
DBMS Index for Hierarchical Data Using
Nested Intervals and Residue Classes

Vladimir Volonkin

Institute of Information Technologies and Telecommunications of the North-Caucasus
Federal University, Stavropol, Russia

vl.voronkin@raxperi.com

Abstract. In the work an index based on B+ tree and oriented to stor-
age of tree which are coded by nested intervals method with usage of
system of residual classes is described.

Keywords: nested intervals, residue classes, hierarchical data.

1 Introduction

A hierarchy in relational databases (RDB) in present time is implemented inef-
fectively. Existed methods have definite drawbacks and intent as usual on either
quick data reading truckle to record or vice versa.

There are a few possible ways of an effectiveness increasing of a tree-type
structures storage: an improvement of existed methods of a hierarchy storage,
a development and a research of new methods or refusal of relational databases
using in favour of NoSQL databases: graph, document-centric and other types.

All methods of a hierarchy structures presentation in RDB can be grouped
into two main categories:

1. Methods of trees encoding.
2. Hierarchical / recursive SQL extensions.

We should note methods of hierarchy presentations, which are based on com-
bining of several methods, for example: method, combining materialized path
and adjacency list [1].

Till recently there were two main methods of hierarchy storage (graph) in
group of trees encoding methods: nested sets [2] and materialized path [5].

In reference [1] Vadim Tropashko has suggested a modification of material-
ized path: a method of nested intervals for storage of tree-type structures. The
offered method, based on conception of the materialized path in graphs and the
continued fractions theory, eliminates a problem of a data redundancy in the
materialized path.

Main problems of the method are following: a necessity of calculation with a
great numbers, a significant complexity of an execution of partial operations in
particular trees rearrangement during transference of subtrees.

To eliminate problems concerned with nested intervals authors [3] offered to
encode nested intervals with using of systems of residual classes (SRC).

Using of SRC makes a number multiprocessing possible, relieves from the
necessity to work with great numbers and bignums, but imposes some constraints
on its using:

– a possibility to present only restricted amount of numbers;
– an absence of effective algorithms for comparison of numbers in SRC.

For effective presentation of trees in databases it is necessary to solve follow-
ing problems:

– an elimination of working with great numbers and bignums, which are ap-
pearing by using of the nested intervals method;
The problem solving is posed in [3]. A consequence of this method using
is problem of increasing of number storage redundancy. This problem is
following from nature of number, which is presented in SRC.

– high complexity of operations execution to rearrange tree;
The problem can be partly solved by using of residue numbers. Interdepen-
dency between residues of numbers, which are expressed in SRC, that allows
to execute arithmetics with residues simultaneously. For realization of an
opportunity of parallel calculations with number residues of nested inter-
vals expressed in SRC, without taking interdependency into consideration,
numbers should be in particular order: a parent node should be described
necessarily before a descendant node. An alternation of sibling nodes doesnt
matter.

– an absence of indexing methods for numbers expressed in SRC;
At the moment there are no any indexing methods for numbers expressed in
SRC. An indexation of numbers expressed in SRC by using traditional algo-
rithms is unfeasible because numbers expressed in SRC dont seem possible
to arrange in series as in a decimal as in a SRC representation. This feature
issues from the nature of number expressed in SRC.

– a significant performance penalty at storage of big trees in DB (more than
1 mln records);
The problem is mainly conditioned by increasing of a key length during
derivation of big trees and by a big quantity of calculations needed to an
execution of tree derivation operations.

Offered in the work approach to the index derivation and processing allows
to solve problems described above.

There is provided a structure of index based on the B+ tree and oriented on
index multiprocessing in not relational DB.

2 Structure of the Index

2.1 Encoding of the Tree by the Method of Nested Intervals

The method of nested intervals is an expansion of nested sets model, using of
continued fractions.

68 DBMS Index for Hierarchical Data Using Nested Intervals

Lets present a tree:

Fig. 1. An examle of tree

Encode the node 1.3.2 using of continued fractions 1:

1.3.2 = 1 +
1

3 + 1
2+ 1

x

=
9x+ 4

7x+ 3
; (1)

A result 1 is an nested interval:

(
9

7
,
4

3
) (2)

An interval (2) determines a range, where all descendant nodes will be en-
coded, and consists of two parts: 9/7 directly a node code, 4/3 the parents node
code. For unique identification of the node it is enough to use only a node code,
and to calculate the parents node code only if necessary.

2.2 Systems of Residual Classes in the Index

A presentation of number in the SRC is based on a notion of deduction and the
Chinese remainder theorem. The SRC is determined of set of coprime modules
which are called a basis. In the SRC [4] numbers are represented in following
way:

A(α1, α2, ..., αn); (3)

αi = A− [
A

pi
]pi, (∀i ∈ [1, n]), (4)

P =
n∏

i=1

pi (5)

Where p1, p2, ..., pn - system modules, P - volume of system range. Assume
p1 = 2, p2 = 3, p3 = 5, P = 30.

Vladimir Volonkin 69

Consider, how the node code is encoding in the SRC:
Encode a node 1.3.2 by using of formulas (3) and (4):

1.3.2 = (
9

7
,
4

3
) (6)

We will use only the node code:

α11 = 17 = (α1, α2, α3). (7)

α1 = 9− [
9

2
] ∗ 2 = 1, (8)

α2 = 9− [
9

3
] ∗ 3 = 0, (9)

α3 = 9− [
9

5
] ∗ 5 = 4, (10)

α12 = 7 = (1, 1, 2). (11)

It is following from the nature of the SRC that a number expression in the
SRC imposes constraints on a number length.

A maximum quantity of numbers, which could be stored in a number ex-
pressed in the SRC, is always less than a quantity of numbers, which could be
stored in the same quantity of bits as a decimal number.

So a maximum whole unsigned number, which can be stored in 4 bytes,
equals:

Nmax = 232 = 4294967296 (12)

It is known that modules of the system of residual classes p1, p2, ..., pn should
be prime in pairs numbers. In this case there is a single non-negative decision
modulo P an equation system which describes residue numbers:

x ≡ α1(mod(p1)), x ≡ α2(mod(p2)), , x ≡ αk(mod(pk)) (13)

Obviously the more equal P and Nmax, the less of a redundancy of numbers
storage in the SRC. Hence, to find a minimum pressure of numbers record in the
SRC it is necessary to try maximally great prime in pairs residue number base.

As an example we will try optimum bases, which are maximally not exessive
for number length of 4 bytes: 255, 254, 253, 251.

P = 255 ∗ 254 ∗ 253 ∗ 251 = 4113089310 (14)

Thus storing residues should be maximally great and prime in pairs numbers,
which could be got into such quantity of bits that fits to one residue.

For an increasing of number quantity in index, which can be expressed in the
SRC, a dynamic change algorithm of residues quantity in number expressed in
the SRC.

70 DBMS Index for Hierarchical Data Using Nested Intervals

In the case when a situation of number repletion, which is expressed in the
SRC, appears (situation when a sum of several SRC is exceeded P) the number
is added by additional residue and in that way the maximum quantity of stored
numbers P increases.

In the case when a large quantity of residues exists, with the purpose of stor-
age redundant decrease a converting of system bases is performed with increase
of each residue bit length .

In the case of using 2 bytes instead of one we can store (15) numbers for one
residue storage in 4 bytes.

P = 65535 ∗ 65534 = 4294770690 (15)

It follows that (15)has less data redundance in comparison with (14) and
allows to express more numbers quantity in the SRC.

2.3 Structure of the Index

The main problem of using an approach, offered in [3], is an impossibility of
index derivation by numbers expressed in the SRC with traditional methods,
because it is impossible to compare directly numbers expressed in the system
of residual classes. To compare such numbers it is required to execute certain
arithmetic conversions. As usual to compare numbers expressed in the SRC we
should convert each number to the radix numeration system for further compare.
From the point of view of productivity this approach is not effective because of
computation efforts to number conversion from the nonpositional notation to the
radix numeration system and because of necessity to work with great numbers
and bignums.

An algorithm of index derivation is offered to solve the problem concerned
with of impossibility of index derivation by numbers expressed in the SRC with
traditional methods.

Note a tree from the figure 1 as a line (16), arranging nodes in order of a
tree traversal from left to right. The traversal is realized as in a left-side tree
traversal in case of using of nested sets.

[1.1[1.1.1]1.2, 1.3[1.3.1, 1.3.2]] (16)

For illustrative purposes descendant nodes are enclosed in brackets.
Encode each node of the tree using the method of nested intervals and convert

numbers to the SRC. As a system of residual classes bases we use modules: 3, 5,
7.

To solve a problem of intervals cross-cups we use early known decision, which
is based on chain fractions properties: refusal of using index ‘1‘ as an element of
materialized path, and a root of tree equals “2.2“.

As it was said earlier for identification of tree node it is not necessary to
calculate all interval, where descendant nodes are. It is enough to calculate an
interval begin. In this case the interval begin identifies tree node by unique way
and is node code.

Vladimir Volonkin 71

Results of conversions are represented in table:

Initial Modified Node code Node code
materialized path materialized path (interval begin) in the SRC

1 2.2 5/2 (2,0,5)/(2,2,2)
1.1 2.2.2 12/5 (0,2,5)/(2,0,5)
1.1.1 2.2.2.2 29/12 (2,4,1)/(0,2,5)
1.2 2.2.3 17/7 (2,2,3)/(1,2,0)
1.3 2.2.4 22/9 (1,2,1)/(0,4,2)
1.3.1 2.2.4.2 49/20 (1,4,0)/(2,0,6)
1.3.2 2.2.4.3 71/29 (2,1,1)/(2,4,1)

Rewrite the line (16), replaced there elements of reified path by a value of
node code in the SRC:

(2, 0, 5)

(2, 2, 2)

[
(0, 2, 5)

(2, 0, 5)

[(2, 4, 1)
(0, 2, 5)

] (2, 2, 3)
(1, 2, 0)

,
(1, 2, 1)

(0, 4, 2)

[(1, 4, 0)
(2, 0, 6)

,
(2, 1, 1)

(2, 4, 1)

]]
(17)

Note that the tree in the line (17) is represented in sorted-out state. And the
line, which encodes the tree, may be unambiguously formed in a process of tree
processing if a transactional integrity of execution of modification operation its
tops and edges.

For illustrative purposes futher we will operate with elements of materialized
path meaning element codes in the SRC.

Rewrite the line (16), removed from materialized path data about parent
node:

1
[
1[1]2, 3[1, 2]

]
(18)

Switch from string indication of the line (18) to binary. The figure 2 clearly
shows intervals of encoded tree, which are stored in index.

Fig. 2. Nested intervals of encoded tree

72 DBMS Index for Hierarchical Data Using Nested Intervals

Offered index structure is the most productive when using in combination
with highly productive data warehouse. As an example we will consider realiza-
tion of this index in NoSQL DBMS MongoDB.

In binary form the index is stored as pages (documents) consecution with
contiguous information. Besides node code each index record contains this docu-
ment (or link to it) and reference to parent node. The index structure is presented
in the figure 3.

Fig. 3. Index structure

The index includes B+ tree and documents, which store data about nodes
and relations between them.

A simplified diagram of index documents is presented in the figure 4. This
scheme extends the figure 2 by adding new connections between records.

Fig. 4. A simplified diagram of index

Each record in index document store the following data: record code, link to
the right sibling node, document corresponding tree node, or link to it, and link
to parent node.

In spite of the fact that this scheme stores relations between tree nodes, search
of required node is possible only by walkthrough of all records. For elimination
of this problem it is necessary to derivate index for access of tree tops, which

Vladimir Volonkin 73

is encoded in the SRC. As index we will choose structure of type B+ tree with
sheet-like records, which references to top codes of the line corresponding to tree.

To solve the problem of comparing numbers expressed in the SRC it needs to
derivate B+ tree according to numbers expressed in the SRC as ordinary array.
Comparing of two numbers of the SRC in this case occurs as comparing of usual
areas. This scheme allows to disregard from the SRC conception by adding of
some redundance.

Sheet-like records of the tree point to corresponding records in index sheet
pages.

A simplified diagram of index is represented on the figure 5.

Fig. 5. Schematic representation of the index structure

However because of the fact that residues value in the SRC represented as
array doesnt correspond to decimal value of number expressed in the SRC, ele-
ments in sheet pages of the tree would point to elements in sheet pages of index
randomly (figure 6).

Fig. 6. Schematic representation of an accordance of records in sheet pages of the tree
to records in sheet pages of the index

Encoded numbers in the SRC and switched from line representation to binary,
we get the index structure, which is in the figure 7.

74 DBMS Index for Hierarchical Data Using Nested Intervals

Fig. 7. Schematic map of the index structure

Such record allows to read trees and subtrees quickly and to perform opera-
tions of recording: an addition, a removal and displacement of nodes/subtrees.

Sheet-like index pages are replaced on the disc in the form of the double-
linked list (figure 8)in the order of the tree nodes traversal. All links are using a
multilevel addressing.

Fig. 8. A consecution of pages in the index file

High-speed operations of tree manipulation in this index are possible due
to during data storage in the form of consecution of pages/documents a task
of migration of data parts (for instance, during a subtree removal) comes to
fragmentation/unification of boundary pages (which contain data partly) and
to changing of links between pages with the purpose of maintenance of tree
consecution arrangement in the index.

As result of the fact that each residue of number expressed in the SRC doesnt
depend on other residues of the same number, we get an possibility of the high-
speed converting of the subtree with using of parallel computations.

3 Experiments and Results

Testing results of presented in the article index structure in comparison with
the realization of trees storage by the method of nested intervals and with the
index of B+ tree type are shown in the table 1. As DBMS it was choosen NoSQL
DBMS MongoDB. Offered index is realized as separate module, which expands

Vladimir Volonkin 75

a functionality of MongoDB. For parallel computations the graphics processor
NVIDIA and the technology CUDA were applied.

Table 1. Results of productivity comparasing

Characteristic Offering index Nested intervals +
B+ tree

Time of node insertion 0.00005 sec 0.00007 sec

Time of node removal 0.00005 sec 0.000001 sec

Time of subtree moving 28.8 sec 25.4 sec
(10000 nodes)(CPU)

Time of subtree moving 0.0007 sec, without data A supporting of GPU in
(10000 nodes)(GPU) copying (between CPU and GPU) MongoDB is not realized

0.42 sec with data copying
(between CPU and GPU)

4 Conclusion

In the work the index structure for storage of hierarchies in DB is suggested. For
derivation of the index it is used the B+ tree, which is necessary for high-speed
finding of document locations on the disc, and array of documents which are the
index base. Also the method of index derivation on numbers expressed in the
SRC is represented.

Using of this index structure in common with methods, allowing to realize
parallel computations, permits to increase speed of working with trees.

Offered index structure can be applied in databases of NoSQL style to in-
crease of productivity of index structure processing.

This approach can be improved by adding of methods of vector residue com-
pression for decreasing of overhead expenses on storage and increasing of data
processing rate.

References

1. V. Tropashko: Nested Intervals Tree Encoding with Continued Fractions. ACM SIG-
MOD, Volume 34, Issue 2, 2005

2. J. Celko: Joe Celkos Trees and Hierarchies in SQL for Smarties. Morgan Kaufmann,
2004

3. A. Malikov, A. Turyev: Nested Intervals Tree Encoding with System of Residual
Classes. ICEICE No.2, 2011

4. N. Chervyakov: Modular Parallel Computing Structures of Neuroprocces System.
FIZMAT, 2003

5. V. Tropashko: Trees in SQL: Nested Sets and Materialized Path: [Electronic re-
source]. 2003. URL: https://communities.bmc.com/docs/DOC-9902

76 DBMS Index for Hierarchical Data Using Nested Intervals

