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Abstract. In this work we trait the problem of mixtures of normal 

distributions and methods for estimating the number of components as 

well as the parameters in a mixture. Also, we present a practical 

method for the detection of normal finite mixture distribution and 

respective model validation. Finally, we apply the exposed procedure 

to a sample of old grape-vine castes. 
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1   Introduction 

Finite mixtures of distributions, and in particular mixtures of normal distributions, 

have been extensively used to model a wide variety of important practical situations, 

in which data can be considered from two or more populations mixed in varying 

populations. It is therefore evident interest in this subject attending the vast 

applications that have been developed by statisticians.  We will emphasize some 

topics that have been successfully addressed in this area, which include among 

others the problem of identification of outliers, (Atkin & Tunnicliffe, 1980) (Wilson, 

1980) or (Beckman & Cook, 1983), latent class models (Goodman, 1974), 

classification analysis (Symons, 1981) (Celeux, 1986) or (Bozdogan, 1992), 

investigating the robustness of certain statistics such as correlation coefficient 

sample studied (Srivastava & Lee 1984).  

In our work there will be some introductory remarks in the context of finite mixtures 

in order to create the enabling environment for a better understanding of this subject. 

We will continue with a statistical approach to key issues in the context of mixtures 

which will focus on the main methods of estimating parameters of a mixture and one 

of the most used algorithms in the identification of a finite mixture of distributions, 

i.e., the so-called EM algorithm (Dempster, et al., 1977). 
_______________________________
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2   Estimating the number of components in a mixture 

The problem of statistical analysis of finite mixtures can be divided into the 

following phases:  

 

i) Verification of identifiability of the mixture;  

ii) Estimation of the number of components / parameters estimation,  

iii) Testing the number of components  

iv) Validation of the model 

 

With a finite mixture density,   r)f(x,   function is identifiable if and only if  
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That is to say that the mixture is identifiable if it admits only a single decomposition. 

(Teicher, 1963) deduced the necessary and sufficient conditions for identifiability 

and proved that the mixtures of normal distributions are identifiable. 

3   Methods for the estimation of mixture parameters 

The problem of parameter estimation in mixtures, in the case of normal 

distributions, is one of the oldest problems in the statistical literature. It was first 

introduced by (Pearson, 1894) in an article "Contribution to the theory of evolution 

mathematical" and subsequently developed by (Quandt & Ramsey, 1978). It is still 

an open problem which attracts strong attention. 

Although at present the study of mixtures takes place in several areas by applying 

other methods, such as the method of maximum likelihood, the original method, the 

method of moments is still considered one of the best approximation methods in 

separating mixtures of normal distributions. It is useful even in the generation of 

initial estimates for the iterative resolution of maximum likelihood equations. 

In order to make the analysis of mixtures of distributions a computational problem 

more accessible, in the decades of the forties and fifties it was fostered the 

development of a high number of graphical techniques. A first step consisted in the 

detection of turning points of the curves (Harding, 1948) and (Cassie, 1954), making 

this method a somewhat subjective process. Later, more rigorous techniques have 

been suggested to determine the inflection points (Fowlkes, 1979) and 

(Bhattacharya, 1967); this author also suggests several methods to determine the 

proportions of the mixtures.  

     These graphical techniques are not only to give a first estimation of parameters, 

they can be quite useful in an initial examination of data, since they have the 

advantage of running without a prior knowledge of the number of components of the 

mixture. They can play a role as an indicator of the number of components, since 
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this information is needed before applying any of the other methods described 

below.  

 

3.1 Method of Moments 

 

 This method is used on obtaining and solving a system of equations, often of the 

nonlinear type. The equations are obtained from the empirical equality of every 

moment ( )rM  and their theoretical moment ( )rm ,  
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and 
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Where x represents the mean of a sample obtained from a population with 

probability density function ( )xf ,   m  is the mean value of random variable X ,  

with the same probability function, m the number of moments needed to estimate all 

parameters. 

Let for each value of  r  obtaining an equation: 
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Note that with the currently available computational means this method becomes 

very advantageous. The disadvantage lies in the fact that it is not applicable to 

mixtures of distributions with a large number of components, as well as to the 

multidimensional case. 

 

3.2 Method of Quandt and Ramsey 

 

This method proposed by (Quandt & Ramsey, 1978) is used in mixtures of two 

univariate components and makes use of the moment generating function ( )txeE .  

The estimate for this function is given by: 
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 The method minimizes the sum of squared deviations between the empirical 

moment generating function and the theoretical moment generating function 
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where k represents the number of t values in a selected interval ( )ba, , with 0a <  

and 0b > . 

 

3.3 Method of maximum likelihood 

 

Consider the sample values n1 x,...,x , 
m

jx ÂÎ , n1,...,j= , a mixture of k 

density functions and consider the log-likelihood function of this sample, 

represented by 
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where  ( ) k,...,i,a,pq ii 1== is the vector of unknown parameters. 

 By derivation of the function ( )qxL  in order to each of these parameters and 

equating to zero each of the expressions obtained, we have the so-called likelihood 

equations: 
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The equations obtained are sometimes impossible to solve analytically or very 

difficult to resolve, so often resort to the use of iterative methods. However, not 

always the most common processes are able to respond to the scale of problems. In 

order to overcome these difficulties there is the EM algorithm of (Dempster, et al., 

1977), which is the most widely used in solving equations that describe maximum 

likelihood. 

In particular if we have a sample size n and a mixture of two univariate normal 

components, the log-likelihood function is given by: 

 

     ( )
( )

( )
( )

å
=

-
-

-
-

ú
ú

û

ù

ê
ê

ë

é
-+=

n

j

xx jj

epeplnqxL
1

2

2

2

1

2
2

2
2

2
1

2
1

2

1
1

2

1 s

m

s

m

spsp
            (9)    

 

4 Practical method for detection finite mixture of normal 

distributions  

The method aims on the one hand prove the existence of mixtures of normal 

distributions and on the other hand achieving the adjustment of an appropriate 
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model. This approach will first check the detailed curves detected in the histogram 

of simple frequencies, and then estimate the parameters of these curves and the 

model checking by applying the Kolmogorov-Smirnov test, adapted to a mixture of 

normal. 

4.1   Dissection of the Curves 

Consider the original data set nx,...,x1 of the sample under study, and begin a first 

step by ordering them in ascending order. We then have the ordered sample 

nz,...,z1  with nz...z ££1 . Let 21 n,n  and 3n represent the sizes of sub-

populations derived from the decomposition of the initial population, 

with nnnn =++ 321 . 

Considering the hypothesis of existence of two normal distributions, denote 

n

n
p 12
=  and  

n

n
p 32

1 =-  where p  and  p-1  represent the proportions of 

each one of the curves found on the original curve. 

 These curves are normal, so they are symmetrical and therefore there is 

2

121 =
+
n

nn
, or is 50% the size of the sample size n .  Let  1m   and  1s  be 

respectively the mean and standard deviation in the distribution curve 1 and  2m   

and 2s be respectively the mean and standard deviation in the distribution curve 2. 

 Thus the probability density function f  of weighing the two normal curves is 

defined by 

 

          ( ) ( ) ( ) ( )22112121 1 smsmssmm ,xnp,xpn,,,,pxf -+=             (10) 

 

 

4.2  Estimation of parameters for the general model 

 

4.2.1   Estimates of  
*n1

 

The value of 
*n1  is the one that minimizes ( )'nD  with      
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For each 'n  there is an estimate of the fraction correspondent to each sub-

population  
'*

np  and 
'*

np-1 and of the respective mean values
*

'n,1m  and 
*

'n,2m . 

Combining these estimates we obtain:  
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and the minimization of: 
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4.2.2   Estimates of  p , 1m and 2m
 

Once estimated 1n we use the correspondent estimates for the fractions and the 

mean values of sub-populations obtaining: 
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the distribution mean value will be given by ( ) 21 1 mmm pp -+= .

 

4.2.3   Estimates of  1s and 2s
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To obtain the estimates for  1s and 2s  we use:  
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As we have seen the reason for equality
** n

n
n 13

2
-=  and is justified by the fact 

that the tails of two distributions assume negligible values. So, since 312 nnn += , 

and  
2

2

n
n =  it finally comes 13

2
n

n
n -= . The term ( )*jz 1m-  reflects the 

differences between each value of sample 1.  
*2

1s  and 
*2

2s  denote the estimated 

variances for populations 1 and 2. 

 

 

4.3 Validation of the Model 

We will use the Kolmogorov-Smirnov test to check the model.  The statistic of this 

test is the maximum module of the difference between the empirical distribution 
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We will obtain the values of distributions  ( ) 21,l;,zN *

l
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l =sm , in iz

points, n,...,i 1= . From the iz points, n,...,i 1= , we calculate 
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So, the problem is simplified since in general it is enough to handle the first 25 

items. The above expression is justified since if 0<w we have 
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and if  0>w  
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After obtaining the values for normal distribution we calculate the values: 
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And we obtain the statistic 
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This value should be compared with the value in normal distribution table and we 

concluded about the existence of a mixture of normal distributions if the T value is 

less than the tabulated. For the previous iterative procedure we decided to simplify 

the calculations, very time consuming, by designing an algorithm, and we used it in 

our practical application. 

5  Application  

First, we will carry out a comprehensive statistical study of available data relating to 

populations of vine varieties. 

 We will discuss three types of caste, namely the Trincadeira Preta in years 1988, 

1989 and 1990 in the region of Almeirim, Aragon 1987, 1988 and 1989 in the region 

of Reguengos and Touriga Nacional 1994, 1995 and 1996 in the region of Foz Coa. 

Regarding the number of observations and replicates of clones for analysis we noted 

that with regard to the caste Trincadeira Preta there is in each year a total of (271 

observations x 5 repetitions) , in Touriga Nacional (197 observations x 5 repetitions) 

and in the Aragonês (153 observations x 4 repetitions). Note that each observation is 

respective to a different clone, repeating this clone 4 or 5 times. For a better layout 

follows the table 1: 

           Table 1.  Varieties per year and repetitions 

Varieties         Year Repetition 
Trincadeira Preta 1988,1989,1990 REP1;REP2;REP3;REP4 ;REP5

Aragonês 1987,1988,1989 REP1;REP2 ;REP3;REP4

Touriga Nacional 1994,1995,1996 REP1;REP2;REP3;REP4 ;REP5
   

For each repetition, we proceeded to calculate the mean, variance, standard 

deviation, median, sum of sample values, 95%, first quartile, third quartile, range of 

the sample, inter-quartile range, skewness coefficient, coefficient of flattening and 

determination of maximum and minimum values of the sample. 

 Then we obtained the histograms for each of the repetitions, and we tested the 

normality through the Kolmogorov-Smirnov test. 

 

5.1 Analysis of distributions of repeat genotypes 

 5.1.1 Testing the normality of distributions 

 

 As the normal distribution in one of the most important ones, it is useful at this 

point proceed to test data normality. To this end we then base our conclusions on the 

results of a nonparametric test, as mentioned above, the application of the 

Kolmogorov-Smirnov test. 
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 With the help of statistical software and consulting the Table of Critical Values of 

the Kolmogorov-Smirnov test for one sample, then we obtained the values KS 

Observed and KS. Tabulated for each repetition and present in table: 

      Table 2.  Kolmogorov-Smirnov application 
K.S. K.S. Tabulated

Varietie Year Repetition Observed 1% 5%

REP1 0.06582 <0.09902 <0.08261

REP2 0.08012 <0.09902 <0.08261

1988 REP3 0.06842 <0.09902 <0.08261

REP4 0.07813 <0.09902 <0.08261

REP5 0.08156 <0.09902 <0.08261

REP1 0.04241 <0.09902 <0.08261

Trincadeira REP2 0.04603 <0.09902 <0.08261

Preta 1989 REP3 0.05565 <0.09902 <0.08261

(n=271) REP4 0.06031 <0.09902 <0.08261

REP5 0.06810 <0.09902 <0.08261

REP1 0.05569 <0.09902 <0.08261

REP2 0.06024 <0.09902 <0.08261

1990 REP3 0.03547 <0.09902 <0.08261

REP4 0.06007 <0.09902 <0.08261

REP5 0.03681 <0.09902 <0.08261

       Table 3.  Kolmogorov-Smirnov application 
K.S. K.S. Tabulated

Varietie Year Repetition Observed 1% 5%

REP1 0.07008 <0.13178 <0.10995

REP2 0.07756 <0.13178 <0.10995

1987 REP3 0.07637 <0.13178 <0.10995

REP4 0.11603 <0.13178 >0.10995

REP1 0.08873 <0.13178 <0.10995

REP2 0.04576 <0.13178 <0.10995

Aragonês 1988 REP3 0.06797 <0.13178 <0.10995

(n=153) REP4 0.11283 <0.13178 >0.10995

REP1 0.09338 <0.13178 <0.10995

REP2 0.10146 <0.13178 <0.10995

1989 REP3 0.13492 >0.13178 >0.10995

REP4 0.12791 <0.13178 >0.10995

Table 4.  Kolmogorov-Smirnov application 
K.S. K.S. Tabulated

Varietie Year Repetition Observed 1% 5%

REP1 0.07714 <0.11350 <0.09690

REP2 0.09881 <0.11350 >0.09690

1994 REP3 0.05603 <0.11350 <0.09690

REP4 0.05166 <0.11350 <0.09690

REP5 0.06040 <0.11350 <0.09690

REP1 0.06864 <0.11350 <0.09690

Touriga REP2 0.07562 <0.11350 <0.09690

Nacional 1995 REP3 0.06499 <0.11350 <0.09690

(«=197) REP4 0.06426 <0.11350 <0.09690

REP5 0.08181 <0.11350 <0.09690

REP1 0.06146 <0.11350 <0.09690

REP2 0.08055 <0.11350 <0.09690

1996 REP3 0.08516 <0.11350 <0.09690

REP4 0.03227 <0.11350 <0.09690

REP5 0.06266 <0.11350 <0.09690

 

We considered 1.63 for 1% and 1.36 for 5% significance level, respectively. 
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In the analysis of the results, we note that the null hypothesis that the sample comes 

from a normal population, is rejected in five cases for the significance level of 5% 

and only in one case to significance level of 1%, which is not altogether surprising 

since we are facing a total of 42 cases. 

 If we consider a binomial distribution with n = 42 and  x = 5 then it's expected that 

5% of observations fall outside the standard of reference, in our case the normal 

distribution. 

6  Considerations and remarks  

The vegetative reproduction seems to guarantee the homogeneity of genotypes. So

in a given year and local the productions of the same genotype should be distributed 

normally. Not always this happens because when we studied the 42 repetitions of 

genotypes: Aragonês, Trincadeira Preta and Touriga Nacional four cases were found 

where the theoretical model did not fit significantly. In these four cases it was 

possible to fit the data a mixture of two normal distributions. 

We consider important in future work using the techniques of ANOVA to estimate 

the variance components internal to the genotypes and between genotypes.
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