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Abstract. This paper investigates the problem of the stabilization of a system 
(A, Bd) consisting of two interconnected subsystems, with decentralized state 

or output feedback. Following the initial definition of the global system and of 
its two subsystems in the state-space, and based on the intercontrollability 
matrix D(s) of system (A, Bd) and on the kernel U(s) of D(s), an equivalent 

system {M(s), I2} defined in the operator domain by an appropriate polynomial 

matrix description (PMD) is determined. The interconnected system can then 
stabilized with a suitable local feedback, based on which, a decentralized 
output feedback can be determined as well.  
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1   Introduction 

 Decentralized control has been a control of choice for large-scale systems (consist 

of many interconnected subsystems) for over four decades. It is computationally 

efficient to formulate control laws that use only locally available subsystem states or 

outputs. Such an approach is also economical; since it is easy to implement and can 

significantly reduce costly communication overhead. Also, when exchange of state 

information among the subsystems is prohibited, decentralized structure becomes an 

essential design constraint. Necessary and sufficient conditions, as well as methods 

and algorithms have been proposed in these four decades, to find decentralized 

feedback controllers which stabilize the overall system (see (Ikeda,1980), (Sandell, 

1978), (Siljak, 1978 ), (Wang, 1973) and the references therein). In recent years, the 
problems of decentralized robust stabilization for interconnected uncertain linear 

systems have been studied by many researchers. Different design approaches have 

been proposed, such as the Riccati approach (Ge, 1996), (Ugrinovsskii , 1998), the 

LMI (Linear Matrix Inequality) approach (Liu, 2004), (Souza, 1999), a combination 

of genetic algorithms and gradient-based optimization (Labibi, 2003), (Patton, 1994). 

It is the main purpose of this paper to present the stabilization problem of an 

interconnected (global) system with decentralized state or output feedback. The 

interconnected (global) system (A, Bd), consists of two local scalar subsystems,
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under the very general assumptions of the global and the local controllability. It is 

noted that only the case of two interconnected subsystems is examined, since only 

then the global system will have no decentralized fixed modes, when local static 

state-vector feedbacks are applied ((Aderson, 1979), (Caloyiannis, 1982), (Davison, 

1983), (Fessas, 1982,1987,1988) and (Wolovich, 1974). Additionally, we assume, 

without loss of generality (Davison, 1983) that both input channels of system are 

scalar. 
Following the initial definition of the system in the state-space, an equivalent 

system - defined in the operator domain- is first determined. This is presented in the 

next section, together with some known results concerning (a) the intercontrollability 

matrix D(s) of  (A, Bd) (b) the kernel U(s) of D(s), (c) the  equivalent system     

{M(s), I2} in the operator domain, and (d) the stabilization of  the interconnected 
system with linear, local, state-vector feedback (LLSVF), introducing linear 

programming methods for computing them (Parisses, 1998). In case the values of 

these feedbacks are considered to be large for practical implementation, an algorithm 

for designing “optimal” decentralized control can be applied (Parisses, 2006). In 

section 3, the main result on the stabilizing local output feedbacks, and on a method 

to design a suitable output matrix C, is presented. As a corollary, the decentralized 

version of all theses is given. To demonstrate this illustrative example is given, in 

section 4.  

2   Preliminaries  

2.1   Form of Matrices A and Bd  

We consider the interconnected system (A, Bd) defined by                                     

                                 
x Ax B udx B udx Ax Ax B

                                                                     (1) 

where x is the n-dimensional state of (A, Bd), u is the 2-dimensional input vector, A 

is the nxn system matrix, and Bd is its nx2 input matrix. Matrices A and Bd admits 

the following partitioning: 
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with n=n1+n2. System (A, Bd) consists of the interconnected ni-dimensional 

subsystems      (Aii, bii) -i=1,2- of local state vectors x1and x2, with x=[x1' x2']', u1 

and u2 being, respectively, the scalar inputs of these subsystems, with u=[u1 u2]'. We 

further assume that the global system (A, Bd), as well as its two subsystems (Aii, bii) 

-i=1,2- are controllable. In that case, and in order to have some analytical results, 
subsystems (Aii, bii) are supposed to be in their companion controllable form 

(Kailath, 1980) 
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where aii' denotes the last row elements of Aii. When (Aii, bii) are in the above form, 

the nixnj sub matrices Aij assume no particular form; for them we use the notation 

                                     

o
ij

ij '

A
A =
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ija

  (i j)                                                               (4) 

where aij' denotes the last row elements of Aij, and Aij
o the others. It is obvious 

that when the various sub matrices of (A, Bd) are in the above form, system 

d(A,B )A BB )B )  is called Canonical Interconnected Form (Fessas, 1982) and is as: 
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Finally, with the elements of rows n1 and n1+n2(=n) of A, we form matrix Am:  

                                                mA
11 12

21 22

a a

a a
                                                 (6)     

2.2   The intercontrollability matrix D(s) and its kernel 

The following (n-2)xn polynomial matrix is the intercontrollability matrix of 

system 
d(A,B )A BB )B ) : 
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As the following lemma indicates, D(s) expresses the conditions for the 

controllability of  (A, Bd): 

Lemma 2.1: (Caloyiannis, 1982) System (A, Bd) is controllable if and only if rank 

D(s) = n-2 for all complex numbers s. (Caloyiannis, 1982). 

Thus the matrix D(s) of a controllable system is a full-rank matrix. Its kernel U(s) 

is an nx2 polynomial matrix of rank 2, such that   D(s) U(s) = 0. The analytical 

determination of U(s) is as follows: P is the matrix representing the column 

permutations of matrix D(s), which brings it to the form of the matrix pencil: 

                                  D(s)D(s)   = D(s) P =   [s In-2 - F | G]                                      (8) 

In (8) G is an (n-2)x2 (constant) matrix, consisting of columns n1and n1+n2=n of 

D(s), F is an (n-2)x(n-2) constant matrix, and In-2 is the unity matrix of order n-2. 

Since D(s) is a full rank matrix, the pair (F,G) is controllable, and can be brought to 

its Multivariable Controllable Form (MCF) ((Kailath, 1980), (Wolovich, 1974)) 

( $ , $ )F G  by a similarity transformation T; let d1, d2 be the controllability indices of 

(F,G), S(s) be the associated structure operator, let δ(s) be the characteristic 

(polynomial) matrix of F, and (in case rank[G]=2) let $Gm
 be the 2x2 matrix 

consisting of rows d1 and d1+d2=n-2 of G. The precise form of U(s) is the content of 

the following lemma: 

Lemma 2.2   Let D(s) be the intercontrollability matrix of (A, Bd) as in (7), and 

suppose that rank[G]=2, for G as in (8). Then the kernel U(s) of D(s) is equal to 

                                        
)(ˆ

)(
)( 1

sG

sTS
PsU

m (((
                                        (9) 

where P, T, S(s), $Gm
, and δ(s) are as previously explained. 

2.3   An equivalent system defined by a PMD 

Consider the interconnected system (A, Bd), with A and Bd as in (5). In that case, 

the corresponding differential equation in the state space is: 

                                          dx(t)=Ax(t)+B u(t)x(t)=Ax(t)                                                      (10) 

In the operator domain, this equation corresponds to the equation 
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                                          (sI - A) x(s) = Bd u(s)                                                (11) 

this, in its turn, reduces to the equations: 

                                                  D(s) x(s) = 0                                                     (12a) 

and 

                                              (sE - Am ) x(s) = u(s)                                           (12b) 

 In these equations, D(s) is as in (7), E is a 2xn (constant) matrix, of the form:        

E = diag{e1' e2'}, the ni-dimensional vector ei being equal to : ei = [0...0 1]' -for 

i=1,2-, and Am is the matrix defined in (6). From (12a) it follows that x(s) must 

satisfy the relation:  

                                                 x(s) = U(s) ξ(s)                                                    (13) 

where U(s) is the kernel of D(s), and ξ(s) is any two-dimensional vector. It follows 

that ξ(s) must satisfy the equation: 

                                                    M(s) ξ(s) = u(s)                                                (14) 

The matrix M(s) appearing in (14) is termed Characteristic Matrix of the 

interconnected system (A, Bd) (Fessas, 1982) and is defined by the relation:  

                                               M(s) = (sE - Am) U(s).                                         (15) 

The three systems defined respectively (i) in the state space by the pair of matrices 

(A, Bd), (ii) in the operator domain by {sI-A, Bd}, and (iii) by the polynomial matrix 

description (PMD):          

                                              M (D) ξ (t) = u (t)                                                 (16a) 

                                                 X (t) = U (D) ξ (t)                                             (16b) 

are equivalents (Chen, 1984),  (Fessas, 1987), (Kailath, 1980). It is noted that in (16) 

ξ(t) is the pseudo state vector of the system, and is related to the state vector x(t) of 

(A, Bd), by the relation 

                                              x(t) = U(D) ξ(t)                                                      (17) 

(in the relations (16), (17), the symbol D denotes the differential operator d/dt). 

2.4   Stabilizability with local state-vector feedback 

We present analytically Theorem 2.1, on the stabilizability of the interconnected 

system (A, Bd) with LLSVF, as well as a result, which is needed in the proof of it. 

Lemma 2.3 : Let h(s) be a polynomial of the form:  h(s)=r(s)p(s)+q(s), for which 

the following assumptions hold: (i) The polynomials  r(s), p(s), q(s) are monic (ii) 

r(s) is arbitrary, (iii)  degree r(s)p(s) > degree q(s) (iv) p(s) is a stable polynomial. 

Then, the arbitrary polynomial r(s) can be chosen so, that h(s) is stable (Seser, 1978). 

 
Theorem 2.1:  Consider the interconnected system (A, Bd) as in (1), and suppose 

that the global system (A, Bd), and the local ones (Aii, bii) -i=1,2- are controllable. 
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Then, there exists a static LLSVF of the form u=Kdx, so that the resulting closed-

loop system is stable. 

 
Proof: For the proof we consider the equivalent system {M(s), I2} and examine 

the stability of the polynomial matrix Md(s)=(sE-Am-Kd)U(s). We assume that the 

feedback matrix Kd has the form: 

            
1

2

1 n

d
1 n

α . . α 0 . . 0 0
K = =

0 . . 0 β . . β 0

1 nα . . α 0 . . 01 n1 n 01

=
11 n 00

0 0 β β0 0 β β 00
21 n0 . . 0 β . . β1 n1 n 00

α

β
             (18) 

where αi (i=1,...,n1), and βj (j=1,...,n2) are some unknown, real numbers. We shall 

deal with the case where rank [G]=2, which is the usual one for the matrix G. Then 

the matrix Md(s) takes the form: 

Md(s)=(sΕ-Am-Kd)U(s)=(sΕ-Am-Kd)
)(ˆ

)(
1

sG

sTS
P

m ((((
=                                         

=
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where             α(s)=[α1+a1,1....αn1-1+a1,n1-1  a1,n1+1....a1,n-1]TS1(s) 

  α1(s)=[α1+a1,1....αn1-1+a1,n1-1  a1,n1+1....a1,n-1]TS2(s) 

  β(s)=[a2,1....a2,n1-1  β1+a2,n1+1....βn2-1+a2,n-1]TS2(s) 

  β1(s)=[a2,1....a2,n1-1  β1+a2,n1+1....βn2-1+a2,n-1]TS1(s) 

are scalar polynomials, not monic, 

 TS1(s) = T [ 1 s ... sd1-1 0 ... 0 ]' 

 TS2(s) = T [ 0 ... 0 1 s ... sd2-1 ]' 

(i.e., TS(s)=[TS1(s) TS2(s)] ,and [ij] -for i,j=1,2- are the entries of the polynomial 

matrix $ ( )G sm
1 (s1

. Then the matrix in (19) is equivalent to the following matrix: 

                              
11 21 12 22

d

21 22

M (s)+M (s) M (s)+M (s)
Μ (s)=

M (s) M (s)

M (s)+M (s) M (s)+M (s)11 2111 21 12 2212 22
Μ (s)=

M (11 2111 21 12 22(s) M (s)+M (s)11 2111 21 12 2212 2211 21M (11 21

21 22M (s) M (s)21 22M (s) M (s)
                          (20) 

h(s)=detMd
'(s)={M11(s)+M21(s)}M22(s)-{M12(s)+M22(s)}M21(s)= 

={M11(s)+M21(s)}{-β(s)- n2 2,n(s-β -a ) [22]+a2,n1[12]}-{Μ12(s)+M22(s)}M21(s)= 
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=-[22]{M11(s)+M21(s)} n2 2,n(s-β -a ) -{M12(s)+M22(s)}M21(s)+{M11(s)+M21(s)} 

{-β(s)+a2,n1[12]}=r(s)p(s)+q(s)                                                                           (21) 

The determinant of this matrix is actually a monic polynomial of degree n, by 

identifying r(s) as the polynomial -[22][M11(s)+M21(s)], which is of degree (n-1), 

arbitrary and monic, p(s) as the polynomial n2 2,n(s-β -a ) , which is stable by choice of 

βn2, and q(s) as the polynomial                   -

{M12(s)+M22(s)}M21(s)+{M11(s)+M21(s)}{-β(s)+a2,n1[12]}, of degree (n-1). Then, 

according to lemma, the arbitrary polynomial r(s) can be chosen so that the 

polynomial h(s) is stable.                                                                                      Q.E.D. 

This proof is completed with an iterative method (Parisses, 1998), in order to 

compute the feedback coefficients. The central idea is to compute the feedback 

parameters by solving a linear programming problem (Luenberger, 1984) 

corresponding to choosing positive the coefficients of the polynomials that should be 
stable. A set of such polynomials (with positive coefficients) is generated. They are 

then examined whether they are stable or not.  

ALGORITHM 

Step1 Choose the feedback parameter βn2+α2,n<0 so that a stable p(s) results. 

Step2 Write the polynomial r(s) in the following form: 

         r(s) =sn-1+kρ(s)=sn-1+k(sn-2+k1sn-3+...+kn-2). 

By viewing the degrees of the polynomials α(s) and β(s), it is seen that k-the 

leading coefficient of the polynomial ρ(s)- contains only the parameters βn2 and 

αn1. It follows that by giving a value to k, we can also compute αn1. 

Step3 Form n-2 inequalities with the n-2 unknown feedback parameters, by setting 

positive the coefficients ki of the polynomial ρ(s) (ki>0, for i=1,n-2). 

Step4 Solve the linear programming problem, by putting an objective function with 

unity weighting coefficients, and find all feedback parameters αi and βj. 

Step5 Evaluate the polynomial ρ(s), and check if it is stable. If it is not, go back to 

Step 1, and select another βn2. 

Step6 Evaluate the polynomial r(s), and check if it is stable. If it is not, go back to 

Step 2, and select another k. 

Step7 Evaluate the polynomial h(s), and check if it is stable. If it is not, go back to 

Step 1, and select another βn2. 

Step8 The feedback matrix Kd can be evaluated from steps 1, 2, and   4.  

                                                                    END OF THE ALGORITHM 

3 Main Result 

Theorem 3.1 Consider the interconnected system (A, Bd) as in (1), under the usual 

assumptions of the global and the local controllability. Then, this system can 
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stabilized with the feedback u=Ly, where the output feedback matrix L is arbitrary, 

and the output matrix C is: C=L-1Kd, matrix Kd being the feedback stabilizing matrix. 

 
Proof: Since system (A, Bd) satisfies the assumptions of the global and the local 

controllability, there exists a local feedback stabilizing matrix Kd, such that A+BdKd 

is stable. According to lemma 2.1 of (Fessas, 1994), system (A, Bd, C) can stabilized 

with the output feedback u=Ly, when the output matrix C is given by the relation 

C=L-1Kd
. 

Remark 3.1 It is remarked that, while the 2x2 output matrix L is arbitrary, it is the 

2xn matrix C that takes care of the stabilization.  As an extreme case consider L=I2 

(the unity matrix); it is follows that the output matrix C is identical to the stabilizing 

local state feedback matrix Kd. 
Corollary 3.1 We consider matrix L as a diagonal Ld matrix (corresponding to the 

control with local feedbacks). It follows that the output matrix C is also block-

diagonal Cd=Ld
-1Kd corresponding, thus, to the case where the measurements are also 

decentralized. 

4 An illustrative example  

The controllable system (A, Bd) is: 

             

1 2 1 0

4 0 1 2

3 2 2 1

5 0 3 4

1 2 1 0

1 24 0 1 21 24 04 04 04 0

3 2 2 13 23 2 2 1

5 0 3 45 0 3 4

    
d

1 0

1 0
B =

0 1

0 1

1 01 01 0

1 01 01 01 01 0

0 10 10 10 10 1

0 10 10 10 1

  

The system is unstable, since the eigenvalues of A are: {0.315 2.732j, 3.185
1.511j}, and it is asked to be stabilized by the d-control u=Kdx. Subsystems Aii -

i=1,2- are transformed into their companion forms, by the transformation matrices:   

   
15

12
T1        

11

15
T2   

while matrix , as in (5), is: 

0 1 1.143 0.571

8 1 2.714 0.143

1 1.667 0 1

9 3.333 11 6

0 1 1.143 03 0.571

2.714 0.1438 1 2.714 0.1432.714 0.1438 18 18 18 1

1 1.667 0 11 11 1.667 0 1

9 3.333 11 669 3.333 11 611 6

8 18 18 18 1  

The intercontrollability matrix D(s), of system 
d(A,B )A BB )B ) is: 

1s1.6671

0.5711.1431s
D(s)  

It follows that system (F, G) is given by: 
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F=
01

143.10
         G=

1667.1

571.01
 

The controllability indices d1 and d2 of (F, G) are: d1=1, d2=1. Obviously, rank 

[G]=2. The canonical form of matrix F is:       

       1.268 0.418
F̂=

-1.114 -1.268

1.268 0.418

-1.114 -1.268-1.114 -1.268
  

The kernel U(s), of D(s), is: 

-1 0.571

-s+1.268 0.418
U(s)=

-1.667 -1

1.114 -s-1.268

-1 0.571

+1.268 0.418-s+1.268 0.418-s+1.268 0.418

-1.667 -1-1.667 -1

1.114 -s-1.2681.114 -s-1.268

 

At this point begins the search for stable polynomials, by applying simultaneously 

the linear programming method, as described by the algorithm. We use the same 

notation as in the text, and give the final results: βn2=-8.0, αn1=-28.22.         

Polynomial ρ(s)=s2+3.25s+2.60 (roots of ρ(s):-1.84, -1.41). Polynomial 

r(s)=s3+25.00s2+81.35s+ 65.00 (roots of r(s) : -21.33,  -2.40, -1.27), and finally  h(s) 

= s4+29.22s3+122.44s2+1108.14s+1624.01. The roots of this polynomial are the 

numbers {-26.01, -0.75 6.09j, -1.66}, which are the eigenvalues of the closed-loop 

system, i.e., of system d dA B Kd dA B Kd dd dA BA BA B KA B K . The matrix of the feedback parameters is: 

d

-25 -28.22 0 0
K =

0 0 -25 -8

-25 -28.22 0 02 02 0

0 0 -25 -80 0 -25 -80 0 -25 -8
 

It is remarked that the above values of Kd are in the transformed system of 

coordinates (used to apply the method based on the equivalent system defined by a 
PMD). For a given matrix  

10 30
L=

20 50

10 30

20 5020 50
 

the output matrix C is  

12.5 14.11 -7.5 -2.4
C=

-5 -5.644 2.5 0.8

12.5 14.11 -7.5 -2.41 -1 -

-5 -5.644 2.5 0.8-5 -5.644 2.5 0.8-5 -5.644 2.5 0.8
. 

If we suppose, as corollary 3.1 diagonal L 

d

10 0
L =

0 50

10 0

0 500 50
 

the corresponding matrix Cd is block-diagonal, where the measurements are indeed 
decentralized.   

d

-2.5 -2.822 0 0
C =

0 0 -0.5 -0.16

-2.5 -2.822 0 0

0 0 -0.5 -0.160 0 -0.5 -0.160 0 -0.5 -0.16
. 
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5 Conclusion 

In this paper we considered the stabilization of a global system (A, Bd), resulting 

from the interconnection of subsystems (Aii, bii) -i=1,2-, with  decentralized state 

and/or output feedback control. We studied initially the problem of the stabilization 

of (A, Bd) with linear, static feedback of the local state-vectors, under the weak 

conditions of the global and the local controllability. Although the problem was 

defined in the state-space, it was transformed into the frequency domain and studied 

therein. The existence of a local, feedback stabilizing matrix was formally proven 

and it is completed by a numerical procedure -based on linear programming 

methods- for the numerical computation of the feedback parameters (Kd). It is 

supposed the output feedback matrix L is arbitrary, and one wishes to determine the 

appropriate output matrix C which ‘realizes’ the decentralized feedback u=Kdx, by 

the matrix C=L-1Kd .  That corresponds to what (Zheng , 1989 ) refers to as ‘the 

designer’s possibility to choose the output matrix C’.  
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