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Abstract. Because of their expressive power, Petri nets are widely used
in the context of concurrent and distributed systems. We study in this
paper a sub class of time Petri nets, named time open workflow nets
(ToWF-nets), used to interconnect time constrained business processes.
To interact correctly with each other, these processes have to be compat-
ible. This include not only composability of the involved processes but
also the correct execution of the overall composite system. In this con-
text, we suggest in this paper to study the compatibility of ToWF-nets
in different aspects and to provide a formal approach to characterize and
verify this property. This approach is based on qualitative and quantita-
tive analysis ensured by TCTL model checking.

Keywords: Time open workflow nets, Reachability analysis, Compati-
bility, TCTL

1 Introduction

The workflow technology has shown a great interest to be adopted within orga-
nizations or even inter organizations. A workflow is the result of the automation
of a business process, in whole or in part [35]. A business process consists of
a number of tasks and ensure all the conditions that determine their order. A
business process which involves different partner companies is said to be in-
ter organizational. Indeed, it is a specific representation for which coordination
mechanisms between activities, applications or participants can be managed by
a workflow management system (WfMS). The success of workflow technology
explains the fact that the number of emerging WfMS is growing fast. And there-
fore the need for effective mechanisms and tools for modeling and analysis of
workflow processes is crucial.



Open workflow nets (oWF-nets) form a sub class of Petri nets which is suc-
cessfully used to model workflow processes which communicate with other part-
ners via interfaces. This class is promisingly used in the context of Web services
orchestration and choreography. In fact each service in a composition is mod-
eled by a workflow net augmented by interface places used to communicate with
other services. In this way, one can guarantee the conversation between the pro-
cesses interacting with each other. The conversation considered here is involved
through the two well known behaviors: operational and control. An operational
behavior is a behavior specific to each partner according to its business logic. A
control behavior describes the general behavior of any process related to com-
posite Web services. While we focused in a previous work [33] on the verification
of oWF-nets, we propose in this paper to extend oWF-nets by modeling timing
constraints and to study their analysis.

Several time Petri nets extensions were proposed in the literature which dif-
fer in their semantics and their analysis techniques. We propose to adopt in this
work the time Petri nets, proposed by Merlin [31], in which transitions are la-
beled by intervals specifying the minimum and maximum delays of their firings.
We extend, therefore oWF-nets by associating with each transition a minimum
and maximum amount of time needed to its execution. The obtained model is
said to be time open workflow net (ToWF-net). We define formally this model
and present its semantics as well as the computation of its state space. The effi-
cient construction of the state space leads to efficient techniques of ToWF-nets
reachability analysis.

Dealing with time in inter organizational processes, we propose to study the
compatibility of the processes communicating together. This property is not only
related to the ability of processes to communicate (i.e. composability) but also to
the correct and deadlock-free execution of the composite process. In this context,
we propose to define compatibility classes of ToWF-nets and to emphasize a
method of their verification.

To verify ToWF-nets compatibility, we propose to use formal methods due
to their solid theoretical basis. More precisely, we present an analysis method
based on model checking of the studied properties. In fact, Model checking is
an automated verification technique for proving that a model satisfies a set
of properties specified in temporal logic. Given a concurrent system ⌃ and a
temporal logic formula ', the model checking problem is to decide whether ⌃
satisfies '. Hence, we have to formulate in temporal logic the properties to be
verified. This kind of verification is situated at the design phase, allowing thus to
find design bugs as early as possible and therefore to reduce the cost of failures.
This, especially, permits us to check as early as possible if two or more processes
are compatible before their composition. We express the proposed compatibility
properties in Timed Computation Tree Logic (TCTL).

The rest of this paper is organized as follows. We propose in section 2 the
ToWF-nets to model inter organizational workflow processes with timing delays.
The same section presents the semantics of ToWF-nets in terms of states and
their evolution and exposes a case study. Section 3 is dedicated to present some
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results of the reachability analysis of ToWF-nets. We focus in section 4 on the
verification of ToWF-nets compatibility. We begin with expressing the properties
in TCTL and then we present some experiments in Romeo model checker. Section
5 exhibits related work and finally section 6 concludes the paper and announces
future work.

2 Time open WorkFlow nets

In this section, we propose a new sub class of time Petri nets modeling workflow
processes with interface places used to communicate with other partners. To
begin with, we present a Petri nets modeling of communicating processes and
then we propose a time extension.

2.1 Petri nets modeling of communicating workflows

Nowadays, many organizations are implementing their business functionality
and outsource their services on the internet. Thus, the selection as well as inter
organizational and heterogeneous integration with efficiency and effectiveness of
Web services during the execution has become an important step in Web services
applications. In particular, if no service can meet the needs of the user, there
should be a possibility to combine existing services to meet the demands required
by the user. This trend has led to the notion of the composition of Web services.

In fact, the composition or aggregation of Web services is a process that
involves building new services or aggregates called composite services by assem-
bling existing services. The composite service is a value added service that can
be the distribution of basic services or composite ones.

This composition can be modeled by means of a Petri net class named open
workflow nets [25,33,29,30]. We model each involved process by an open workflow
net possessing interface places used to communicate with other processes. Thus
the conversation and interaction between the involved processes are guaranteed.
The communication considered here is entangled through operational and con-
trol behaviors. The operational behavior is a behavior specific to each partner
according to its business logic while the control behavior describes the general
behavior of any process related to composite Web services.

As mentioned above, open workflow nets are mainly an extension of workflow
nets (WF-nets) to model workflow processes which interact with other workflow
processes via interface places. Simple WF-nets [7]is a result of Petri nets’ ap-
plication to workflow management. The choice of Petri nets is based on their
formal semantics, expressiveness, graphical nature and the availability of Petri
nets based analysis techniques and tools.

A Petri net is a 4-tuple N = (P, T, F,W ) where P and T are two finite non-
empty sets of places and transitions respectively, P\T = ; , F ✓ (P⇥T )[(T⇥P )
is the flow relation, and W : (P ⇥ T )[ (T ⇥ P ) ! N is the weight function of N
satisfying W (x, y) = 0 , (x, y) /2 F . If W (u) = 1 8u 2 F then N is said to be
ordinary net and it is denoted by N = (P, T, F ). For every node x 2 P [ T , the
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set of input nodes of x is defined by •x = {y|(y, x) 2 F} and the set of output
nodes is denoted by x• = {y|(x, y) 2 F}. We refer the reader to [8], for more
Petri nets notations used in this paper.

A Petri net which models a workflow process is said to be a WF-net [3]. An
ordinary Petri net N = (P, T, F ) is a WF-net iff N has one source place i named
initial place (containing initially one token) and a sink place f named final place.
In addition to this characteristic, in a WF-net, every node n 2 P [ T is on a
path from i to f .

For a composition, we propose to model each Web service by a WF-net
specifying the set of tasks to be performed and their routing. The conversation
between the different Web services is ensured by communication places used
for messages sending. We are thus using open WF-nets (oWF-nets) which gen-
eralizes the classical WF-nets by introducing interface places for asynchronous
communications with partners. Hence, we model a composition by a set of oWF-
nets communicating via interface places. These places connect only transitions
of different processes.

2.2 Time extension

When incorporating time constraints, different extensions of Petri nets were pro-
posed. In general, when the time constraints are specified by constants(durations),
the associated extension is said Timed Petri nets. This consider constant dura-
tions attached to places (P-Timed Petri nets) or transitions (T-Timed Petri
nets). When these constraints are specified by intervals (delays) specifying the
minimum and the maximum amounts of time needed for transitions’ firing, the
associated extension is called Time Petri nets. These intervals are attached to
places (P-Time Petri nets), transitions (T-Time Petri nets) or arcs (A-Time Petri
nets) leading thus to different extensions with variant semantics.

Petri nets form a powerful formalism for the expression of control flow in
business processes [2,19,18,16]. In addition, several studies [1,6,27,22] have shown
the importance of temporal reasoning in the specification of workflow systems.

In [27], the authors extend the simple WF-net presented by van der Aalst [3]
by associating with each transition an amount of time representing the duration
of the task it models. They propose a temporal extension of the WF-net, called
Time WF-net and scored TWF-net. Timing discipline adopted in the proposed
model announced that each enabled transition must start running immediately,
otherwise it will be disabled, and once started, this transition can not be delayed,
i.e. its duration should be respected. While this approach is strict in the fixed
duration required, time Workflow nets (TWF-nets) incorporate time constraints
of activities by associating to each transition an interval specifying its firing time
[12,15,27].

Since this time consideration is flexible and given that we are interested
by modeling the composition of workflow processes with time constraints, we
propose the time open workflow net model (ToWF-net). This model associates
a static time interval to each transition of an open workflow net to express the

252 PNSE’14 – Petri Nets and Software Engineering



execution time or delay of corresponding activity. The formal definition of a
ToWF-net model net is the following:

Definition 1 (ToWF-net)

A Time Open Workflow Net N is a tuple (P, T, F, FI, I, O) with:

• P is a set of places,
• T is a set of transitions,
• I is a set of places representing input interfaces which are responsible for

receiving messages from other services: •I = ;.
• O is a set of places representing output interfaces that are responsible for

sending messages to other services: O• = ;.
• I, O and P are disjoint. I and O connect transitions of different partners.
• F ✓ ((P [ I)⇥ T ) [ (T ⇥ (P [O)) is the flow relation,
• FI : T ! Q+⇥Q+[{1} is the function that associates with each transition
t 2 T a static firing interval, i.e. FI(t) = [minFI(t),maxFI(t)] where
minFI(t) and maxFI(t) are rational numbers representing respectively the
minimal and maximal firing time,

The marking of N is a vector of NP such that for each place p 2 P , M(p) is
the number of tokens in p. The initial marking of N is Mi knowing that Mp is
used to denote a marking for which M(p) = 1 and M(q) = 0 8q 2 (P[I[O)\{p}.

A transition t is said to be enabled in a marking M if the required tokens
are present in the input places of t. We denote by En(M) the set of all the
transitions enabled in the marking M . A transition t is said disabled by the
firing of t0 in M if it is enabled in M but it isn’t in M �• t0. When focusing of
newly enabled transitions after firing a transition t from M and leading to M 0,
we denote by NEn(M, t) the set of transitions enabled after this firing.

NEn(M, t) = {t0 2 En(M 0)|t0 = t _ ¬M �• t+• t0}.
When a transition t becomes enabled, its firing interval is set to its static firing

interval FI(t). The lower and upper bounds of FI(t) decrease synchronously
with time, until t is fired or disabled by another firing. t can fire, if the lower
bound of its firing interval reaches 0, but when upper bound of its firing interval
reaches 0, t must be fired without any additional delay (strong semantic). The
firing takes no time but may lead to another marking.

Let us define first the state of a ToWF-net and then the transition relation.

Definition 2 A state in a ToWF-net represents the state of the process modeled
with ToWF-net after the occurrence of an event. Formally, a state in a ToWF-
net is a pair (M, Int) where:

– M is a marking,
– Int is a firing interval function, Int : En(M) ! Q+⇥Q+[{1}. We denote

Int(t) = [minInt(t),maxInt(t)].

The initial state of a ToWF-net is (M
0

, Int
0

) where M
0

= Mi (since in a
ToWF-net, only i contains initially one token) and Int

0

(t) = FI(t) 8t 2 En(M
0

)
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Starting from the initial state (M
0

, Int
0

), the net evolves following the oc-
currence of events. An event corresponds to either a transition firing or a time
progression. Hence, the transition relation between a state s

1

= (M
1

, Int
1

) and
s
2

= (M
2

, Int
2

) is defined by t! in case of a firing and by d! in case of time
progression. The conditions and the computation of the resulting state after an
event occurrence are defined as follows:

1. s
1

t! s
2

if and only if s
2

is immediately reachable from s
1

by firing the
transition t, i.e.
t 2 En(M

1

) and minInt
1

(t) = 0,
M

2

= M
1

�• t+ t•, and

8t0 2 En(M
2

), Int
2

(t0) =

⇢

FI(t0) ift0 2 NEn(M
1

, t)
Int

1

(t0) otherwise

2. s
1

d! s
2

8d 2 R if and only if the state s
2

is reachable from s
1

by time
progression with d time units, i.e.
minInt

1

(t) + d  maxFI(t),
M

2

= M
1

, and
8t 2 En(M

1

), Int
2

(t) = [Max(0,minInt
1

(t)� d),maxInt
1

(t)� d]

Therefore, the semantics of a ToWF-net N is defined by a transition system
(S, s

0

,!) where S is the set of all the states reachable from the initial state s
0

by the transition relation ! defined above.

2.3 A case study

In order to illustrate the proposed ToWF-net, we propose to study the pro-
cess of awarding of pensions to handicapped persons. This process requires the
collaboration of three organizations:

• The prefecture which manages scholarships and grant of license to the dis-
abled.

• A medical entity that is responsible for negotiating the date of appointments
with patients and collecting the medical informations.

• The Town Hall which establishes certificates, births extracts, etc.

The allocation of pension process is seen as a collaboration between the
services offered by these organizations.

In fact, citizens with disabilities ask a government scholarship. To start the
process, citizens request the form corresponding to the prefecture. Once the cit-
izen receives the form, he fills it and sends it to the prefecture. The latter seeks
medical entity to consider disability that the citizen presents. Medical entity
subsequently contacts the citizen to negotiate with him about a date of ap-
pointment. Once an appointment is fixed, and after reviewing the citizen, the
entity establishes a medical examination report and forwards it to the prefec-
ture. Meanwhile, the prefecture asked the town hall to establish a certificate of
residence of the citizen. Once the certificate of residence and the medical report
is received, the prefecture makes the final decision.
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The figure 1 shows a screenshot of this composition involving the four pro-
cesses relevant to the Applicant, the Prefecture, the Town Hall and the Medical
Unit.

These processes are interconnected with available interfaces that facilitate
communication and exchange of messages between them. These interfaces corre-
spond to places denoted by Isn (for input interfaces) and Osn (for output ones),
where s is the service number and n is the interface number in each category.
Note that each input interface place of a service has an equivalent output inter-
face of another service and this will guarantee the services communication. For
sake of clarity, in this example, the interfaces are given names which explain the
sequence of exchanged messages between partners.

The various services are forced to respect the different temporal properties
of each service, in what follows , we mention a few of them:

• Once the medical entity proposes dates for appointment to the citizen, it
must receive the confirmation within 24 hours.

• Once the application for the grant is received, the prefecture sends its final
decision to the citizen, after at least 49 hours and not more than 180 hours.

• The medical report may be sent to the prefecture after at least 24 hours and
up to 48 hours of sending the medical examination.

• The receipt of the result of the request is within 210 hours after sending the
request of the purse.

• Two hours is the maximum time to review a citizen in medical entity.
• The time of receipt of the certificate of residence and review of citizen ratio

is up to three hours.
• Negotiation of the appointment date between the citizen and the medical

entity runs for up to one hour.

We present in the following section the analysis of reachability of the Web
services composition modeled by ToWF-nets and we expose the case study reach-
ability analysis in the tool Romeo [21].

3 Reachability analysis of ToWF-nets

After the formal definition of ToWF-nets, we focus now on their reachability
analysis. This analysis is based on the efficient construction of the state space.

By analogy with the marking graph defined in the context of an ordinary
Petri net, we define a state space by a graph containing all accessible states of
a ToWF-net from the initial state. Therefore, to calculate the state space of a
ToWF-net, we must be able to calculate the reachable states by activating the
enabled transitions.

Definition 3 The state space of a ToWF-net has the following structure: SS =
(S,!, s

0

); where S is the set of nodes in form (M, Int) representing the reachable
states from the initial one s

0

= (Mi, Int0) ; ! represents the transition relation
which defines the evolution from one state to another.
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Fig. 1. Modeling of the case study with ToWF-nets
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S = {s|s
0

⇤! s} is the set of reachable states of the model, and ⇤! is the
reflexive and transitive closure of !.

The reachability analysis [12] in timed models (such as time extensions of
Petri nets as well as timed automata) is based in general on abstraction, which
preserves reachability properties. Such an abstraction for timed models, consists
in considering only one node for all states reachable from the same firing se-
quence while abstracting from their firing times. The grouped states, known as
state classes, are then considered modulo some equivalence relation preserving
properties of interest.

In return, the state class method is intended to provide a finite representation
of the infinite state space of any bounded time Petri net.

Technical classes produce for a large class of time nets a finite representation
of their behavior states, which allows a reachability analysis similar to that
permitted for Petri nets by the technique of marking graph.

The state classes can be represented by a marking and a firing domain.
Formally, a state class is a couple (M,D) where M is a marking and D is
characterized by a set of atomic constraints over the firing delays of enabled
transitions: minFI(t)  t  maxFI(t) 8t 2 En(M).

Note that the initial class coincides with the initial state of the network.
This initial class is (M

0

, D
0

) where M
0

= Mi and D
0

corresponds to the firing
domains of transitions enabled in M

0

.
All states within the same node share the same untimed information and the

union of their time domains is represented by a set of atomic constraints handled
efficiently by means of a Difference Bound Matrix (DBM) [32]. A DBM form a
system of linear inequalities which constrain single variables (v

1

...vn) and their
differences within limits identified by coefficients bij . This is formally expressed
as:

(

vi � vj  bij i, j 2 [0..n], bij 2 Q
v
0

= 0
In terms of behavior, this state classes group preserves highly the states

traces, and thus the safety properties.
The computation of the state class graph is necessary at this point to per-

form the various reachability analysis. Among the abstractions proposed in the
literature [9], [10,36], we consider here the state class graph method [9] for its
advantage, over the others, which is the finiteness property for all bounded time
Petri nets (while using some approximations).

Romeo [21] is a software studio dedicated to time Petri nets analysis. It is
developed at IRCCyN by the Real-Time Systems Team. It performs analysis
on T-Time Petri nets and on one of their extensions to scheduling. We chose
Romeo because it performs, among other features, the computation of the State
Class Graph (SCG) and a graphical simulation of a T-Time Petri net. It is also
a model checker for a subclass of TCTL formulas.

Therefore, we used Romeo to generate the SCG of our case study. We begun
with composing the different services by superposing the interface places which
correspond to the same interface communication. We then simulated the overall
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obtained net in Romeo. Figure 2 presents a snapshot of the case study analysis
conducted in Romeo and especially the beginning of the file generated by Romeo
and which contains the SCG.

Fig. 2. Analysis of the case study in Romeo

4 Compatibility analysis of ToWF-nets

The analysis of the state space is very significant to the extent that it can re-
veal important characteristics of the modeled system, about its structure and
dynamic behavior. However, for a more accurate verification, we should not be
limited to this type of checking rather another specific properties. Indeed, we
focus in this section on the formal verification of compatibility properties of
ToWF-nets. We propose to use model checking method to verify these proper-
ties since this method permits an exhaustive verification over all the possible
executions. Given a concurrent system ⌃ and a temporal logic formula ', the
model checking problem is to decide whether ⌃ satisfies '. Hence, we have to
formulate in temporal logic the properties to be verified.
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4.1 Model checking TPN-TCTL

Real systems often have behaviors that depend on time. The ability to manip-
ulate and model the temporal dimension of the events that take place in the
real world is fundamental in many applications. These applications may involve
banking, medical, or multimedia applications. The variety of applications moti-
vate many recent studies that aim to integrate all the features necessary to take
into account the time during verification.

TCTL (Timed Computational Tree Logic) is a timed extension of the tem-
poral logic CTL. TCTL added to CTL a quantitative information on the delays
between actions. It is built from atomic propositions, logical connectors and
temporal operators (U, F, G, X, etc.). The TCTL temporal logic can be used to
check the properties of a time Petri net.

The syntax of TCTL formulas is inductively defined by:
' ::= false | ¬' | ' ^ ' | A(' UI ')| E(' UI ')
where p denotes a proposition, ' denotes a formula and I = [a, b] or [a,1[

with a 2 N and b 2 N.
A and E are temporal quantifiers over the set of executions. A' announces

that all the executions from the current state satisfy the property '. E' states
that from the current state, there exists an execution which satisfies '. Finally
' UI means that the property ' is true until  is true, and  will be true in
the time interval I.

We can use other compositional temporal operators [5]: EFI ' = E( true UI

') (Possibility), EGI ' = ¬ AF I ¬' (All locations along an execution), AFI

' = A( true UI ') (Locations along all executions), AGI ' = ¬ EF I ¬' (All
locations along all executions).

Semantically, TCTL formulas are interpreted on states and execution paths of
a model M = (S, V ) where S is a transition system and V is a valuation function
that associates with each state the set of atomic propositions it satisfies. [26]

To interpret a TCTL formula on an execution path, we introduce the notion
of dense execution path. Let s 2 S be a state of S, ⇡(s) the set of all execution
paths starting from s, and ⇢ = s

0

d
0

t
0! s

1

d
1

t
1! s

2

... an execution path of s. The
dense path of the execution path ⇢ is the mapping ⇢̂ : R+ ! S defined by:
⇢̂(r) = si + � such that r =

Pi�1

j=0

dj + �, i � 0 and 0  �  di.
The formal semantics of TCTL is given by the satisfaction relation defined

as follows:

– M , s 2 false,
– M , s ✏ � iff � 2 V (s),
– M , s ✏ ¬' iff M , s 2 ',
– M , s ✏ ' ^  iff M , s ✏ ' and M , s ✏  ,
– M , s ✏ 8(' [I  ) iff 8⇢ 2 ⇡(s) 9r 2 I, M , ⇢̂(r) ✏  and

80  r0  r M , ⇢̂(r0) ✏ ',
– M , s ✏ 9(' [I  ) iff 9⇢ 2 ⇡(s) 9r 2 I, M , ⇢̂(r) ✏  and

80  r0  r M , ⇢̂(r0) ✏ ',
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When interval I is omitted, its value is by default [0,1[.
The Time Petri net model is said to satisfy a TCTL formula ' iff M, s

0

✏ '.
The logic TCTL allows writing temporal properties with a quantification of

the time. We chose this approach because it is decidable and PSPACE-complete
for bounded Petri nets [14].

The authors of [24] have gone further by defining a sub-class of TCTL for
time Petri nets in dense time, called TPN-TCTL. They proved the decidability
of model-checking of TPN-TCTL on Petri nets and showed that its complexity
is PSPACE.

Definition 4 The temporal logic TPN-TCTL is defined inductively by:
TPN-TCTL ::= false | ' | ¬' | ' _  | ' ^  | ' )  | E'UI | A'UI 
| EGI' | AGI' | AFI' | EFI' | AG(�

1

) AF
[0,d]�2).

Where ' and  2 TPN-TCTL,
I = [a, b] or [a, b[ with a 2 N and b 2 N [ {1}.
�
1

and �
2

are propositions on markings.
8G(�

1

) 8F
[0,d]�2) means that from the current state, any occurrence of

marking �
1

is followed by an occurrence of marking �
2

less of d units of time
later.

Romeo permits a practical implementation of the verification of properties
described in TPN-TCTL. It is therefore possible to model check on the fly tem-
poral quantitative properties. That’s why we investigate in the following section
the TCTL expression of the compatibility property and hence its verification in
Romeo.

Before this, let us recall the notation used by Romeo to implement a TPN-
TCTL property:

TPN-TCTLRomeo = E(p)U [a, b](q) | A(p)U [a, b](q) | EF [a, b](p) | AF [a, b](p)
| EG[a, b](p) | AG[a, b](p) | EF [a, b](p) | (p) ! [0, b](q).

where p, q: GMEC; U : until; E: exists; A: forall; F : eventually; G: always;
!: response; a: integer; b integer or inf (to denote 1).

GMEC = a⇤M(i){+,�}b⇤M(j){<,<=, >,>=,=}k | deadlock | bounded(k)
| p and q | p or q | p ) q | not p.

M : keyword (marking); deadlock, bounded: keywords; i, j:place indexes; a, b, k
:integers ; ⇤,+,�, and, or,), not: usual operators ; p, q: GMEC

The syntax (p) ! [0, b](q) denotes a leads to property meaning AG((p) imply
AE[0, b](q)). E.g. (p) ! [0, b](q) holds if and only if whenever p holds eventually
q will hold as well in [0, b] time units.

4.2 TCTL characterization of the compatibility property

From a behavioral point of view, two (or more) processes are said to be compat-
ible if they can interact correctly: this means that they can exchange the same
type of messages and the composite system does not suffer from the deadlock
problem. This leads us to distinguish between a syntactic compatibility which
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concerns the verification of the interfaces conformance and a semantic compati-
bility which is related to check the absence of deadlocks. We investigate in this
paper the analysis of the semantic compatibility.

But before this, let us define the composite system obtained from the su-
perposition of a number of syntactically compatible ToWF-nets. The composed
system N of nbX ToWF-nets N

1

... NnbX consists of all ToWF-nets which share
interface places, i.e. every place of N which is an input interface of a WF-net
is also an output place of another WF-net in the composition. Trivially, N can
be seen as a time Petri net with nbX input places and nbX output places. The
initial marking of N is M

0

=
PnbX

s=1

is.
According to [11,20,28], the compatibility is closely related to the absence

of deadlock in the composite system. They considered that two oWF-nets are
compatible if they can reach their final states. In addition to this condition, we
characterize the compatibility in ToWF-nets by the timing constraints respect.

In this direction, we define three classes of compatibility:

• Partial compatibility: A composed system N is partially compatible if it is
deadlock-free.

• Total Compatibility: A composed system N is compatible if N is already
partially compatible and furthermore, it guarantees the proper termination.

• Perfect compatibility: A composed system is perfectly compatible if it verifies
the total compatibility as well as the deadline constraints.

We focus here on formulating the three types of compatibility properties: par-
tial compatibility, total compatibility and perfect compatibility. Let us consider
the following:

• nbX: is the number of processes;
• nbp: is the number of places in a given process;
• nbi: is the number of interface places available in a composition;
• is: is the input place of the process number s.
• fs: is the output place of the process number s.

– Partial compatibility

To assure its partial compatibility, we have to check the absence of deadlock
in a composition. The process is deadlock-free if there is a transition allowed
for any marking except the final marking Mfin in which all the final places fs
(s = 1..nbX) are marked. This property is expressed as follows:

8M 2 [M
0

i, Mfin 2 [Mi

In TCTL, the deadlock-freeness can be expressed as "for all the executions
from the initial state, no deadlock will be encountered until the final state is
reached". For the final state, it suffices to check if the final places are marked.
Hence, the expression of the partial compatibility in TCTL is given as follows:

AG
[0,1[

((not MF ) ) not deadlock)
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where deadlock is a proposition which returns true iff there is no enabled
transition from the current state; and MF is a proposition on the marking Mfin

in which each final place contains at least one token.

MF =
nbX
^

s=1

M(fs) >= 1

Here we focus only on the arrival of tokens to final places and we don’t care
if the other places contains tokens or not.

– Total compatibility

Having expressed the partial compatibility, we focus here on the expression
of the property of proper termination in TCTL. This property allows the process
to complete its execution in any case, but at the time of termination, all places
of ToWF-nets must be empty except for the final places which must have one
token. Verifying the proper termination consists in checking the existence of a
marking M for which all places are empty except the output ones. The expression
of this property is given as follows:

8M 2 [M
0

i : M(fs) � 1 8s 2 {1, .., nbX} ) M =
PnbX

s=1

fs

In TCTL, this property (proper termination) is formulated as follows:

AF
[0,1[

StrictMF

Where StrictMF is a proposition on the marking ensuring exactly one token
in each final place fs and no tokens in all the other places including the interface
places.

StrictMF =
nbX
^

s=1

(
nbip
^

p=1

(M(p) = 0) ^ (M(fs) = 1)) ^ (
nbi
^
i=1

M(Ii) = 0)

In this definition, we used nbip to denote the number of places except the
final place for a process.

– Perfect compatibility

Here, we have to check the deadlock-freeness and the proper termination
taking into account the overall deadline constraint.

Let us consider that a process has to reach his final state in Tm time units.
The proper termination within this delay is expressed as follows:

AF
[0,Tm]

StrictMF

Hence, the perfect compatibility of a composition of ToWF-nets is ensured
iff:

– AG
[0,Tm]

((not MF ) ) not deadlock)
– AF

[0,Tm]

StrictMF
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4.3 On the fly model checking of ToWF-nets composition

We report in this section some results related to the verification of compatibility
and soundness properties of the composition of ToWF-nets. This verification is
ensured by Romeo since it implements an on the fly model checking algorithm
of TPN-TCTL properties.

Let us study the simple composition of ToWF-nets of figure 3. One can easily
see that no deadlock will be encountered until the final places will be marked.
Hence the partial compatibility is satisfied as proven in figure 4. Nevertheless,
the execution of transitions T

4

and T
5

of the second process leads to two tokens
in the place f

2

; which leads to violate the property of total compatibility. Figure
5 shows the negative result for this property and draws a trace.

Fig. 3. A composition of ToWF-nets satisfying the partial compatibility but not the
total compatibility

Let us now return to the case study given in figure 1. In order to check the
partial compatibility of the involved processes, we formulate the correspondant
TCTL formula as follows :

AG[0, inf ]((not (M(30) >= 1 and M(21) >= 1 and M(23) >= 1 and
M(28) >= 1)) ) not deadlock)

Where 30, 21, 23 and 28 are the indexes associated by Romeo to respectively
the places f

1

, f
4

, f
3

and f
2

.
Figure 6 draws a snapshot of a the verification of the partial compatibility

of the four processes involved in the composition. As we can see in the figure,
the result is true and hence the partial compatibility is ensured. The total com-
patibility characterized by the partial compatibility and the following formula is
also verified for this example:
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AF [0, inf ](M(30) = 1 and M(21) = 1 and M(23) = 1 and M(28) = 1 and
M(1) = 0 and M(1) = 0 and M(2) = 0 and M(3) = 0 and .. and M(36) = 0)

Fig. 4. Test of partial compatibility

Fig. 5. Test of total compatibility
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The perfect compatibility ensuring a proper termination with deadlock free-
ness within 210 hours is also verified for the example. However if we suggest a
perfect compatibility in less than 210 hours, the result is "false".

Fig. 6. Model checking the partial compatibility of the case study with Romeo

5 Related work

Several works dealt with compatibility analysis of Web services modeled either
by open workflow nets or other formalisms. Wil M. P. van der Aalst and al.
[4] considered that two services are compatible if their interfaces are compatible
and if in addition the composition does not suffer from a deadlock. They also
formalized other concepts related to the compatibility as strategy and control-
lability.

Lucas Bordeaux and al. [11] studied the verification of compatibility of Web
services assuming that the messages exchanged are semantically of the same type
and have the same name. They based their work on labeled transition systems
(LTS) for the modeling of Web services. Three types of compatibility have been
defined: the opposite behavior, unspecified reception and absence of deadlock.

Marlon Dumas and al. [17] have classified the incompatibility of Web services
into two types: 1) Incompatibility of signatures (it occurs when a service request
an operation from another service which can’t provide it) and 2) Protocol in-
compatibility which occurs when a service A engages in a series of interactions
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with a service B, but the order which undertakes the service A is not compatible
with the service B. hence, they focused on the incompatibility of protocols in
their article.

Wei Tan and al. [34] proposed an approach that checks interface compatibility
of Web services described by BPEL, and corrects these services if they are not
compatible. To do this, they modeled the composition by SWF-nets, a subclass
of CPN (Colored Petri Nets). Then they checked the compatibility of interfaces.

These works dealt with non timed processes while we focus on those aug-
mented by time information. Focusing on time constraints, Nawal Guermouche
and al. [23] proposed an approach that allows the automatic verification of the
compatibility taking into account their operations, the messages exchanged, the
data associated with messages and time constraints. To check the compatibility
of services using all of these properties, they proposed to extend the Web Services
Timed Transition System (WSTTS), while we chose to extend oWF-nets with
delays associated to activities. In addition, none of the approaches mentioned is
based on the formal verification of compatibility while we have used this method
in our approach. We mainly used the model checking formal method to check
the compatibility classes of ToWF-nets, witch shows a counter example in case
a property is violated allowing thus to recognize and correct the eventual errors
as early as possible.

6 Conclusion

Open workflow nets form a sub class of Petri nets which has been widely and
successfully used to model inter organizational business processes. In particular,
they successfully form a solid theoretical basis for modeling and analysis of Web
services composition. From a software engineering point of view, the construc-
tion of new services by composing existing ones raises a number of challenges.
The most important is the challenge to guarantee a correct interaction of inde-
pendent, communicating pieces of software. In deed, due to the message sending
nature of service interaction, many delicate errors might take place when several
services are put together (unreceived messages, deadlocks, contradictory behav-
iors, etc.). So far, it is necessary to ensure the proper functioning of each service
involved in the composition as well as their ability to be composed, their good
communication and the validity of their messages exchange.

In this context, we investigated in this paper the verification of open work-
flow nets compatibility as a main feature to ensure a correct composition and to
prevent eventual errors from occurring. In addition, we extended the oWF-nets
by timing constraints specifying the activities delays. For the proposed model
baptised Time oWF-net, we studied its semantics in terms of states evolution.
Then, we defined compatibility classes relative to ToWF-nets and emphasized a
formal method of their verification based on TCTL model checking. We finally
studied a case study in which four services interact with each other to reach a
common goal which is the awarding of pensions of handicapped persons. We con-
ducted a reachability analysis of this example in conformance with the method
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we propose and we model checked some of the proposed properties with the time
Petri net analyser Romeo. We presented, in addition, a simple example with a
violated property in order to show the generation of a counter example.

As a perspective, we propose to study the parametric verification of ToWF-
nets. In deed, this supposes to treat ToWF-nets modeling concurrent instances
and thus the consistency of time properties is of great interest.
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