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Abstract 

Network-centric military operations are redefining 
information overload as military commanders and staffs are 
inundated with vast amounts of information.  Recent 
research has developed a fuzzy-based system to assign a 
Value of Information (VoI) determination for individual 
pieces of information.  This paper presents an investigation 
on the effect of using triangular and trapezoidal fuzzy 
membership functions within the system.  

Introduction   

Today’s military operations utilize information from a 

myriad of sources that provide overwhelming amounts of 

data.  A primary challenge of decision makers at all levels 

is to identify the most important information with respect 

to the mission at hand, and often do so within a limited 

amount of time.  The process of assigning a Value of 

Information (VoI) determination to a piece of information 

has historically been a multi-step, human-intensive 

exercise requiring intelligence collectors and analysts to 

make judgments within differing operational situations. 
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 Recently, a fuzzy associative memory architecture was 

used to develop a system to calculate VoI in complex 

military environments based on the information’s content, 

source reliability, latency, and the specific mission context 

under consideration (Hanratty, Hammell, and Heilman 

2011; Hammell, Hanaratty, and Heilman 2012).  Military 

intelligence analysts were used as subject matter experts to 

provide the fuzzy association rules from which the system 

was constructed, and preliminary results from the system 

have been demonstrated and “validated” in principal and 

context (Hanratty et al. 2012; Hanratty et al. 2013).  Efforts 

are continuing towards a more formal validation of the 

system and to empirically evaluate the effects of the 

system on intelligence analyst performance (Newcomb and 

Hammell 2012; Newcomb and Hammell 2013). 

 This paper presents an investigation on the effect of 

using two different membership functions within the 

fuzzy-based system and a comparative analysis of the 

differences between them.  The paper is organized as 

follows: the next section presents background information 

on VoI as well as the design of the original fuzzy system.  

This is followed by a section that discusses the 

experimental framework used for this work, and then a 

section describing the experiments and results.  The paper 

concludes with a section that provides conclusions and 

future work. 



Figure 1. VoI System Architecture 
 

Value of Information (VoI) 

In order to turn large amounts of disparate information into 

useful knowledge, it is vital to have some way to judge the 

importance of individual pieces of information; the Value 

of Information (VoI) metric is used to do this.  Ranking the 

“value” of information is a formidable task involving not 

only the sheer amount and diversity of information, but 

also the idea that the value of a piece of information will 

likely be influenced by the specific mission context to 

which it will be applied. 

 Before going further, it is useful to briefly address what 

is meant by information “value”, and differentiate it from 

what could be meant by information “quality”.  One 

viewpoint is that “quality” refers to the fitness of data with 

respect to the inherent attributes of the data (accuracy, 

precision, timeliness, freshness, resolution, etc.) while 

“value” addresses the utility of the data within a specific 

application context (Bisdikian et al. 2009).  The definition 

used in this paper comes from that provided by (Wilkins, 

Lee, and Berry 2003).  Wilkins considers the practical 

importance of the information to the receiver, suggesting 

that information with value supports the receiver’s ability 

to make informed decisions. 

VoI Determination 

U.S. military doctrinal guidance for determining VoI is 

vague at best (US Army 2006; NATO 1997) and does not 

address integrating mission context into the decision.  The 

guidance provides two tables for judging the “reliability” 

and “content” of a piece of data, with each characteristic 

broken into six categories.  Reliability relates to the 

information source, and is ranked from A to F (reliable, 

usually reliable, fairly reliable, not usually reliable, 

unreliable, and cannot judge).  Information content is 

ranked from 1 to 6 (confirmed, probably true, possibly 

true, doubtfully true, improbable, and cannot judge). 

 Doctrinal guidance does not provide any process for 

combining these determinations into a VoI metric.  

Additionally, it is obvious that combining only these two 

assessments of a piece of information would fall far short 

of representing all the critical aspects for a useful VoI 

determination.   

 Two other potential data characteristics include mission 

context and timeliness.  Timeliness relates to how long ago 

the piece of information was collected, while mission 

context is set by the operational tempo of the military 

operation underway.  The operational tempo relates to the 

decision cycle for the mission; that is, the time that can or 

will be used to plan, prepare, and execute the mission.  Fast 

tempo operations may have a decision cycle measured in 

minutes to hours, while slower tempo operations may be 

measured in months or longer. 

VoI System  

While it is likely that numerous characteristics could be 

applicable to determining VoI, the aspects of source 

reliability, information content, timeliness, and mission 

context were used as the starting point to develop an 

automated VoI system. 

A Fuzzy Associative Memory (FAM) model was chosen 

to construct the prototype fuzzy system.  A FAM is a k-

dimensional table where each dimension corresponds to 

one of the input universes of the rules.  The ith dimension 

of the table is indexed by the fuzzy sets that compromise 

the decomposition of the ith input domain.  Fuzzy if-then 

rules are represented within the FAM.  For the prototype 

system, three inputs are used to make the VoI decision: 

source reliability, information content, and timeliness (how 

mission context contributes to the determination will be 

explained shortly).   

The overall architecture of the fuzzy system is shown in 

Fig. 1.  Instead of using one 3-dimensional FAM, two 2-

dimensional FAMs were used.  The reasoning behind this 

decision was presented in detail in (Hammell, Hanratty, 

and Heilman 2012) but essentially it provided a simpler 

knowledge elicitation process, decreased the total number 

of fuzzy rules, and provided a potential for the output of 

the first FAM to be useful on its own. 

As seen in Fig. 1, two inputs feed into the Applicability 

FAM: source reliability (SR) and information content (IC); 

the output of this FAM is termed the information 

applicability decision.  Likewise, two inputs feed into the 

VoI FAM: one of these (information applicability) is the 

output of the first FAM; the other input is the information 

timeliness rating. The output of the second FAM, and the 

overall system output, is the VoI metric.   

The fuzzy rules represented in the FAMs capture the 

relationships between the input and output domains.  Since 

both FAMs have two inputs and one output, all the fuzzy 

rules in the system will be of the form "If X is A and Y is B, 

then Z is C", where A and B are fuzzy sets over the input 

domains and C is a fuzzy set over the output domain.  For 

example, an actual rule in the Applicability FAM might be: 

"if Source Reliability is Usually Reliable and Information 

Content is Probably True, then Information Applicability is 



Highly Applicable." Knowledge elicitation from military 

intelligence Subject Matter Experts (SMEs) was used to 

construct the fuzzy rules (Hanratty et al. 2012). 

Within the Applicability FAM, the two input domains 

(source reliability and information content) are divided into 

five fuzzy sets following the guidance provided in (US 

Army 2006).  The omission of the “cannot judge” category 

from both of the input domains is explained in (Hammell, 

Hanratty, and Heilman 2012).  The “information 

applicability” output domain was decomposed into nine 

fuzzy sets (ranging from not applicable to extremely 

applicable) while the VoI output domain utilized eleven 

fuzzy sets (ranging from not valuable to extremely 

valuable). 

Up to this point, the contribution of mission context has 

not been apparent.  To account for differing mission 

tempos, three separate VoI FAMs were derived to represent 

three different tempos.  Missions were characterized as 

either 'tactical' (high-tempo), 'operational' (moderate-

tempo), or 'strategic' (slow-tempo).  The system selects the 

correct VoI FAM based on the indicated mission context, 

thereby utilizing the appropriate fuzzy rule base to produce 

the VoI determination.   

More detailed descriptions of the FAMs, the fuzzy rules 

bases, the domain decompositions, and other 

implementation aspects of the prototype system can be 

found in (Hanratty et al. 2013).  The series of surveys and 

interviews with SMEs that were used to integrate cognitive 

requirements, collect functional requirements, and elicit the 

fuzzy rules is presented in (Hanratty et al. 2012).   

The VoI system has been demonstrated to the SMEs and 

its output has met SME expectations (Newcomb and 

Hammell 2012).  Note that there is no current system 

against which the results can be compared.  As such, the 

system has not been tested comprehensively due to the 

human-centric, context-based nature of the problem and 

usage of the system.  Formal validation of the VoI system 

requires a comprehensive experiment which is currently 

under development separately. 

Experimental Framework 

A major factor in the design of any fuzzy system relates to 

the decomposition of the input and output domains into 

fuzzy sets.  The “shape” of the fuzzy sets defines the 

membership functions for the system.  While there are 

numerous shapes for fuzzy sets (triangular, trapezoidal, 

Gaussian, bell, and the like), triangular membership 

functions were used in the initial VoI system.  To further 

facilitate computational efficiency, it was also required that 

the triangles were isosceles with bases of the same width; 

this triangular decomposition with evenly spaced 

midpoints has been referred to as a TPE system (Sudkamp 

and Hammell 1994).  Fig. 3(a) shows the TPE 

decomposition of a domain ranging from 1 to 5; Fig. 3(b), 

3(c), and 3(d) illustrate isosceles triangular decompositions 

of the same range that do not adhere to the restriction of 

having bases of the same width.  Triangular 

decompositions, with and without bases of the same width, 

are included in our experimental framework. 

 In addition to using triangular membership functions, 

trapezoidal decompositions are another approach we would 

like to explore.  Similar to the triangles, isosceles 

trapezoids both with and without bases of the same width 

are considered.  Fig. 5(a) shows the decomposition of a 

domain ranging from 1 to 5 using isosceles trapezoids with 

bases of the same width; Fig. 5(b), 5(c), and 5(d) depict 

similar decompositions using isosceles trapezoids without 

the requirement for equally sized bases.  

 While we mentioned several forms of membership 

functions from which to choose, we selected trapezoidal 

and triangular fuzzy sets for two primary reasons.  First, 

the membership degree calculations for both are linear, 

thereby facilitating high computational efficiency. This is 

significant since the purpose of the fuzzy VoI system is to 

help intelligence specialists find the most important 

information within a potentially large amount of data while 

frequently adhering to restrictive time constraints. 

  The second reason is that these two forms can help in 

the data acquisition process.  As implied earlier, significant 

knowledge elicitation efforts using intelligence specialists 

as Subject Matter Experts (SMEs) were required to 

construct the initial fuzzy rules; likewise, any membership 

function optimization will be determined by the SMEs.  

The triangular and trapezoidal functions are more visually 

understandable and provide an environment more 

conductive to human-in-the-loop knowledge acquisition.  

Based on these two reasons, trapezoidal and triangular 

membership functions are often used (Zimmerman 1996). 

 To facilitate the analysis of various domain 

decompositions using the triangular and trapezoidal fuzzy 

sets, we compare them from different aspects and display 

the results visually.  Three categories of experiments are 

presented in the next section.  First, results from using 

“standard” triangular and trapezoidal decompositions are 

compared, where “standard” means the use of isosceles 

shapes with bases of the same width (Fig. 3(a) and 5(a)).  

Next, “standard” triangular fuzzy membership functions 

are compared with “customized” triangular fuzzy 

membership functions, where “customized” means that the 

restriction for bases of the same width is removed (Fig. 

3(b), 3(c), and 3(d)).  Finally, “standard” trapezoidal fuzzy 

sets are compared with “customized” trapezoidal fuzzy 

decompositions (Fig. 5(b), 5(c), and 5(d)). 



Figure 2.  Applicability and VoI: Standard 

Triangular and Trapezoidal Fuzzy Sets 

(a) 

(b) 

(c) 

(d) 

Results 

This section provides the experimental results from 

comparing triangular and trapezoidal fuzzy set membership 

functions.  Three subsections will be used to present the 

results.  First, a comparison of the “standard” triangular 

and trapezoidal sets will be shown.  Next, several 

“customized” triangular decompositions will be compared 

with the initial TPE fuzzy sets.  Finally, several 

“customized” trapezoidal decompositions will be 

compared with the standard trapezoidal fuzzy sets. 

Standard Triangular vs Standard Trapezoidal 

Fig. 2 compares the FAM outputs for the standard (TPE) 

triangular fuzzy sets (a, c) and the standard trapezoidal 

fuzzy sets (b, d). Fig. 2a and 2b show the applicability 

FAM output for the two models; that is, the relationship 

between source reliability (x-axis) and information content 

(y-axis). The values of two inputs are from one to five, 

with the smaller value of one being “better” (better 

reliability/content) and five meaning “worse” (less 

reliability/content).  The applicability output values vary 

from one to nine where the larger values represent better 

applicability; the colors vary from blue to red where the 

higher value is in blue (high applicability meaning reliable, 

probable information) and the lower value is in red 

(unreliable, improbable information).   

Fig. 2c and 2d show the value of information (VoI) 

FAM output based on the two inputs of applicability and 

timeliness.  Applicability is as mentioned above. 

Timeliness reflects the temporal age of the information, 

with values ranging from one to three: one means “recent” 

while three means “old”.  As with the applicability graphs, 

the VoI values are represented in the color shades within 

the graph.  The numerical values for VoI range from zero 

to ten (blue meaning ten; red meaning zero) and the higher 

values represent higher VoI (more valuable information).  

The mission context is assumed to be “tactical”. 

Comparing results for the models, the output landscape 

of the triangular fuzzy models (a, c) looks smoother while 

the trapezoidal fuzzy models (b, d) produce some fairly 

well defined rectangles. To see why, note that when an 

input (in these standard models) has a membership value 

equal to 1 in a fuzzy set, the input belongs only to that 

fuzzy set (see Fig. 3(a) and 5(a)).  For example, in the 

triangular fuzzy model, only the integer input values (1, 2, 

etc.) belong to just one fuzzy set; that is, there is only one 

input value in each triangular fuzzy set that will have a 

membership equal to one.  For the trapezoidal fuzzy sets, 

however, there are several values in each set that have a 

membership equal to one and, thus, belong to only that 

fuzzy set.  This creates areas within the color graphs that 

have the same calculated output values for applicability or 
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Figure 3.  Standard and Customized 

Triangular Fuzzy Membership Functions 

(d) 

(c) 
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Figure 4.  Applicability: Standard and 

Customized Triangular Fuzzy Sets 

VoI, thereby producing the more pronounced rectangles.  

Note these rectangles are seen within the color graph and at 

the four corners of the graph.  

Standard Triangular vs Customized Triangular 
In the experiments shown below, due to space limitations, 

comparisons between the different models will be 

illustrated using the results of the applicability FAM only. 

Fig. 3 and 4 are used to compare the applicability values 

for the standard and customized triangular fuzzy models; 

Fig. 3 shows the fuzzy set shapes for all domains in the 

standard model (3(a)) and the customized models (3(b), 

3(c), 3(d)), and Fig. 4 provides the associated color graphs. 

Case 1 

In the standard model, both domains (source reliability and 

information content) are decomposed following the TPE 

restrictions as illustrated in Fig. 3(a). The resulting color 

graph for the standard (TPE) model is shown in Fig. 4(a). 

In the customized model, both inputs shrink the third fuzzy 

set from the standard 2 to 4 width (on the x-axis) to the 

customized width of 2.5 to 3.5 as shown in Fig. 3(b); the 

corresponding color graph is Fig. 4(b). 

 Compared with the applicability distribution of the 

standard model, the color graph for the customized model 

is much less smooth.  It is also clear that two very similar 

color belts cross in the middle of the graph (as outlined); 

the edges are 2.5 and 3.5 (both vertically and horizontally). 

The middle of the graph for the customized model has 

similar color values; however, the outer edge of the color 



belt has smaller changes than that in standard model and 

the inner edge has larger changes which cause the visible 

boundaries. Also, four rectangles in a solid color around 

the center are observable (and outlined) in Fig. 4(b).  The 

reason for the observed differences is that in the 

customized model, inputs between 2 to 2.5 and 3.5 to 4 

only belong to one fuzzy set. This leads to smooth 

visualization and solid squares of the same color. On the 

other hand, input values between 2.5 to 3.5 belong to two 

fuzzy sets. The third fuzzy membership degree is changed 

faster (narrower triangle; slope is larger) than that in the 

standard model. As a result, this enhances the 

representation of boundaries.  

Case 2 

In this case, the third fuzzy set is assigned a wider range, 

encompassing the entire input domain, as shown in Fig. 

3(c).  Again, in the standard model both domains are 

decomposed following the TPE restrictions (3(a)).   

The values in the customized color graph in Fig. 4(c) 

look smoother in the center with sharp variations occurring 

in red and blue at the corners; the red and blue corner 

values have a much smaller area than in the standard fuzzy 

triangular model.  The reason is that the third fuzzy set in 

the customized model affects all the fuzzy membership 

degree calculations since it spans the entire input domain. 

For high value inputs, the third fuzzy set causes lower 

FAM values to join the calculation, resulting in a lower 

output value than that in the standard model.  

The reverse occurs for the low value inputs; the middle 

fuzzy set contributes higher FAM values to the 

applicability result.  Thus, the red and blue boundaries 

contract to the corners of the customized graph as 

compared to the standard triangular fuzzy model results. 

Case 3 

Considering that some users maybe prefer a wide range in 

the middle fuzzy sets (most IC and SR inputs would fall in 

the “middle”) but smaller ranges at the edges (only 

extreme IC and SR inputs are considered “best” or 

“worst”), Fig. 3(d) shows a fuzzy set pattern to provide 

such a system.  In this model, the two ends are made 

narrower (range from 1 to 1.5 and 4.5 to 5), which means 

only a small range of inputs belong to these sets.  The 

middle set has a wide input scope, which is from 1.5 to 4.5. 

Meanwhile, the input ranges of other two fuzzy sets are 

reduced appropriately. 

Fig. 4(d) shows the applicability distribution based on 

this customized model which is much more “blocky” than 

that of the standard TPE model shown in Fig. 4(a).  

Because the middle fuzzy set is extended and covers 

numerous inputs, the resulting output has a number of 

areas in the middle values.  The contraction of the other 

fuzzy sets causes much of the graph area to show up in the 

orange and cyan colors, while only the corners have 

extreme high or low values corresponding to dark blue and 

dark red.  

Standard Trapezoidal vs Customized Trapezoidal 

Fig. 5 and 6 are used to compare the applicability values 

for the standard and customized trapezoidal fuzzy models; 

Fig. 5 shows the fuzzy set shapes for all domains in the 

standard model (5(a)) and the customized models (5(b), 

5(c), 5(d)), and Fig. 6 provides the associated color graphs. 

Case 1 

In the standard model, both domains (SR and IC) are 

decomposed as illustrated in Fig. 5(a). The resulting color 

graph for the standard model is shown in Fig. 6(a). In the 

customized case, the middle fuzzy set is still an isosceles 

trapezoid but the width is smaller than the other sets, as 

depicted in Fig. 5(b). The left and right bottom points are 

2.5 and 3.5; note the upper base is the same 2.75 to 3.25 as 

in the standard trapezoidal model. The corresponding color 

graph is shown in Fig. 6(b). 

 As in Case 1 of the triangular fuzzy model, the color 

graph for this customized trapezoidal model illustrates two 

similar color belts crossing in the middle of Fig. 6(b). 

Because the middle fuzzy set is narrower and more inputs 

belong to only the second or fourth fuzzy set, the edges 

corresponding to the middle SR and IC input values are 

smaller and more pronounced than those of the standard 

trapezoidal model in Fig. 6a. Also, the neighboring 

rectangles of solid color are larger than that in the standard 

model.  Note that the areas associated with the four corners 

are similar in both the standard and customized color 

graphs. 

Case 2 

Considering the opposite setup with the middle fuzzy set as 

shown in Fig. 5(c), this case sets the middle fuzzy set to 

cover a wider input range, from 1 to 5. However, the upper 

base is still fixed from 2.75 to 3.25 and all other sets are 

the same as in the standard trapezoidal model.   

Fig. 6(c) illustrates the associated color graph. The result 

of the customized trapezoidal model reveals a similar trend 

as that of the corresponding triangular model; more areas 

in the middle values can be observed and sharp variation 

happens in the corners as compared to the standard 

trapezoidal model in Fig. 6(a). Nevertheless, the graph still 

presents the basic features of the trapezoidal fuzzy model - 

some rectangles in similar colors exist in the color graph 

which are not as obvious in the triangular fuzzy model.  

Case 3 

Based on the same scenario as with Case 3 for the 

triangular fuzzy sets, this customized trapezoidal model 

sets up a wide middle fuzzy set and narrower side sets as 

shown in Fig. 5(d).  In this setup, only very high or low 

value inputs are regarded as extreme conditions. 
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Figure 5.  Standard and Customized 

Trapezoidal Fuzzy Membership Functions 

(d) 

(c) 

(b) 

(a) 

Figure 6.  Applicability: Standard and 

Customized Trapezoidal Fuzzy Sets 

Fig. 6(d) shows the applicability distribution based on 

the customized model.  Compared with the result of the 

standard trapezoidal fuzzy model in Fig. 6(a), similar 

results occur as with Case 3 for the triangular model. The 

areas in the middle values are larger than those in the 

standard trapezoidal model (Fig. 6(a)) and only small 

sections of dark red and blue in the corners represent the 

extreme high and low applicability values.  Moreover, the 

result of this customized model retains the features of a 

trapezoidal fuzzy model which produces larger areas in the 

graph of solid colors.  However, one difference is that 

color boundaries between the rectangles are much 

narrower in the customized model. This makes the 

boundaries more pronounced and provides well-defined 

solid color rectangles.  

Conclusion and Future Work 

This paper presents two approaches for codifying the 

contextual underpinnings (framework) and cognitive 

interpretation for capturing VoI utilizing source reliability, 

information content and latency based on triangular and 

trapezoidal fuzzy membership functions. While both 

approaches for capturing VoI are intuitively simple to 

comprehend and computationally easy to calculate, 

differences are observed.  

The first major difference observed is that when using 

the triangular approach the results of the color graphs were 



strikingly different than those of the trapezoidal approach. 

Using the triangular fuzzy model produced graphs that 

were infinitely smoother in their transition between 

calculated values.  The trapezoid models, on the other 

hand, produced plots that appeared “blockier”, lending to 

larger areas of continual homogeneous values.  

A second major difference observed is the increased 

flexibility for representing membership functions afforded 

by the trapezoidal representation.  Using the trapezoids 

allowed an ‘interval of values’ that maximized the 

individual membership functions (top of the trapezoids) as 

compared to the triangle representation that permitted only 

one.  The introduction of the trapezoid dramatically 

increases the ability of the user to capture representations 

over the more simplistic triangular shape. 

With this understanding, one might mistakenly chose 

one approach over the other, thinking on one hand the 

trapezoidal approach is inferior because of the “blocky 

effect” or on the other hand superior because of the added 

flexibility.  The fact is both approaches have their own 

strengths and weaknesses. For example, depending on the 

context of the situation, the blocky effect might provide a 

better representation of the military function being 

modeled.  An example of this effect can be seen when 

comparing a logistic battle function against that of a 

tactical combat battle function.  For the logistics operations 

the fidelity of the information required for moving 

equipment can be significantly less critical than that 

required when conducting a combat cordon and search 

operation; as such, the logistical representation of VoI may 

very well be represented with larger areas of homogeneous 

values (blocking effect).  

Ultimately the goal of this research is targeted to 

improve the higher-level information fusion process (Hall, 

Hall, and Tate 2001) - effectively interleaving the human 

computer interaction (HCI) with the lower-level fusion 

process. To accomplish this goal further refinement of the 

VoI approach is necessary and includes the following 

activities: 1) vetting the VoI approaches with subject 

matter experts to provide direct feedback on applicability, 

2) exercising the VoI construct within a task network 

model to assess the potential impact, and 3) conducting 

human-in-the-loop experiments to measure how 

cognitively aligned interfaces improve task performance.  
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