targeted in this paper is specified
using Verilog/VHDL. The bit and word-level operators in
Verilog/VHDL have the same semantic expressiveness as SMT
QF BV theory[5]. Table I gives a one-to-one correspondence
between Verilog and QF BV unsigned operators. Signed arith-
metic operators are also supported. The complexity of such an

equivalence problem is NP-complete. However, on the extreme
end, the complexity becomes O(1) of the size of the network
if the two designs are structurally the same. An NP-complete
problem can be tackled by using SAT-solvers as a general
procedure. To counter the capacity limitation of SAT-solving,
it is crucial to reduce the complexity by identifying internal
match points and by conducting transformations to bring in
more structural similarity between the two sides of the miter
logic.

Verilog operators SMT QF BV operators
Boolean &&, ‖, !,⊕,mux and, or, not, xor, ite
bit-wise &, |,∼,⊕,mux bvand, bvor, bvnot, bvxor, bvite

arithmetic +,−, ∗, /,% bvadd, bvsub, bvmul, bvdiv, bvmod
extract [] extract
concat {} concat

comparator <,>,≤,≥ bvugt, bvult, bvuge, bvule
shifter �,� bvshl, bvshr

TABLE I
SUPPORTED OPERATORS (UNSIGNED)

A. Motivation
The differences between the two data-path logics under

equivalence checking are introduced by various arithmetic
transformations for timing, area and power optimizations.
These optimizations are domain specific and can be very spe-
cialized towards a particular data-path design and underlying
technology. They have the following characteristics:
• The two sides of the miter logic are architecturally

different and have no internal match points.
• Many expensive operators such as adders and multipliers

are converted to cheaper but more complex implemen-
tations and the order of computations are changed. It is
not a scalable solution to rely on SAT solving on the
bit-blasted model.

• The parts of the transformed portion are embedded in
a cloud of bit and word level operators. Algebraic ex-
traction [8][26] of arithmetic logic based on structural
patterns is generally too restrictive to handle real-world
post-optimization data-path logic.

• Word-level rewriting uses local transformation. Without
high-level information, local rewriting is not able to make
the two sides of the miter logic structurally more similar.

Lacking high-level knowledge of the data-path logic, the
equivalence problems can be very difficult for gate-level equiv-



alence checking and general QF BV SMT solvers. Strategi-
cally, LEC views the bottleneck of such problems as having
been introduced by high-level optimizations and employs a
collaborative approach to isolate, recognize and reconstruct
the high-level transformations to simplify the miter model by
bringing in more structural similarities.

B. Contributions

The LEC system incorporates compositional proof strate-
gies, uses rewriting to normalize arithmetic operators, and
conducts analysis beyond bit and word level. The collaborating
procedures help to expose the actual bottleneck in a proof of
equivalence. The novel aspects of this system are:

1) It uses global algebraic reasoning through polynomial
reconstruction. In the case-study, it uses the functional
information of the design to reverse engineer the arith-
metic expression as a linear sum and also uses a struc-
tural skeleton of the original data-path to achieve the
equivalence proof.

2) It supports conditional rewriting and proves required
invariants as pre-conditions.

3) It uses recursive transformations that target making both
sides of the miter logic structurally more similar and
hence more amenable to bit-level SAT sweeping.

4) It has an open architecture, allowing new solver tech-
niques to be integrated progressively.

Through a case study, we demonstrate the steps that were
used to reconstruct the arithmetic embedded in a data-path
design as a linear sum of signed integers, as well as all the pro-
cedures that compositionally led to a successful equivalence
proof. The experimental results demonstrate the effectiveness
of these collaborating procedures.

C. Overview

The overall tool flow is described in Section II. Learning
techniques and system integration are presented in Section III
and IV. A case study is presented in Section V. Experimental
results is presented in Section VI followed by a comparison
with related work and conclusion.

II. TOOL FLOW

LEC takes Verilog/VHDL as the input language for the data-
path logic under comparison. Internally, a miter network, as
in Figure 2(a), is constructed comparing combinational logic
functions F and G. Figure 1 illustrates the overall tool flow.

First, the Verific RTL parser front-end[6] is used to compile
input RTL into the Verific Netlist Database. VeriABC[23]
processes the Verific netlist, flattens the hierarchy and produces
an intermediate DAG representation in static single assignment
(SSA) form, consisting of Boolean and word-level operators
as shown in Table I. Except for the hierarchical information,
the SSA is a close-to-verbatim representation of the original
RTL description. From SSA, a bit-blasting procedure generates
a corresponding bit-level network as an AIG (And-inverter
graph). Word-level simulation models can be created at the
SSA level. ABC[1] equivalence checking solvers are integrated
as external solvers.
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Fig. 1. Overall tool flow

LEC tries to solve the miter directly using random simula-
tion on the word-level simulator or by ABC[1]’s equivalence
checking procedure dcec, which is a re-implementation of
iprove[24]. If unresolved, LEC applies transformations to the
SSA and produces sub-models in Verilog miter format from
which LEC can be recursively applied. The overall system
integration is described in Section IV.

III. LEARNING TECHNIQUES

In this section, we present the techniques implemented in
LEC. Even though some are simple and intuitive, they are
powerful when integrated together as demonstrated in the
experimental results. All techniques are essential bdecause
LEC may not achieve a final proof if any one is omitted.
Their interactions are illustrated in the case-study in Section
V.
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Fig. 2. Miter network

A. Structural information

An SSA netlist is a DAG of bit and word-level operators
annotated with bit-width and sign information. In the tool flow,
both Verific and VeriABC perform simple structural hashing
at the SSA level, merging common sub-expressions. After
merging, the miter logic is divided into three colored regions
using cone of influence (COI) relations, as in Figure 2 (b).
• Red: if the node is in the COI of F only



• Blue: if the node is in the COI of G only
• Purple: the node is in the COI of both sides of the miter

i.e. common logic
The purple region is the portion of the miter logic that
has been proved equivalent already, while the red and blue
regions are the unresolved ones. LEC makes progress by
reducing the red/blue regions and increasing the purple region.
The common logic constrains the logic for the red and blue
regions, which may be abstracted (see Section III-E) to reduce
redundancy and possibly expose the real bottleneck in a proof.

B. Simulation model

Two word-level simulators are generated from the SSA
network. One is a native interpreted model. The other uses
the open-source Verilator[29] for compiled simulation. From
the SSA network, LEC automatically generates C++ code for
pseudo-random input drivers and for monitoring design be-
havior. Verilator compiles the Verilog miter logic, links in the
generated C++ code and produces a simulator as a standalone
executable. Efficient and effective simulation is crucial in our
current flow in capturing potential constants and potential
internal equivalent points at the SSA level. Simulation is also
used to reduce common logic in the abstraction computation
procedure.

C. Bit-level model

As shown in Figure 1, an AIG is created from the SSA
network by bit-blasting. LEC calls ABC[1]’s SAT sweeping
procedure dcec to perform direct solving at the bit level. Using
the AIG model, the native SAT solver embedded in LEC can
be used to obtain a formal proof for a particular query. Typical
queries are for extracting constant nodes, proving suspected
equivalent pairs of points or conducting particular learning for
rewriting. Book-keeping information between the SSA nodes
and the AIG nodes allows queries to be constructed at the
word-level and verified at the bit-level. The result is then used
to simplify the SSA network.

D. Constants and Potential Equivalent Points (PEPs)

At the word-level, candidates for constants and PEPs are
identified through simulation and SAT queries are posed. Each
such SAT query is constructed and checked at the bit-level.
SAT-solving is configured at a low-effort level (run for a few
seconds) for these types of queries. Proven constants and PEPs
are used immediately to simplify the SSA network, leading
to a new sub-model of less complexity. LEC then continues
to process the sub-model. In the presence of unproven PEPs,
LEC can choose one as the next miter target, normally the
smallest in terms of the number of nodes in its COI. The proof
progresses as constants and PEPs are identified and used to
simplify the miter model.

E. Abstraction

As illustrated in Figure 2 (c), in computing an abstraction,
LEC computes a cut in the purple region (common logic), and

removes the logic between the cut and the inputs. An abstract
model is formed by replacing the cut signals with free inputs
x̄′. If this abstracted miter is UNSAT, then the original miter
is UNSAT. In our current implementation, LEC traverses the
SSA network in topological order from the inputs. As each
node is tentatively replaced with new PIs, simulation is used
to validate the replacement. If successful, the node is omitted
and replaced with the new PIs and the next node is processed
similarly.

A successful abstraction step removes irrelevant logic and
exposes a smaller unresolved region of the miter logic, al-
lowing LEC to continue using other procedures. In addition,
as seen from experimental results, the reduction of common
logic can reduce significantly the amount of complexity for
downstream SAT-solving, e.g. when common multipliers being
removed from the miter logic. An unsuccessful abstraction
when the abstract miter becomes SAT, indicates the existence
of a rare event not being captured during random simulations.
Often, this gives hints for selecting case-splitting candidates.

F. Rewriting

Similar to [20], word-level rewriting transforms an SSA
network into a structurally different but functionally equivalent
one. Through rewriting, certain equivalence checking problems
can become much simpler. In our experience, a multiplier is
often a source of difficulty in data-path equivalence checking.
If two multipliers from opposite sides of the miter are matched
exactly, LEC can simplify the miter through structural hashing
and treat them as common logic. This is most effective when
combined with the abstraction procedure as the common
multiplier can now be totally removed.

In LEC, a few rules are hard-coded through pattern match-
ing applied to the SSA network. The goal is to process
multiplications so that they can be matched exactly. This
rewriting is implementation specific; for illustration purposes,
we list a few rewriting rules in Table II using Verilog notation
and the semantics of the operators.

The first rule is the normalization of multiplier operands. If
a multiplier uses a partial product generator and a compressor
tree, switching the operands of the multiplication becomes a
very hard SAT problem because at the bit level the imple-
mentation is not symmetrical. It is almost imperative to apply
this rule whenever possible. The second and third rules use
the distributive laws of multiplication and multiplexing. Rules
4 and 5 remove the shift operator � when it is used with
extract and concat because it is hard for multiplication to
be restructured through the � operator. Rule 6 distributes
multiplication through the concat of two bit vectors using
+. It uses the fact that the concatenation {a, b[n − 1 : 0]} is
equivalent to a ∗ 2n + b[n− 1 : 0].

The following is a more complex rule that distributes + over
the extract operator. The right hand side is corrected with a
third term, which is the carry bit from adding the lower n bits
of a and b.

(a + b)[m : n] =

a[m : n] + b[m : n] + (a[n− 1 : 0] + b[n− 1 : 0])[n]
(1)



Before After
1 a ∗ b b ∗ a
2 mux(cond, d0, d1) ∗ c mux(cond, d0 ∗ c, d1 ∗ c)
3 mux(cond, d0, d1)[m : n] mux(cond, d0[m : n], d1[m : n])
4 a[m : 0]� n { (m-n)’b0, a[m:n] }
5 (a[m : 0]� n)[m− n : 0] a[m : n]
6 {a, b[n− 1 : 0]} ∗ c a ∗ c� n+ b[n− 1 : 0] ∗ c

TABLE II
REWRITING RULES

Repeatedly applying the above rules, LEC transforms the SSA
network and keeps only the ∗ and + operators, enhancing
the possibility of multipliers to be matched. Note that the
above rule (1) and Rule 4-6 in Table II are correct for
unsigned operators. Currently, for signed operators, due to
sign extension and the two’s complement representation of the
operands, we have not implemented a good set of rewriting
rules.

1) Conditional rewriting: The following equation

(a� c) ∗ b = (a ∗ b)� c (2)

reduces the bit-width of a multiplier on the left hand side to
a smaller one on the right. It is correct if a, b, c are integers
but incorrect in Verilog semantics, which uses modulo integer
arithmetic. However, if the following is true within the miter
model in modulo integer semantics

( (a� c)� c) == a (3)

then equation (2) is valid. In such a situation, LEC identifies
the pattern on the left hand side of (2) in the SSA network
and executes a SAT query concerning (3) using the AIG model
through bit-level solvers. The transformation to the left hand
side of (2) is carried out only if the query is proven to be an
invariant. Such a transformation may produce an exact match
of a∗b afterwards, which can be crucial for achieving the final
proof.

G. Case-split

Case-splitting on a binary signal, cofactors the original
model into two sub-models. The miter is proven if both sub-
models are proven, or falsified if any sub-model is falsified. Al-
though exponential in nature, if many signals are chosen, case-
splitting can simplify the underlying bit-level SAT solving
significantly. For example, it is difficult to prove the following
miter structure directly through bit-blasting and SAT solving
at the AIG level

(x + y) ∗ (x + y) == x ∗ x + 2 ∗ x ∗ y + y ∗ y (4)

where x is a 32-bit integer and y a single binary signal.
However, it can be proven easily if case-splitting is done on
y = 0 and y = 1. After constant propagation, the bit-level
solver can prove both sub-models easily.

The current case-splitting mechanism supports cofactoring
on an input bit or input bit-vector. In verifying the test cases
experienced so far, the case splits are conducted on a bit, a
bit-vector equal to zero or not, or on the lsb or msb of a
bit-vector equals to zero or not. A heuristic procedure can be

implemented to trace back from the sel port of a mux node
through its Boolean fanins and choose the candidates that have
the highest controllability.

Another advantage of case-splitting is that the co-factored
sub-models contain new candidates for constants and PEPs,
which lead to other down-stream transformations not possible
before. Case-splitting also reduces the amount of Boolean
logic in the SSA network and exposes the data-path logic to
high-level learning such as polynomial construction.

H. Polynomial construction

Reasoning at the word-level, rewriting rules are based on
the arithmetic properties of the corresponding operators such
as the commutative law of integer multiplication. However,
rewriting applies only local transformations and does not have
a global view. In situations when the miter logic is constructed
from arithmetic optimization at the polynomial level, local
rewriting is not able to bring similarity into the miter for
further simplification. In such a situation, LEC tries to recon-
struct the polynomial of the whole miter model to establish
equivalence through arithmetic or algebraic equivalences and
then use high level transformations to prove the equivalence
of the original miter.

As a generic procedure, LEC follows four steps to prove a
miter network F (x̄) = G(x̄) where F and G are the top level
signals being compared, and x̄ is the vector of input variables
(bit-vectors):

1) Conjecture (possibly by design knowledge) about the
algebraic domain of the polynomial, e.g. signed vs.
unsigned integer, modulo integer arithmetic, the order
of the polynomial etc. These conjectures set up the
framework and semantics for polynomial reconstruction
as illustrated in the case-study of Section V.

2) Determine a polynomial f and create a logic network
F ′ such that the following can be proved formally.

F ′ implements f (5)
miter F ′ = F (6)

How f is constructed is domain and test-case dependent.
In the case-study of Section V, we use simulation
patterns to probe for the coefficients of a linear function.

3) Determine a polynomial g and create a logic network
G′ such that the following can be proved formally.

G′ implements g (7)
miter G′ = G (8)

4) Establish the following equivalence formally at the al-
gebraic level.

f = g (9)

The combination of Items 2, 3, and 4 establishes the equiva-
lence proof of the original miter model F = G. In constructing
F ′ and G′, we try to make them as structurally similar to F
and G as possible. Details are given in Section V.



IV. SYSTEM INTEGRATION

The above learning techniques are integrated in LEC as a set
of logically independent procedures. Each procedure produces
one or more sub-models, illustrated as a tree in Figure 3.
The root node is the current targeted Verilog miter model.
It has eight children. The simulator and AIG models are
the ones described in Figure 1. The simplified sub-model is
generated by constant propagation and merging proven PEPs.
The abstraction and rewrite sub-models are created by the
abstraction and rewrite procedures in the previous section.
The case-split sub-model consists of a set of sub-models,
corresponding to the cofactoring variables selected. In the
current implementation, the user needs to input the set of
signals to case-split on; eventually they will be selected by
heuristics. The linear-construction node has two sub-models
which will be explained in detail in Section V. When PEPs
are identified through simulation, a PEP node is create with
the set of unproven-PEPs as sub-models.
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Fig. 3. Branching sub-model tree

Two nodes in the sub-model tree are terminal. One is the
simulator model which can falsify the miter through random
simulation. The other is the AIG model where ABC’s bit-level
dcec procedure is applied. The rest of the leaf models (in bold
font) are generated as Verilog miter models, which have the
same format as the root node. LEC procedures can be applied
recursively to these leaf nodes to extend the sub-model trees to
simpler ones. The LEC proof process progresses by expanding
the sub-model tree. A sub-model is resolved as SAT or UNSAT
from its sub-models’ proof results.

Since there are no logical dependencies between sibling
sub-models, any branch can be chosen to continue the proof
process. Sibling sub-models can be forked in parallel from
a parent process. A node in the sub-model tree determines
its proof result from its children. Table III gives the possible
return values from the first level sub-models. SIMPLIFY is
returned by a PEP node to its parent model when at least
one of its sub-models, pepi, is proven UNSAT, notifying the
parent node to simplify further with the newly proved pepi.

Depending on the logical relationships between a parent and
its immediate sub-models, a node is either disjunctive or con-
junctive in semantics. In Figure 3, a Verilog miter model node

Sub-model Return
simulator SAT

AIG SAT/UNSAT
simplified SAT/UNSAT
abstraction UNSAT

rewrite SAT/UNSAT
case-split SAT/UNSAT

linear construction SAT/UNSAT
PEP SIMPLIFY

TABLE III
SUB MODEL RETURN VALUE

is disjunctive, which includes the root and all the leaf nodes
in bold font. The case-split and linear construction nodes
are conjunctive; a PEP node is disjunctive. The semantics,
shown in the following tables, are used to resolve the proof
result of the parent model from its immediate sub-models. To
complete the calculus, we introduced two values: CON and
BOT, where CON stands for an internal conflict indicating a
potential LEC software bug and BOT is the bottom of the
value lattice and acts like an uninitialized value.

‖ SAT UNS UNK SMP CON BOT
SAT SAT CON SAT SAT CON SAT
UNS CON UNS UNS UNS CON UNS
UNK SAT UNS UNK SMP CON UNK
SMP SAT UNS SMP SMP CON SMP
CON CON CON CON CON CON CON
BOT SAT UNS UNK SMP CON BOT

TABLE IV
DISJUNCTIONS OF MODELS

& SAT UNS UNK SMP CON BOT
SAT SAT SAT SAT n/a CON SAT
UNS SAT UNS UNK n/a CON UNS
UNK SAT UNK UNK n/a CON UNK
SMP n/a n/a n/a n/a n/a n/a
CON CON CON CON n/a CON CON
BOT SAT UNS UNK n/a CON BOT

TABLE V
CONJUNCTION OF MODELS

Tables IV and V are the truth tables for the disjunction and
conjunction semantics of the return values, in which UNS,
UNK, SMP stand for UNSAT, UNKNOWN, and SIMPLIFY.
Assuming a bug free situation, at a disjunctive node, if either
SAT or UNSAT is returned from a sub-model, this is the final
proof result for the parent. In conjunction, the parent must wait
until all sub-models are resolved as UNSAT before deciding
that its result is UNSAT, while any SAT sub-model implies
the current model is SAT. A PEP node returns SIMPLIFY
to its parent if one of its sub-models, say pepi, is proven
UNSAT. In this case, the parent model can apply another round
of simplification to obtain a new simplified sub-model by
merging the node pair in the just-proved pepi. The proof log in
Figure VI is a sample sub-model tree where only the branches
that contributed to the final proof are shown. Indentation
indicates the parent-child relationship. Recursively, the proof
result of the top level target is evaluated as UNSAT.



{
"case split": {

"case_0": "UNSAT by AIG"
"case_1": {
"simplified": {

"abstraction": {
"case split": {
"case_00": "UNSAT by AIG",
"case_01": "UNSAT by AIG",
"case_10": "UNSAT by AIG",
"case_11": "UNSAT by AIG"

},
},

},
},

},
}
-------------------------------------
Miter proof result: [Resolved: UNSAT]
-------------------------------------
Fig. 4. Illustration of proof log

Using this sub-model tree infrastructure, any new proce-
dures discovered in the future can be plugged into the system
easily. Also, the system is fully parallelizable in that siblings
can be executed at the same time. The proof process can be
retrieved from the expanded sub-model tree.

V. CASE STUDY

The design in this case-study is an industrial example taken
from the image processing domain. We verify specification
= implementation where the “specification” is a manually-
specified high-level description of the design. “Implemen-
tation” is a machine-generated and highly optimized RTL
implementation of the same design using[2]. The miter logic
is obtained through SLEC[3]. Therefore, the miter problem
is verifying that the high-level synthesis (HLS) tool did not
modify the design behavior.

This miter is sequential in nature, but here we examine a
bounded model checking (BMC) problem which checks the
correctness of the implementation at cycle N. This renders the
problem combinational. This is industrially relevant because
the sequential problem is too hard to solve in general, and
even the BMC problem at cycle N becomes too difficult for
industrial tools.

The original design (specification) consists of 150 lines
of C++. It went through the Calypto frontend[3] and was
synthesized into a word-level netlist in Verilog. The generated
miter model has 1090 lines of structural Verilog code with 36
input ports: 29 of which are 7 bits wide, 2 are 9 bits, 4 are
28 bits and one is a single-bit wire. The miter is comparing
two 28-bit values. We do not have knowledge about what the
design does except through structural statistics: no multipliers,
many adders, subtractors, comparators, shifters etc., together
with Boolean logic. From a schematic produced from the
Verilog, there seems to be a sorting network implemented
using comparators, but we can not tell anything further.

Figure 5 illustrates the compositional proof produced by the
LEC system by showing the sub-model tree created during
the proof process. Indentations indicate parent and sub-model
relations and are listed in the order they were created. The

three numbers on the right are the node counts in the red,
blue and purple regions (common logic) of the SSA network
as distinguished in Figure 2(a). Only those sub-models that
contributed to the final proof are shown in the figure. Others
are ignored. As seen in Figure 5, the case-split procedure is

1.original model : 366 332 776
2. case-split
3. case_0 : 366 331 844
4. AIG : UNSAT
6. case_1 : 366 332 776
7. simplified : 344 289 675
8. abstraction : 344 289 29
9. case-split
10. case_0 : 344 289 31
11. AIG : UNSAT
12. case_1 : 344 289 31
13. simplified : 343 288 27
14. PEP
15. pep_0 : 335 280 27
16. linear construction
17. case_F
18. AIG : UNSAT
19. case_G
20. AIG : UNSAT
21. simplified : 10 10 305
22. AIG : UNSAT

Fig. 5. Sub-model proof tree

applied twice, at lines 2 and 9. Both models have a single-
bit input port, which was selected for cofactoring. ABC[1]
immediately proved the first cofactored case, case 0 (3 and
10) , using the AIG model at 4 and 11. The time-out for the
dcec run was set to two seconds. Abstraction was applied at 8,
significantly reducing the common logic from 675 to 29 SSA
nodes, and effectively removing all the comparator logic. We
tried abstraction on the original model without the case-split
procedure and it failed to produce any result. The case-split at
2 removed enough Boolean logic and eliminated some corner
cases such that the abstraction procedure was able to produce
an abstract model successfully.

Model 15 is the smallest unproved PEP from model 13.
It is proved using the linear construction procedure at 16,
which we shall describe in detail in Section V-A. Model
21 is the simplified model of model 13 after merging the
just-proved pep0. After simplification, most of the logic in
model 21 became common logic through structural hashing,
leaving only 10 nodes in each of the blue and red regions.
Model 21 was proved quickly by ABC which concludes the
proof of the original miter. In this case, the linear-construction
procedure was crucial in attaining the proof. However, the
case-split, simplification, abstraction, and PEP models also are
very important because they collaborate in removing Boolean,
mux and comparator logic etc, but keeping only the part of the
original miter logic which constitutes a linear function. Only
at this point, can a proof by the linear construction procedure
succeed.

A. Linear construction
For model 15 in Figure 5, the SSA network contains many

+,−,� and� operators along with extract and concat oper-



ators, but contains no Boolean operators or muxes. The input
ports consist of twenty-five 7-bit or 12-bit wide ports. The
miter is comparing two 15-bit wide output ports. At this point,
simplification and abstraction can not simplify the model
further. Also, there are no good candidates for case-splitting.
The local rewriting rules can not be applied effectively without
having some global information to help converge the two sides
of the miter logic. High-level information must be extracted
and applied to prove this miter model.

After the linear construction procedure through LEC, the
miter logic is found to be implementing the following linear
sum in the signed integer domain using two’s complement
representation:

−16 ∗ x0 + 2 ∗ x1 + 2 ∗ x2 + 2 ∗ x3 + 2 ∗ x4 + 2 ∗ x5

+2 ∗ x6 + 2 ∗ x7 + 2 ∗ x7 + 2 ∗ x8 + 2 ∗ x9

+2 ∗ x10 + x11 + x12 + 2 ∗ x13 + 2 ∗ x14 + 2 ∗ x15

+2 ∗ x16 + 2 ∗ x17 + 2 ∗ x18 + 2 ∗ x19 − 2 ∗ x20 + 2 ∗ x21

+2 ∗ x22 + 2 ∗ x23 + 2 ∗ x24 + 14

One side of the miter implements the above sum as a plain
linear adder chain (Figure 6(a)), the other side is a highly op-
timized implementation using a balanced binary tree structure
(Figure 6(b)) and optimization tricks, which we don’t fully un-
derstand. This is a hard problem for bit-level engines because

  

(a)linear adder chain (b)balanced adder tree

...

...

Fig. 6. Addition implementation

there are no internal match points to utilize. Therefore, LEC
resorts to trying a high-level method to establish equivalence
at the polynomial level. The following are the detailed steps
for this specific case.

1) The conjecture: Assume the miter logic is F (x̄) = G(x̄)
as in Figure 2(a). LEC conjectures the following for the
arithmetic domain.

• Signed integer arithmetic. The numbers are in 2’s com-
plement representation.

• Assume F (x̄) and G(x̄) are implementing the linear sums
f and g of the forms

f(x̄) =
∑

ai · xi + b (10)

g(x̄) =
∑

a′i · xi + b′ (11)

2) Determining the coefficients of f , g and proving f = g
algebraically: Given the data-path logic F (x̄) and the linear
sum formula (10), it takes n + 1 simulation patterns on the n

input variables to compute the coefficients:

b = F (0, 0, ..., 0)

a0 = F (1, 0, ..., 0)− b

a1 = F (0, 1, ..., 0)− b

...

an−1 = F (0, 0, ..., 1)− b

Another round of random simulation on both the logic and
the polynomial can be done to increase the likelihood of the
conjecture. The same is repeated for G(x̄) to obtain g(x̄).

In integer arithmetic, f is equal to g if and only if the
coefficients match exactly for each term:

f = g <=> ∀ i ai = a′i and b = b′ (12)

So checking of f = g is trivial in this case. In other algebraic
domains, domain specific reasoning may have to be applied
to derive algebraic equivalence e.g. in [28].

3) Synthesizing implementations F ′/G′ for f (f=g), struc-
turally similar to F/G: We want to find a Verilog implemen-
tation F ′(x̄) of f such that

1) F ′ implements f
2) F ′ is structurally similar to F

To do this, all nodes in the SSA network with arithmetic
operators +, − are marked, and edges connecting single bits
are removed. A reduced graph is then created from the marked
nodes in the remaining graph maintaining the input/output
relations between marked nodes. This graph is a skeleton of
the implementation structure of F . For each of its nodes, we
annotate it with a conjectured linear sum computed in the
same way as in the above steps. The root node F is annotated
with f and internal nodes annotated with linear sums fs,
ft, etc. For illustration purposes, Figure 7(a) shows such an
annotated reduced graph for node w. For an arbitrary node w

  

+

+ +

++

s=f s( x̄)

t=f t( x̄ )

w=f w( x̄) v=...

u=...
+

+ +

++

s=... t=...

w=cs⋅s+ct⋅t+ f st ( x̄) v=...

u=...

(a)annotated reduced graph (b)substituted annotation
x̄ x̄

Fig. 7. Annotated reduced graph

in the reduced graph with inputs from nodes s and t, from the
annotation we have the following:

s = fs(x̄)

t = ft(x̄)

w = fw(x̄)

We would like to substitute fw with variable s and t, such
that w is a function of s and t in order to follow the structure
of the skeleton reduced graph. Because all the functions are
linear sums, we can compute, using algebraic division, two
constants cs and ct such that the following holds:

w = cs · s + ct · t + fst(x̄)



cs is the quotient of fw/fs and ct = (fw − cs · fs)/ft, while
fst is the remainder of the previous division. The substitution
is conducted in one topological traversal from the inputs to the
miter output. After substitution, the annotated reduced graph
is essentially a multi-level implementation of the above linear
sum. Because the linear sum annotated at each node in the
reduced graph is only a conjecture, it may not be exactly the
same function as in the original miter logic. However, in re-
implementing f using this structure, certain similarities are
still captured through the construction process.

This multi-level circuit is implemented by traversing the
substituted reduced graph, and creating a corresponding Ver-
ilog file for F ′. It is generated by allocating a bit-vector at
each internal node with its bit-width equivalent to output port
of F . The same can be done for G to obtain G′. The reason
why LEC goes through so much trouble to obtain separate
RTL implementations for F ′ and G′ (even though they are
both implementing f ), is that we need to prove F = F ′ and
G = G′ separately next. Without the structural similarities
created through this procedure, proving equivalence with an
arbitrary F ′ and G′ would be as difficult as proving the
original F = G. Generally, only with these extra similarities
injected, can the miter model be simplified enough to allow
SAT sweeping to succeed for F = F ′ and G = G′.

4) Proving F = F ′ and G = G′ : We construct two miter
models F = F ′ and G = G′ as caseF and caseG in Figure
3, and apply LEC separately to each. By construction, each
miter should be simpler than the original F = G because of
the increased structural similarity between the two sides of the
miter. Another round of LEC might reduce this miter logic, if
not prove it directly through bit-level solvers. In the present
case, F = F ′ was proven instantly because F is a simple
linear adder chain, and so is F ′. Proving G = G′ takes more
time using ABCs dcec because G is a highly optimized imple-
mentation of f and the multi-level implementation from the
annotated reduced graph only captures part of the similarity.
But, the injected similarity was sufficient enough to reduce the
complexity to be within dcec’s capacity.

5) Proving that F ′/G′ implements f/g : To complete the
proof, we still have the proof obligation that F ′ and G′

implement f and g respectively. By construction from the
reduced graph, the generated Verilog is a verbatim translation
from the multi-level form of f . However, we need to bridge
the gap between Verilog’s bit-vector arithmetic vs. the integer
arithmetic of the linear sum. To do so, we created SVA
assertions to check that every Verilog statement captures the
integer value in full without losing precision due to underflows
or overflows.

c[n : 0] =a[n− 1 : 0] + b[n− 1 : 0];

assert (a[n− 1] & b[n− 1] =⇒ c[n])

assert (!a[n− 1] & !b[n− 1] =⇒ !c[n])

c[n : 0] =a[n : 0]/b[m : 0];

assert (a[n : 0] == (c[n : 0] ∗ b[m : 0])[n : 0])

c[m : 0] ={a[n : 0]}[m : 0];

assert a[n : 0] == {(n−m) ∗ {c[m− 1]}, c[m : 0]}

The first two sets of assertions ensure there is no overflow of
signed integer add and no non-zero remainder of division.
The third one ensures that extraction does not change the
value in two’s complement representation. The SVA checkers
are formally verified separately using the VeriABC[23] flow,
which in turn uses ABCs model checker.

From the above procedures, we established the following:

f(x̄) = g(x̄) (13)
F ′(x̄) implements f(x̄) (14)
G′(x̄) implements g(x̄) (15)

F = F ′ (16)
G = G′ (17)

Altogether they establish the proof for F = G.
Combining the above procedures into a single run, LEC took

about 10 minutes on an i7 processor to complete the full proof.
Roughly 80% of the time is spent on compiling and running
random simulation, the rest are used for SAT solving. In table
VI, we also compare this run-time against Boolector[11], z3
[16] and ABC’ iprove [24] solver, all run on the same server.
It is clear that LEC expedites the proof significantly by using
the knowledge of the linear sum formulation inside the miter
logic.

Miter Boolector Z3 iprove LEC
model 1 time-out time-out time-out 10min

TABLE VI
COMPARISON WITH OTHER SOLVES (TIME-OUT IN 24 HOURS)

In summary, polynomial reconstruction was a key tech-
nique to prove the underlying miter problem. The case-
study illustrates the major steps and the proof obligations
encountered during the process. The actual techniques used
for different domains of the underlying arithmetic would
differ. Each algebraic domain would require special purpose
heuristics and automated proof procedures to guarantee the
correctness of the reconstructions and transformations used
in the method. The goal of the linear construction procedure
was to inject increased structural similarity by using global
algebraic transformations.

VI. EXPERIMENTAL RESULTS

Table VI shows the experimental results comparing
Boolector[11], Z3[16] and iprove[24] using a 24-hour time-
out limit on an 2.6Ghz Intel Xeon processor. These models
are generated directly using SLEC[3] for checking C-to-RTL
equivalence or extracted as a sub-target from PEPs. The first
column is the miter design name. The second column is the
number of lines of Verilog for the miter model specification.
Run-time or time-out results are reported for each solver in
columns 3 to 6. Although the miter models are not big in terms
of lines of Verilog, they are quite challenging for Boolector,
Z3 and iprove. The run-time of LEC is the total CPU time



including Verilog compilation. It was expected that iprove
would not prove any of them because it works on the bit-
blasted model without any high-level information that the other
solvers have.

Design Lines Boolector z3 iprove LEC
mul 64 64 125 20 sec 200 sec timeout 10 sec

d1 24 time-out time-out time-out 15 sec
d2 507 time-out time-out time-out 2 min
d3 191 time-out time-out time-out 15 min
d4 473 time-out time-out time-out 60 sec

d5 pep 0 674 time-out 9 hour time-out 4 min

TABLE VII
BENCHMARK COMPARISON (TIMEOUT 24 HOURS)

The miter, mul 64 64, is comparing a 64x64 multiplier
with an implementation using four 32x32 multipliers as the
following:

{aH , aL} ∗ {bH , bL} = (aH ∗ bH) << 64 +

(aH ∗ bL + aL ∗ bH) << 32 + aL ∗ bL

where aH , aL, bH , bL are the 32-bit slices of the original
64-bit bit-vectors. Both Boolector and Z3 are able to prove it.
LEC proves it by first utilizing rewriting rules to transform
the 64x64 multiplier into four 32x32 multipliers, matching
the other four in the RHS of the miter. As they are matched
exactly, they become common logic in the miter model. LEC
then produces an abstraction and obtains a reduced model
with all the multipliers removed: the outputs of the multipliers
become free inputs in the abstract model. The abstract model
is then proven instantly by ABC’s dcec on the AIG model.

The miter d1, extracted from a PEP sub-model, is a demon-
stration of rewrite rule 6 in Table II using 32-bit multiplication.
As both Boolector and Z3 fail to prove equivalence within
the time-limit, they likely do not have this rewriting rule
implemented.

To prove d2, LEC conducts conditional rewriting using rule
(2) by first statically proving an invariant in the form of (3).
After the transformation, the multipliers are matched exactly
on both sides of the miter and removed in the subsequent
abstract model. The final miter model is proved instantly by
ABC on the bit level AIG.

The miter model d3 has part of its logic similar to
mul 64 64 embedded inside. LEC proves d3 by first applying
rewriting rules repeatedly until no more rewriting is possible.
Then, LEC computes a reduced model through abstraction. In
the reduced model, LEC conducts a case-split on a one-bit
input. The case-0 AIG model is proven instantly, while case-1
is proven in about 10 minutes by ABC.

The miter d4 is proven by first conducting a case-split of two
bit-vector inputs: cofactoring on whether the bit-vector equals
zero or not. Three of the four cofactored cases are proven
instantly. The one unresolved goes through a round of simpli-
fication and abstraction. On the then obtained sub-model, three
one-bit inputs are identified and cofactored through case-split
procedures. LEC prove all eight cases quickly within a few
seconds.

Miter d5 is extracted from model 15 in Figure 5 which
contains the purely linear sum miter described in the case-
study section. For this simpler miter, Z3 is able to prove

it in 9 hours while both iprove and Boolector time out.
This shows that LEC’s transformations through collaborating
procedures successfully reduce the surrounding logic in the
original model, which was preventing Z3 to prove it in 24
hours.

The above experiments demonstrate the effectiveness of
LEC’s collaborating procedures of simplification, rewriting,
case-splitting and abstraction computations. The LEC architec-
ture allows these procedures to be applied recursively through
a sub-model tree: the model obtained by one procedure
introduces new opportunities for applying other procedures
in the next iteration. As exemplified in miter d4, the initial
case-split gives rise to new opportunities for simplification
as new constants are introduced by cofactoring. Then a new
round of abstraction is able to remove enough common logic
and expose three one-bit inputs as case-split candidates in
the reduced model, which in turn gives rise to another case-
split transformation that leads to the final proof. None of
this is possible without the transformations being applied in
sequence.

VII. COMPARISON WITH RELATED WORK

In bit-level equivalence-checking procedures [24][25], sim-
ulation, SAT-sweeping, AIG rewriting and internal equiva-
lence identification are all relevant to data-path equivalence-
checking. In LEC, these types of procedures are conducted
at the word-level. Word-level rewriting is difficult if only a
bit-level model is available. For example, with no knowledge
of the boundary of a multiplier, normalizing its operands is
impractical at the bit-level . Although abstraction and case-
split techniques in LEC can be applied at the bit-level in
theory, these are not used due to the difficulty of comput-
ing an abstraction boundary or of finding good cofactoring
candidates.

SMT solving is relevant because a data-path is a subset
of QF BV theory. Methods such as [7][11][16][14][17][19],
are state-of-art QF BV solvers. These employ different imple-
mentations of word-level techniques in rewriting, abstraction,
case-splitting, and simplification, and interleave Boolean and
word-level reasoning via a generalized DPLL framework or
through abstraction refinements of various forms. Hector[20] is
closest to LEC in terms of technology and targeted application
domains, and has a rich set of word-level rewriting rules along
with some theorem prover [7] procedures to validate every
rewriting applied. Hector also has an orchestration of a set of
bit-level solvers using SAT and BDD engines to employ once
the bit-level miter model is constructed. Strategically, LEC
relies less on the capacity of SAT solver; instead it builds
a compositional proof infrastructure and employs iterative
transformations to finally obtain a proof through sub-model
trees. The goal of these LEC learning procedures is to reverse
engineer the embedded high-level algebraic transformations
and bring more similarity between both sides of the miter
model.

The techniques in [26] [31][33] also try to reconstruct an
algebraic model from the underlying logic, but they employ a
bottom up approach and their primitive element is a half-adder.



The method in [8] simplifies the algebraic construction by
solving an integer linear programming problem. The limitation
of these approaches is that they rely on the structural pattern
of the underlying logic to reconstruct the algebraic model.
On the other hand, the linear construction case-study in
Section V-A constructs the polynomial through probing with
simulation patterns. This is more general as it uses only the
functional information of the data-path logic. For different
domains, other techniques may well be more applicable such
as the bottom-up approach. The use of vanishing polynomials
and Grobner bases in [27][28] to prove equivalence between
polynomials in the modulo integer domain can be utilized once
a polynomial form is reconstructed in LEC. In many data-path
miter models, such a polynomial in a certain domain or theory
is likely embedded in other control and data-path logic. Direct
application of algebraic techniques is often not practical. Thus
the collaborating procedures in LEC are designed to bridge
this gap and isolate such polynomials so that these high level
theories can then be applied.

In conducting consistency checking between C and Verilog
RTL, the work [21] focuses on how to process a C program
to generate formal models. The tool relies on SMT solvers
[11][16][14] as the back-end solving engines.

In terms of tool architecture, [9] [10] [22], all employ
a sophisticated set of transformations to simplify the target
model during verification. These are done at the bit-level. The
LEC infrastructure allows future extension to take advantage
of multi-core parallelization as demonstrated in [30]. [12]
[32], use a dedicated data-structures to represent the proof-
obligations, while LEC relies on the sub-model tree to track
the compositional proof strategy used at each node.

VIII. CONCLUSION

In LEC, we build a system of collaborating procedures
for data-path equivalence-checking problems found from an
industrial setting. The strategy is to utilize Boolean level
solvers, conduct the transformations at the word-level and
to synthesize internal similarities by lifting the reasoning to
the algebraic level . Using a real industrial case-study, we
demonstrated the applicability of the sub-tree infrastructure for
integrating a compositional proof methodology using LEC.
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