=Paper=
{{Paper
|id=Vol-1172/CLEF2006wn-adhoc-GoniMenoyoEt2006
|storemode=property
|title=Report of MIRACLE Team for the Ad-Hoc Track in CLEF 2006
|pdfUrl=https://ceur-ws.org/Vol-1172/CLEF2006wn-adhoc-GoniMenoyoEt2006.pdf
|volume=Vol-1172
|dblpUrl=https://dblp.org/rec/conf/clef/Goni-MenoyoCV06
}}
==Report of MIRACLE Team for the Ad-Hoc Track in CLEF 2006==
Report of MIRACLE team for the Ad-Hoc track in CLEF 2006 José Miguel Goñi-Menoyo1, José Carlos González-Cristóbal1, 3 Julio Villena-Román2, 3 1 Universidad Politécnica de Madrid 2 Universidad Carlos III de Madrid 3 DAEDALUS - Data, Decisions and Language, S.A. josemiguel.goni@upm.es, josecarlos.gonzalez@upm.es, julio.villena@uc3m.es Abstract This paper presents the 2006 MIRACLE’s team approach to the AdHoc Information Retrieval track. The experiments for this campaign keep on testing our IR approach. First, a baseline set of runs is obtained, including standard components: stemming, transforming, filtering, entities detection and extracting, and others. Then, a extended set of runs is obtained using several types of combinations of these baseline runs. The improvements introduced for this campaign have been a few ones: we have used an entity recognition and indexing prototype tool into our tokenizing scheme, and we have run more combining experiments for the robust multilingual case than in previous campaigns. However, no significative improvements have been achieved. For the this campaign, runs were submitted for the following languages and tracks: - Monolingual: Bulgarian, French, Hungarian, and Portuguese. - Bilingual: English to Bulgarian, French, Hungarian, and Portuguese; Spanish to French and Portuguese; and French to Portuguese. - Robust monolingual: German, English, Spanish, French, Italian, and Dutch. - Robust bilingual: English to German, Italian to Spanish, and French to Dutch. - Robust multilingual: English to robust monolingual languages. We still need to work harder to improve some aspects of our processing scheme, being the most important, to our knowledge, the entities recognition and normalization. Categories and Subject Descriptors H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.2 Information Storage; H.3.3 Information Search and Retrieval ; H.3.4 Systems and Software. E.1 [Data Structures]; E.2 [Data Storage Representations]. H.2 [Database Management] Keywords Linguistic Engineering, Information Retrieval, Trie Indexing, more keywords 1 Introduction The MIRACLE team is made up of three university research groups located in Madrid (UPM, UC3M and UAM) along with DAEDALUS, a company founded in 1998 as a spin-off of two of these groups. DAEDALUS is a leading company in linguistic technologies in Spain and is the coordinator of the MIRACLE team. This is our fourth participation in CLEF, after years 2003, 2004, and 2005. As well as bilingual, monolingual and robust multilingual tasks, the team has participated in the ImageCLEF, Q&A, and GeoCLEF tracks. The starting point was a set of basic components: stemming, transformation (transliteration, elimination of diacritics and conversion to lowercase), filtering (elimination of stop and frequent words), proper nouns detection and extracting, and paragraph extracting, among others. Some of these basic components are used in different combinations and order of application for document indexing and for query processing. Results combinations were also tested, mainly by averaging or by selective combination of the documents retrieved by different approaches for a particular query. When evidence is found of better precision of one system at one extreme of the recall level (i.e. 1), complemented by the better precision of another system at the other recall end (i.e. 0), then both are combined to benefit from their complementary results. Our group has used its own indexing and retrieval engine, which is based on the trie data structure [1]. Tries have been successfully used by the MIRACLE team for years, as an efficient storage and retrieval of huge lexical resources, combined with a continuation-based approach to morphological treatment [15]. However, the adaptation of these structures to manage efficiently document indexing and retrieval for IR applications has been a hard task, mainly in the issues concerning the performance of the construction of the index. For this campaign, runs were submitted for the following languages and tracks: - Monolingual: Bulgarian, French, Hungarian, and Portuguese. - Bilingual: English to Bulgarian, French, Hungarian, and Portuguese; Spanish to French and Portuguese; and French to Portuguese. - Robust monolingual: German, English, Spanish, French, Italian, and Dutch. - Robust bilingual: English to German, Italian to Spanish, and French to Dutch. - Robust multilingual: English to robust monolingual languages. 2 Description of the MIRACLE Toolbox MIRACLE toolbox has already been described in previous campaigns papers [11], [12], [16]. We will say here that document collections and topics were pre-processed before feeding the indexing and retrieval engine, using different combinations of elementary processes. We will repeat here some relevant facts about these: - Extraction: The extraction treatment has a special filter for extracting topic queries in the case of the use of the narrative field: some patterns that were obtained from the topics of the past campaigns are eliminated, since they are recurrent and misleading in the retrieval process. For example, for English, we can mention patterns as “… are not relevant.”, or “…are to be excluded”. All the sentences that contain such patterns are filtered out. - Paragraphs extraction: We have not used paragraph indexing this year, since the results we have obtained in this campaign and past ones have been disappointing. - Tokenization: This process extracts basic text components, detecting and isolating punctuation symbols. Some basic entities are also treated, such as numbers, initials, abbreviations, years, and some proper nouns (see next item). The outcomes of this process are only single words, years that appear as numbers in the text (e.g. 1995, 2004, etc.), or entities. - Entities: We consider that entities detection and normalization plays a central role in Information Retrieval, but it is a difficult task. For this year we have integrated a special module in the tokenization process that detects and marks some entities that have been previously collected from several sources into a lexical database for entities. These entities, which can be people names, place names, initials, abbreviations, etc., can consist of one or more words and special symbols, and their correct treatment is integrated into the tokenizer. For now, no entity normalization is done, so the same entity can appear in different forms and these are treated as different entities. - Filtering: Stopwords lists in the target languages were initially obtained from [38], but were extended using several other sources and our own knowledge and resources. We have also compiled other lists of words to exclude from the indexing and querying processes, which were obtained from the topics of past CLEF editions and from our own background. We consider that such words have no semantics in the type of queries used in CLEF. As example, we can mention some of the English list: find, appear, relevant, document, report, etc. - Transformation: The items that resulted from tokenization were normalized by converting all uppercase letters to lowercase, and accents eliminated. This has not been done for Bulgarian. - Stemming: We used standard stemmers from Porter [28] for most languages, except for Hungarian and Bulgarian, where we used stemmers from Neuchatel [38]. - Indexing: When all the documents processed through a combination of the former steps are ready for indexing, they are fed into our indexing trie engine to build the document collection index. - Retrieval: When all the documents processed by a combination of the former steps are topic queries, they are fed to an ad-hoc front-end of the retrieval trie engine to search the previously built document collection index. In the 2006 experiments, only OR combinations of the search terms were used. The retrieval model used is the well-known Robertson’s Okapi BM-25 [32] formula for the probabilistic retrieval model, without relevance feedback. - Combination: After retrieval, some other special combination processes were used to define additional experiments: The results from some basic experiments can be combined in different ways. The underlying hypothesis is that, to some extent, the documents with a good score in almost all experiments are more likely to be relevant than other documents that have a good score in one experiment but a bad one in others. Two strategies were followed for combining experiments: ► Average: Relevance figures obtained in all the experiments to be combined for a particular document in a given query are added. This approach combines the relevance figures of the experiments without highlighting a particular experiment. ► Asymmetric WDX combination: In this particular type of combination, two experiments are combined in the following way: The relevance of the first D documents for each query of the first experiment is preserved for the resulting combined relevance, whereas the relevance for the remaining documents in both experiments are combined using weights W and X. For example, for experiments labeled “011”, the most relevant document from the first basic experiment is considered, and then all the remaining documents retrieved from the second basic experiment. Then all the obtained results are re-sorted using the obtained relevance measure values. 3 Description of the experiments The experiments name reflects the processes made on the documents collections and the topic sets. The naming scheme we have used this year is, for basic experiments, as follows:and are the standard two letter abbreviations for the documents or topic languages 1 (i.e. bg, de, en, es, fr, hu, it, nl, and pt), or ml for documents language in multilingual robust runs. Except for multilingual runs, should be identical. reflects the processes made on the documents collection for the experiment. The first letter is always 2 F (for indexing the full texts). The second letter is S or W. Letter S is used for the standard or baseline treatment: tokenization, filtering, stemming, and transformation; whereas W is used for a non-stemming treatment: tokenization, filtering, and transformation. reflects the processes made on the topics collection for the experiment. For monolingual runs, it also consists of two characters, being the second S or W, having the same meaning that in documents texts processing. The first character is one of the digits 2, 3, 4, 5 or 6; reflecting how many times the title (T), description (D) or narrative (N) of the topic has been taken into account, according to the following scheme: 2 (TD), 3 (TDN), 4 (TTTDN), 5 (TTTTDN), and 6 (TTTTDDN). For bilingual runs, some information is added before these two characters: the translation engine used and the standard two-letter code of the source topic language. For robust runs, the letter R is present in the first position of this field. The translation engine cndes used have been the following: L (Wordlingo [46]), W (Webtrance [34]), S (Systran [35]), V (Reverso [31]), A (Atrans [2]), B (Bultra [29]), and M (Mobicat [27]). For combining experiments, we depart from this scheme. In the position we indicate the type of combination: xWDX, for asymmetric WDX combination (see the meaning of the digits D, W, and X in the previous section); or y, for average combination of runs. In the position the runs that are combined are indicated in an ad-hoc, rather weird encoding. For example, run “nlx021nlRLfrFW4FS4” refers to a combined (robust) experiment made on the Dutch collection, with W=0, D=2, X=1, using French topics 1 These refer to the topic language of monolingual runs or the target language in a translated topic for cross-lingual runs. 2 The letter H was reserved for paragraphs indexing, process which was not made this year, as mentioned. translated into Dutch using the WordLingo [46] engine. The experiments combined are referred with FW4 and FS4, respectively. That means that the experiments are “nlFWnlRLfr4W” and “nlFSnlRLfr4S”. 3 Equally, for average experiments, run “fryfrFS3456” refers to an average-combining experiment run on the the French text collection, using French topics (monolingual), and averaging the results from runs FS3, FS4, FS5, and FS6; that is “frFSfr3S”, “frFSfr4S”, “frFSfr5S”, and “frFSfr6S”. For (robust) multilingual runs, a special naming convention is used. It will be described in a later section. 4 Monolingual and bilingual tasks The following figures and tables resume the performance of our best experiments in the monolingual and bilingual tasks. The details of all the experiments run and their performance figures and some graphic representations can be found in the appendix. Best monolingual runs Best bilingual runs 1 1 bgx101bgFS4FS5 bgFSbgWen3S enx101enFS3FS4 frFSfrVen3S frFSfr6S huFShuMen4S hux101huFS3FS4 ptFSptSfr3S ptx101ptFS3FS6 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Best average precision figures for each monolingual and bilingual language pair lang run avgp src-dst run avgp bg bgx101bgFS4FS5 0.3119 en-bg bgFSbgWen3S 0.2120 en enx101enFS3FS4 0.3965 en-hu huFShuMen4S 0.2420 fr frFSfr6S 0.4026 en-fr frFSfrVen3S 0.3868 hu hux101huFS3FS4 0.3089 de-fr frFSfrVde3S 0.3805 pt ptx101ptFS3FS6 0.4045 es-fr frFSfrSes3S 0.3511 pt-fr frFSfrSpt3S 0.3470 fr-pt ptFSptSfr3S 0.3750 en-pt ptFSptSen4S 0.2926 es-pt ptFSptLes6S 0.2838 Both in tthe monolingual and the bilingual cases, results obtained for “near” languages, such as French and Portuguese, are better than those obtained for Bulgarian and Hungarian. In the bilingual case, French experiments have better average precisions. Combined runs appear in several rows of the monolingual table, but in some cases, these runs were not submitted. We did not run combined bilingual experiments, so they do not appear in the bilingual table. Note that in all cases, the experiments having into account the topic narrative achieve best results. 5 Robust tasks The following figures and tables resume the performance of our best experiments in the monolingual and bilingual robust tasks. The details of all the experiments run and their performance figures and some graphic representations can be also found in the appendix. We have not used a different system or different types of runs for the robust case, so we just present the results obtained. Please, note that in these tables, geometric mean average precision figures are given instead average precision figures. 3 We have tested only some WDX sets: 011, 021, 091, 101, and 153. Regarding combined experiments, we tested these combinations: FS3FS4, FS3FS6, FS4FS5, FW3FS3, FW4FS4, FW4FS5, and FW4FS6. Best robust monolingual runs Best robust bilingual runs 1 1 dex011deRFW3FS3 esx011esRLitFW3FS3 enyenRFS3456 deFSdeRSen3S esFSesR3S nlFSnlRLfr6S frFSfrR3S itFSitR6S 0.8 nlFSnlR4S 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Best geometric mean average precision figures for each monolingual and bilingual language pair lang run gmavgp src-dst run gmavgp de deFSdeR6S 0.1198 en-de dex021deRSenFW3FS3 0.0662 en enFSenR3S 0.1016 fr-nl nlFSnlRLfr3S 0.1253 es esFSesR3S 0.2650 It-es esFSesRLit3S 0.0833 fr frFSfrR3S 0.1369 it itFSitR6S 0.1153 nl nlFSnlR4S 0.2073 In the monolingual case, results for Spanish are much better than those obtained for the rest of the languages. In all cases the use of baseline runs has obtained results better than the use of combined ones. Curiously, target language Dutch runs have results better than the runs in other languages. Note that in all cases, the experiments having into account the topic narrative have best results, as happened in the non-robust case. We used the traditional approach to multilingual information retrieval that translates topic queries to each of the documents collections. The probabilistic BM25 [32] approach used for monolingual retrieval gives relevance measures that depends heavily on parameters that are too dependent on the monolingual collection, so it is not very good for this type of multilingual merging, since relevance measures are not comparable among collections. In spite of this, we made merging experiments using the relevance figures obtained from each monolingual retrieval process, considering three cases: 4 - Using original relevance measures for each document as obtained from the monolingual retrieval process. The results are composed of the documents with greater relevance measures. - Normalizing relevance measures with respect to the maximum relevance measure obtained for each topic query i (normal normalization): reli reli norm = . reli max The results are composed of the documents with greater normalized relevance measures. - Normalizing relevance measures with respect to the maximum and minimum relevance measure obtained for each topic query i (alternate normalization): reli − reli min reli alt = reli max − reli min The results are composed of the documents with greater alternate normalized relevance measures. We denote if normalization is done in the run identifier using the last character: n means normal normalization whereas l denotes alternate normalization. When neither l nor n is present, no normalization has been made for that run. For this “standard multilingual approach”, the run naming convention follows this pattern: mlRSFS(de|en|es|fr|it|nl)([23456])S([ln]?) 4 Round-robin merging for results of each monolingual collection has not been used. where usual regular expression patterns are used, but inclosed in “()”. The meanings of the letters used should be evident from the described naming conventions for monolingual runs that are combined. Note that S is used both for “stemmed” and “Systran”. In addition to all this, we tried a different approach to merging: Considering that the more relevant documents for each of the topics are usually the first ones in the results list, we will select from each monolingual results file a variable number of documents, proportional of the average relevance number of the first N documents. Thus, if we need 1,000 documents for a given topic query, we will get more documents from languages where the average relevance of the first N relevant documents is greater. We did all this in two cases: 1. Using not normalized runs (we call it case X) to calculate the appropriate number of documents to aggregate. After having obtained such, the documents sets obtained are optionally normalized before merging (we tried not normalizing, and normalizing with both formulae). 2. Using normalized runs (we call it case Y) to calculate the appropriate number of documents to agregate. After obtaining such documents sets, merging is done. We also used both types of normalization. The several cases tested are encoded in the run identifier. The first two characters are “ml”, followed by two characters that indicate one of the two cases described above, and the parameters used: N Normalized Not normalized 1 1Y 1X 15 2Y 2X 75 3Y 3X 166 4Y 4X 300 5Y 5X 1000 6Y 6X following the rest of the run identifier. The full run identifier follows one of the patterns: ml([123456]X)RSFSen([23456])S([nl]?) ml([123456]Y)RSFSen([23456])S([nl]) where usual regular expression patterns are used, but inclosed in “()”. The same comments apply that for the previous naming scheme for multilingual runs. The following figure resume the performance of our best experiments in the multilingual robust task. The details of all the experiments run and their performance figures can be found in the appendix. We have not used a different system or different types of runs for the robust case, so we just present the results obtained. Please, note that in these tables, geometric mean average precision figures are given instead average precision figures. Robust multilingual runs from English 1 ml5XRSFSen3S ml2XRSFSen3S ml6XRSFSen4S ml5XRSFSen4S ml4XRSFSen4S 0.8 mlRSFSen2S 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 6 Conclusions and future work This year we have not changed a lot our previous processing scheme, although some improvements have been incorporated regarding proper nouns and entities detection and indexing. For this reason we think that the obtained results are quite similar to previous ones. We need to work harder in some stages of processing, especially these ones that can improve performance substantially. It is clear that the quality of the tokenization step is of paramount importance for precise document processing. We still think that a high-quality entity recognition (proper nouns or acronyms for people, companies, countries, locations, and so on) could improve the precision and recall figures of the overall retrieval, as well as a correct recognition and normalization of dates, times, numbers, etc. Although we have introduced some improvements in our processing scheme, a good multilingual entity recognition and normalization tool is still missing. This step is the one in which we are currently devoting more work. We are also mproving the architecture of our indexing and retrieval trie-based engine in order to get even better performance in the indexing and retrieval phases, tuning some data structures and algorithms. Acknowledgements This work has been partially supported by the Spanish R+D National Plan, by means of the project RIMMEL (Multilingual and Multimedia Information Retrieval, and its Evaluation), TIN2004-07588-C03-01; and by the Madrid’s R+D Regional Plan, by means of the project MAVIR (Enhancing the Access and the Visibility of Networked Multilingual Information for Madrid Community), S-0505/TIC/000267. Special mention to our colleagues of the MIRACLE team should be done (in alphabetical order): Ana María García-Serrano, José Carlos González-Cristóbal, Ana González-Ledesma, José Miguel Goñi-Menoyo, José Mª Guirao-Miras, Sara Lana-Serrano, José Luis Martínez-Fernández, Paloma Martínez-Fernández, Antonio Moreno-Sandoval and César de Pablo-Sánchez. Appendix: Tables and figures The results from our experiments follow. For each of the monolingual or bilingual tasks, we show a table with the precision at 0 and 1 points of recall, the average precision, the percentage deviation (in average precision) from best one obtained, the run identifier, and the precedence of the run, when the run was submitted. The results are sorted in average precision ascending order, but an asterisk marks all the best precision values for each column (in average precision, or in precision at 0 or 1 points of recall). In the case of the robust tasks, in addition to the columns indicated above, the tables include a column with the geometric mean average precision, and the rows are sorted using this figure in ascending order. The percentage deviation in this case refers to the average precision, in order to facilitate the comparison with the ordering using this number. In all cases a figure that compares the submitted runs and the best one, when it was the case that it was not submitted, is included for each task and language pair. The best run here refers that one with best average precision, not geometric mean average precision. Monolingual runs: Bulgarian 1 bgx101bgFS4FS5 bgFSbg3S bgx011bgFW4FS4 bgFSbg2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.5333 0.0858 0.2080 -33.31% bgFWbg2W 0.5544 0.0824 0.2240 -28.18% bgFWbg4W 0.5588 0.0730 0.2361 -24.30% bgFWbg3W 0.6530 0.0534 0.2476 -20.62% bgx153bgFW3FS3 0.5727 0.0572 0.2493 -20.07% bgx153bgFW4FS5 0.6136 0.0603 0.2503 -19.75% bgx153bgFW4FS6 0.5868 0.0594 0.2512 -19.46% bgx153bgFW4FS4 0.5817 0.0919 0.2752 -11.77% bgx091bgFW4FS6 0.5837 0.0930 0.2768 -11.25% bgx091bgFW4FS5 0.5844 0.0937* 0.2786 -10.68% bgx091bgFW4FS4 0.6386 0.0885 0.2786 -10.68% bgFSbg2S 3 0.5854 0.0890 0.2807 -10.00% bgx091bgFW3FS3 0.6648 0.0855 0.2857 -8.40% bgybgFS3FW3 0.6033 0.0908 0.2885 -7.50% bgx021bgFW4FS6 0.6136 0.0908 0.2901 -6.99% bgx011bgFW4FS6 0.5980 0.0917 0.2911 -6.67% bgx021bgFW4FS5 0.6033 0.0917 0.2926 -6.19% bgx011bgFW4FS5 0.6145 0.0910 0.2932 -6.00% bgx021bgFW3FS3 0.6072 0.0922 0.2939 -5.77% bgx021bgFW4FS4 0.6139 0.0922 0.2957 -5.19% bgx011bgFW4FS4 1 0.6396 0.0911 0.3001 -3.78% bgx011bgFW3FS3 0.6709 0.0908 0.3028 -2.92% bgFSbg6S 0.6623 0.0917 0.3052 -2.15% bgFSbg5S 0.6915* 0.0936 0.3063 -1.80% bgx101bgFS3FS6 0.6843 0.0911 0.3080 -1.25% bgFSbg3S 2 0.6837 0.0917 0.3098 -0.67% bgybgFS3456 0.6844 0.0936 0.3110 -0.29% bgx101bgFS3FS4 0.6721 0.0922 0.3112 -0.22% bgFSbg4S 0.6810 0.0919 0.3119* -0.00% bgx101bgFS4FS5 Monolingual runs: English 1 enx101enFS3FS4 enFSen3S enx101enFS3FS6 enFSen2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.5895 0.0728 0.2656 -33.01% enx153enFW3FS3 0.5839 0.0881 0.2717 -31.48% enx153enFW4FS5 0.5973 0.0877 0.2721 -31.37% enx153enFW4FS6 0.5950 0.0879 0.2764 -30.29% enx153enFW4FS4 0.6641 0.1186 0.3345 -15.64% enFWen2W 0.7141 0.1230 0.3553 -10.39% enFWen4W 0.6570 0.1251 0.3575 -9.84% enFSen2S 3 0.7163 0.1316 0.3583 -9.63% enFWen3W 0.7270* 0.1375 0.3766 -5.02% enyenFS3FW3 0.7105 0.1316 0.3867 -2.47% enx091enFW4FS6 0.7114 0.1338 0.3869 -2.42% enx091enFW4FS5 0.6947 0.1316 0.3869 -2.42% enFSen6S 0.7096 0.1283 0.3870 -2.40% enx021enFW4FS6 0.7188 0.1400 0.3873 -2.32% enx091enFW3FS3 0.7124 0.1316 0.3876 -2.24% enx011enFW4FS6 0.7106 0.1305 0.3880 -2.14% enx021enFW4FS5 0.7117 0.1336 0.3882 -2.09% enx091enFW4FS4 0.6972 0.1338 0.3886 -1.99% enFSen5S 0.7139 0.1338 0.3893 -1.82% enx011enFW4FS5 0.7095 0.1371 0.3901 -1.61% enx021enFW3FS3 0.7052 0.1337 0.3907 -1.46% enx101enFS4FS5 0.6962 0.1354 0.3914 -1.29% enyenFS3456 0.7117 0.1336 0.3923 -1.06% enx021enFW4FS4 0.7144 0.1369 0.3930 -0.88% enx011enFW4FS4 0.7040 0.1369 0.3930 -0.88% enFSen4S 0.6985 0.1363 0.3934 -0.78% enx101enFS3FS6 2 0.7170 0.1404* 0.3940 -0.63% enx011enFW3FS3 0.7083 0.1404* 0.3945 -0.50% enFSen3S 1 0.7023 0.1376 0.3965* -0.00% enx101enFS3FS4 Monolingual runs: French 1 frFSfr6S frx101frFS3FS6 frFSfr4S frFSfr2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.6559 0.0766 0.2990 -25.73% frx153frFW4FS5 0.6562 0.0787 0.2998 -25.53% frx153frFW3FS3 0.6810 0.0776 0.3004 -25.38% frx153frFW4FS4 0.7025 0.0757 0.3040 -24.49% frx153frFW4FS6 0.6710 0.0701 0.3271 -18.75% frFWfr2W 0.7171 0.0928 0.3559 -11.60% frFWfr3W 0.7137 0.0955 0.3575 -11.20% frFWfr4W 0.7901 0.0756 0.3794 -5.76% frFSfr2S 3 0.7229 0.1002 0.3803 -5.54% frx091frFW4FS5 0.7264 0.1073 0.3808 -5.41% frx091frFW3FS3 0.7235 0.1020 0.3821 -5.09% frx091frFW4FS4 0.7252 0.0977 0.3838 -4.67% frx091frFW4FS6 0.7426 0.1080* 0.3845 -4.50% frx011frFW3FS3 0.7420 0.1080* 0.3850 -4.37% frx021frFW3FS3 0.7377 0.1019 0.3857 -4.20% frx021frFW4FS5 0.7490 0.0996 0.3876 -3.73% fryfrFS3FW3 0.7420 0.1034 0.3877 -3.70% frx021frFW4FS4 0.7532 0.1019 0.3893 -3.30% frx011frFW4FS5 0.7662 0.1080* 0.3913 -2.81% frFSfr3S 0.7510 0.0993 0.3917 -2.71% frx021frFW4FS6 0.7559 0.1034 0.3924 -2.53% frx011frFW4FS4 0.7861 0.1019 0.3954 -1.79% frFSfr5S 0.7693 0.0993 0.3967 -1.47% frx011frFW4FS6 0.7901 0.1030 0.3973 -1.32% frx101frFS4FS5 0.8008 0.1059 0.3984 -1.04% frx101frFS3FS4 0.7888 0.1034 0.3992 -0.84% frFSfr4S 2 0.7796 0.1044 0.3994 -0.79% fryfrFS3456 0.8034* 0.1039 0.4003 -0.57% frx101frFS3FS6 1 0.7867 0.0993 0.4026* -0.00% frFSfr6S Monolingual runs: Hungarian 1 hux101huFS3FS4 huFShu4S huFShu2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.5137 0.0449 0.2010 -34.93% huFWhu3W 0.5354 0.0450 0.2034 -34.15% huFWhu2W 0.5282 0.0464 0.2113 -31.60% huFWhu4W 0.6257 0.0358 0.2429 -21.37% hux153huFW3FS3 0.6579 0.0500 0.2533 -18.00% hux153huFW4FS6 0.6586 0.0527 0.2546 -17.58% hux153huFW4FS5 0.6610 0.0508 0.2572 -16.74% hux153huFW4FS4 0.5611 0.0640 0.2584 -16.35% hux091huFW3FS3 0.5690 0.0734 0.2641 -14.50% hux091huFW4FS5 0.5705 0.0730 0.2653 -14.11% hux091huFW4FS6 0.5699 0.0759 0.2663 -13.79% hux091huFW4FS4 0.6581 0.0644 0.2768 -10.39% huyhuFS3FW3 0.6164 0.0692 0.2796 -9.49% hux021huFW3FS3 0.7401 0.0693 0.2842 -8.00% huFShu2S 3 0.6274 0.0787 0.2853 -7.64% hux021huFW4FS5 0.6345 0.0692 0.2865 -7.25% hux011huFW3FS3 0.6334 0.0797 0.2871 -7.06% hux021huFW4FS6 0.6358 0.0812* 0.2886 -6.57% hux021huFW4FS4 0.6458 0.0787 0.2890 -6.44% hux011huFW4FS5 0.6588 0.0797 0.2911 -5.76% hux011huFW4FS6 0.6572 0.0812* 0.2927 -5.24% hux011huFW4FS4 0.7417 0.0692 0.3029 -1.94% huFShu3S 0.7227 0.0787 0.3043 -1.49% huFShu5S 0.7225 0.0804 0.3058 -1.00% hux101huFS4FS5 0.7498 0.0797 0.3074 -0.49% huFShu6S 0.7435 0.0737 0.3077 -0.39% hux101huFS3FS6 0.7430 0.0807 0.3077 -0.39% huyhuFS3456 0.7525* 0.0812* 0.3085 -0.13% huFShu4S 2 0.7445 0.0747 0.3089* -0.00% hux101huFS3FS4 1 Monolingual runs: Portuguese 1 ptx101ptFS3FS6 ptFSpt3S ptx021ptFW3FS3 ptFSpt2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.6964 0.0750 0.3406 -15.80% ptx153ptFW4FS5 0.7098 0.0773 0.3427 -15.28% ptx153ptFW4FS4 0.7157 0.0768 0.3453 -14.64% ptx153ptFW4FS6 0.7466 0.0641 0.3531 -12.71% ptx153ptFW3FS3 0.7836 0.0563 0.3539 -12.51% ptFWpt2W 0.7911 0.0526 0.3633 -10.19% ptFWpt3W 0.7872 0.0652 0.3656 -9.62% ptFWpt4W 0.7597 0.0677 0.3902 -3.54% ptFSpt2S 3 0.7966 0.0621 0.3942 -2.55% ptx091ptFW3FS3 0.7974 0.0768 0.3943 -2.52% ptx091ptFW4FS5 0.8183 0.0644 0.3950 -2.35% ptyptFS3FW3 0.7800 0.0768 0.3964 -2.00% ptFSpt5S 0.7947 0.0768 0.3964 -2.00% ptx021ptFW4FS5 0.7904 0.0768 0.3965 -1.98% ptx011ptFW4FS5 0.7996 0.0776 0.3969 -1.88% ptx091ptFW4FS4 0.8148 0.0621 0.3977 -1.68% ptx011ptFW3FS3 0.8083 0.0621 0.3980 -1.61% ptx021ptFW3FS3 1 0.7860 0.0767 0.3990 -1.36% ptx101ptFS4FS5 0.7992 0.0775 0.3995 -1.24% ptx091ptFW4FS6 0.8014 0.0776 0.3998 -1.16% ptx021ptFW4FS4 0.7970 0.0776 0.3999 -1.14% ptx011ptFW4FS4 0.7896 0.0776 0.4000 -1.11% ptFSpt4S 0.7891 0.0777* 0.4013 -0.79% ptyptFS3456 0.8314* 0.0621 0.4017 -0.69% ptFSpt3S 2 0.8068 0.0769 0.4024 -0.52% ptx101ptFS3FS4 0.8031 0.0775 0.4028 -0.42% ptx021ptFW4FS6 0.7992 0.0775 0.4031 -0.35% ptx011ptFW4FS6 0.7846 0.0775 0.4036 -0.22% ptFSpt6S 0.8044 0.0764 0.4045* -0.00% ptx101ptFS3FS6 Bilingual to Bulgarian Bilingual runs: English to Bulgarian 1 bgFSbgWen3S bgFSbgWen2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.3082 0.0343 0.1151 -45.71% bgFWbgWen2W 0.3139 0.0358 0.1316 -37.92% bgFWbgWen4W 0.3644 0.0292 0.1428 -32.64% bgFWbgWen3W 0.4821 0.0460 0.1739 -17.97% bgFSbgWen2S 2 0.4895 0.0510 0.1859 -12.31% bgFSbgWen5S 0.5192 0.0524* 0.1929 -9.01% bgFSbgWen4S 0.5468 0.0507 0.1966 -7.26% bgFSbgWen6S 0.5662* 0.0475 0.2120* -0.00% bgFSbgWen3S 1 Bilingual runs: X to French 1 frFSfrVen3S frFSfrSen4S frFSfrSes3S frFSfrXes3S frFSfrSes4S 0.8 frFSfrSen2S 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.6453 0.0483 0.2649 -31.51% frFWfrAes2W 0.5469 0.0630 0.2658 -31.28% frFWfrSen2W 0.6595 0.0482 0.2725 -29.55% frFWfrSes2W 0.5914 0.0555 0.2794 -27.77% frFWfrSpt2W 0.6508 0.0532 0.2814 -27.25% frFWfrAes4W 0.6608 0.0553 0.2885 -25.41% frFWfrSes4W 0.5810 0.0677 0.2902 -24.97% frFWfrVen2W 0.6717 0.0553 0.2922 -24.46% frFWfrAes3W 0.6192 0.0716 0.2930 -24.25% frFWfrSpt3W 0.6304 0.0676 0.2934 -24.15% frFWfrSpt4W 0.5856 0.0891 0.2948 -23.78% frFWfrSen4W 0.6747 0.0611 0.2983 -22.88% frFWfrSes3W 0.6225 0.0744 0.3058 -20.94% frFWfrVde2W 0.6783 0.0611 0.3115 -19.47% frFSfrAes2S 0.6502 0.0883 0.3158 -18.36% frFWfrSen3W 0.6897 0.0629 0.3179 -17.81% frFSfrSes2S 0.6421 0.0963 0.3239 -16.26% frFWfrVen4W 0.6860 0.0688 0.3239 -16.26% frFSfrSpt2S 0.6877 0.0765 0.3312 -14.37% frFSfrAes6S 0.6765 0.0723 0.3320 -14.17% frFSfrSen2S 4 0.6605 0.0752 0.3335 -13.78% frFWfrVde4W 0.6974 0.0822 0.3353 -13.31% frFSfrSpt5S 0.7124 0.0795 0.3371 -12.85% frFSfrAes5S 0.6730 0.0743 0.3380 -12.62% frFSfrVde2S 0.6626 0.0842 0.3381 -12.59% frFWfrVde3W 0.6910 0.0792 0.3382 -12.56% frFSfrSes6S 0.6944 0.0806 0.3385 -12.49% frFSfrSpt6S 0.6905 0.0828 0.3394 -12.25% frFSfrVen2S 0.6821 0.0887 0.3409 -11.87% frFSfrSen5S 0.7005 0.0878 0.3416 -11.69% frFSfrSpt4S 0.7088 0.0834 0.3425 -11.45% frFSfrAes4S 0.7095 0.1086 0.3438 -11.12% frFWfrVen3W 0.6781 0.0906 0.3441 -11.04% frFSfrAes3S 0.7157 0.0821 0.3443 -10.99% frFSfrSes5S 0.7157 0.0923 0.3470 -10.29% frFSfrSpt3S 0.7121 0.0864 0.3503 -9.44% frFSfrSes4S 3 0.6721 0.0973 0.3505 -9.38% frFSfrXes3S 2 0.6781 0.0979 0.3511 -9.23% frFSfrSes3S 0.6906 0.0993 0.3533 -8.66% frFSfrSen4S 1 0.6890 0.1002 0.3543 -8.40% frFSfrSen6S 0.6972 0.0879 0.3590 -7.19% frFSfrVde5S 0.7051 0.0838 0.3602 -6.88% frFSfrVde6S 0.7629 0.1182 0.3677 -4.94% frFSfrVen5S 0.7080 0.1067 0.3713 -4.01% frFSfrSen3S 0.7619 0.1292 0.3750 -3.05% frFSfrVen4S 0.7524 0.1303 0.3772 -2.48% frFSfrVen6S 0.7274 0.1027 0.3776 -2.38% frFSfrVde4S 0.7473 0.1089 0.3805 -1.63% frFSfrVde3S 0.7797* 0.1360* 0.3868* -0.00% frFSfrVen3S Bilingual runs: English to Hungarian 1 huFShuMen4S huFShuMen2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.4605 0.0222 0.1518 -37.27% huFWhuMen2W 0.5529 0.0191 0.1638 -32.31% huFWhuMen3W 0.5021 0.0205 0.1774 -26.69% huFWhuMen4W 0.5825 0.0445 0.2196 -9.26% huFShuMen2S 2 0.6275* 0.0472* 0.2277 -5.91% huFShuMen3S 0.5855 0.0465 0.2366 -2.23% huFShuMen5S 0.5962 0.0455 0.2417 -0.12% huFShuMen6S 0.6105 0.0463 0.2420* -0.00% huFShuMen4S 1 Bilingual runs: X to Portuguese 1 ptFSptSfr3S ptFSptSen4S ptFSptSen3S ptFSptLes6S ptFSptLes3S 0.8 ptFSptSen2S 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp % run x 0.5779 0.0418 0.2356 -37.17% ptFWptSen2W 0.6175 0.0280 0.2451 -34.64% ptFWptLes2W 0.6709 0.0257 0.2507 -33.15% ptFWptLes3W 0.6435 0.0283 0.2538 -32.32% ptFWptLes4W 0.5846 0.0442 0.2550 -32.00% ptFWptSen4W 0.6023 0.0437 0.2556 -31.84% ptFWptSen3W 0.6318 0.0449 0.2650 -29.33% ptFSptSen2S 4 0.6462 0.0325 0.2788 -25.65% ptFSptLes2S 0.7038 0.0307 0.2799 -25.36% ptFSptLes3S 1 0.6389 0.0343 0.2803 -25.25% ptFSptLes5S 0.6759 0.0341 0.2829 -24.56% ptFSptLes4S 0.6827 0.0367 0.2838 -24.32% ptFSptLes6S 0.6768 0.0501 0.2887 -23.01% ptFSptSen5S 0.6572 0.0522 0.2896 -22.77% ptFSptSen6S 0.6712 0.0517 0.2898 -22.72% ptFSptSen3S 3 0.6646 0.0501 0.2926 -21.97% ptFSptSen4S 0.7054 0.0567 0.3190 -14.93% ptFWptSfr2W 0.7145 0.0708 0.3352 -10.61% ptFWptSfr4W 0.7365 0.0654 0.3430 -8.53% ptFWptSfr3W 0.7514 0.0693 0.3501 -6.64% ptFSptSfr2S 0.7875 0.0771 0.3693 -1.52% ptFSptSfr5S 0.7695 0.0801 0.3712 -1.01% ptFSptSfr6S 0.7993 0.0798 0.3743 -0.19% ptFSptSfr4S 0.8171* 0.0847* 0.3750* -0.00% ptFSptSfr3S 2 Robust monolingual runs: German 1 dex011deRFW3FS3 dex021deRFW3FS3 deFSdeR3S deFSdeR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.6190 0.0691 0.3005 0.0747 -22.21% deFWdeR2W 0.6276 0.0706 0.3266 0.0896 -15.45% deFWdeR4W 0.6427 0.0858 0.3479 0.0896 -9.94% deFWdeR3W 0.6674 0.0924 0.3406 0.1061 -11.83% deFSdeR2S 4 0.6525 0.0844 0.3600 0.1095 -6.81% dex021deRFW4FS5 0.6565 0.0844 0.3624 0.1112 -6.19% dex011deRFW4FS5 0.6719 0.0844 0.3647 0.1129 -5.59% deFSdeR5S 0.6559 0.0900 0.3655 0.1143 -5.38% dex021deRFW4FS4 0.6676 0.1067 0.3831 0.1149 -0.83% dex021deRFW3FS3 2 0.6602 0.0900 0.3678 0.1155 -4.79% dex011deRFW4FS4 0.6865* 0.1034 0.3803 0.1155 -1.55% deFSdeR3S 3 0.6709 0.1101* 0.3863* 0.1159 -0.00% dex011deRFW3FS3 1 0.6548 0.0934 0.3639 0.1163 -5.80% dex021deRFW4FS6 0.6611 0.0951 0.3672 0.1178 -4.94% dex011deRFW4FS6 0.6782 0.0950 0.3745 0.1178 -3.05% deydeRFS3456 0.6810 0.0900 0.3726 0.1178 -3.55% deFSdeR4S 0.6729 0.0984 0.3729 0.1198 -3.47% deFSdeR6S Robust monolingual runs: English 1 enyenRFS3456 enFSenR5S enFSenR3S enFSenR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.6284 0.1457 0.3657 0.0738 -15.70% enFWenR2W 0.6462 0.1587 0.3961 0.0833 -8.69% enFWenR4W 0.6570 0.1614 0.3969 0.0893 -8.51% enFSenR2S 4 0.6582 0.1623 0.4019 0.0901 -7.35% enFWenR3W 0.6604 0.1680 0.4158 0.0937 -4.15% enx021enRFW4FS5 0.6583 0.1712 0.4152 0.0951 -4.29% enx021enRFW4FS6 0.6664 0.1697 0.4214 0.0952 -2.86% enx011enRFW4FS5 0.6597 0.1698 0.4168 0.0954 -3.92% enx021enRFW4FS4 0.6684 0.1721 0.4200 0.0966 -3.18% enx011enRFW4FS6 0.6665 0.1715 0.4208 0.0967 -3.00% enx011enRFW4FS4 0.6798 0.1747 0.4302 0.0968 -0.83% enFSenR5S 2 0.6704 0.1765 0.4275 0.0974 -1.45% enFSenR4S 0.6791 0.1737 0.4248 0.0976 -2.07% enFSenR6S 0.6842* 0.1777* 0.4338* 0.0999 -0.00% enyenRFS3456 1 0.6652 0.1716 0.4236 0.1006 -2.35% enx011enRFW3FS3 0.6686 0.1711 0.4211 0.1007 -2.93% enx021enRFW3FS3 0.6723 0.1725 0.4289 0.1016 -1.13% enFSenR3S 3 Robust monolingual runs: Spanish 1 esFSesR3S esx011esRFW3FS3 esx021esRFW3FS3 esFSesR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run z 0.6928 0.0769 0.3523 0.1486 -23.15% esFWesR2W 0.7068 0.1027 0.3865 0.1742 -15.68% esFWesR4W 0.7246 0.1140 0.3980 0.1874 -13.18% esFWesR3W 0.7332 0.0976 0.4040 0.1964 -11.87% esFSesR2S 4 0.7334 0.1139 0.4194 0.2113 -8.51% esx021esRFW4FS5 0.7386 0.1149 0.4210 0.2125 -8.16% esx011esRFW4FS5 0.7351 0.1145 0.4243 0.2148 -7.44% esx021esRFW4FS6 0.7423 0.1155 0.4261 0.2163 -7.05% esx011esRFW4FS6 0.7718 0.1161 0.4283 0.2168 -6.57% esFSesR5S 0.7315 0.1185 0.4235 0.2186 -7.61% esx021esRFW4FS4 0.7377 0.1195 0.4255 0.2200 -7.18% esx011esRFW4FS4 0.7791 0.1167 0.4338 0.2208 -5.37% esFSesR6S 0.7751 0.1207 0.4329 0.2245 -5.56% esFSesR4S 0.7730 0.1209 0.4384 0.2252 -4.36% esyesRFS3456 0.7825 0.1295 0.4350 0.2407 -5.10% esFSesRJ4S 0.7810 0.1286 0.4412 0.2491 -3.75% esFSesRJ5S 0.7988 0.1296* 0.4448 0.2548 -2.97% esFSesRJ6S 0.7539 0.1255 0.4446 0.2561 -3.01% esx021esRFW3FS3 3 0.8034 0.1296* 0.4469 0.2565 -2.51% esFSesRJ7S 0.8041 0.1293 0.4473 0.2567 -2.42% esFSesRJ9S 0.8069 0.1293 0.4474 0.2567 -2.40% esFSesRJ8S 0.8119 0.1262 0.4524 0.2582 -1.31% esFSesRJ2S 0.7650 0.1268 0.4509 0.2605 -1.64% esx011esRFW3FS3 2 0.8104 0.1274 0.4562 0.2606 -0.48% esFSesRJ33S 0.8186* 0.1274 0.4569 0.2638 -0.33% esFSesRJ1S 0.8180 0.1281 0.4583 0.2646 -0.02% esFSesRJ3S 0.8186* 0.1281 0.4584* 0.2650 -0.00% esFSesR3S 1 Robust monolingual runs: French 1 frFSfrR3S fryfrRFS3456 frx011frRFW3FS3 frFSfrR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.6191 0.1397 0.3184 0.0808 -25.15% frFWfrR2W 0.6376 0.1618 0.3519 0.0976 -17.28% frFWfrR4W 0.6633 0.1734 0.3740 0.1046 -12.08% frFWfrR3W 0.6772 0.1822 0.3849 0.1187 -9.52% frFSfrR2S 4 0.6656 0.1809 0.3876 0.1238 -8.89% frx021frRFW4FS5 0.6730 0.1842 0.3907 0.1251 -8.16% frx011frRFW4FS5 0.6653 0.1827 0.3926 0.1266 -7.71% frx021frRFW4FS6 0.6649 0.1847 0.3940 0.1271 -7.38% frx021frRFW4FS4 0.6742 0.1861 0.3973 0.1286 -6.61% frx011frRFW4FS6 0.7029 0.1942 0.4063 0.1288 -4.49% frFSfrR5S 0.6731 0.1880 0.3984 0.1290 -6.35% frx011frRFW4FS4 0.6930 0.1961 0.4120 0.1321 -3.15% frFSfrR6S 0.6956 0.1980 0.4133 0.1325 -2.84% frFSfrR4S 0.6954 0.1981 0.4154 0.1336 -2.35% fryfrRFS3456 2 0.6910 0.1869 0.4102 0.1337 -3.57% frx021frRFW3FS3 0.6969 0.1886 0.4141 0.1350 -2.66% frx011frRFW3FS3 3 0.7039* 0.1986* 0.4254* 0.1369 -0.00% frFSfrR3S 1 Robust monolingual runs: Italian 1 itFSitR6S ityitRFS3456 itFSitR4S itFSitR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.6004 0.1061 0.3107 0.0773 -17.85% itFWitR2W 0.6486 0.1245 0.3406 0.0854 -9.94% itFWitR3W 0.6460 0.1245 0.3367 0.0870 -10.97% itFWitR4W 0.6566 0.1268 0.3511 0.1050 -7.17% itFSitR2S 4 0.6594 0.1422 0.3616 0.1082 -4.39% itx021itRFW4FS5 0.6680 0.1322 0.3626 0.1092 -4.12% itx021itRFW3FS3 0.6644 0.1439 0.3644 0.1095 -3.65% itx011itRFW4FS5 0.6603 0.1424 0.3657 0.1099 -3.31% itx021itRFW4FS4 0.6608 0.1413 0.3652 0.1108 -3.44% itx021itRFW4FS6 0.6779 0.1338 0.3689 0.1112 -2.46% itx011itRFW3FS3 0.6682 0.1385 0.3718 0.1113 -1.69% itFSitR3S 0.6701 0.1440 0.3684 0.1113 -2.59% itx011itRFW4FS4 0.6713 0.1489 0.3726 0.1118 -1.48% itFSitR5S 0.6696 0.1430 0.3681 0.1123 -2.67% itx011itRFW4FS6 0.6798 0.1490 0.3761 0.1135 -0.56% itFSitR4S 3 0.6813 0.1492* 0.3780 0.1146 -0.05% ityitRFS3456 2 0.6895* 0.1480 0.3782* 0.1153 -0.00% itFSitR6S 1 Robust monolingual runs: Dutch 1 nlFSnlR4S nlynlRFS3456 nlx011nlRFW4FS4 nlFSnlR2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.7105 0.1420 0.3960 0.1413 -12.04% nlFWnlR2W 0.7181 0.1388 0.4113 0.1720 -8.64% nlFWnlR3W 0.7212 0.1467 0.4189 0.1722 -6.95% nlFWnlR4W 0.7368 0.1451 0.4237 0.1731 -5.89% nlFSnlR2S 4 0.7343 0.1476 0.4370 0.1954 -2.93% nlx021nlRFW3FS3 0.7372 0.1476 0.4380 0.1963 -2.71% nlx011nlRFW3FS3 0.7476 0.1476 0.4393 0.1969 -2.42% nlFSnlR3S 0.7413 0.1501 0.4437 0.2025 -1.44% nlx021nlRFW4FS5 0.7371 0.1552 0.4446 0.2035 -1.24% nlx021nlRFW4FS6 0.7459 0.1491 0.4463 0.2042 -0.87% nlx011nlRFW4FS5 0.7520* 0.1491 0.4474 0.2045 -0.62% nlFSnlR5S 0.7408 0.1562* 0.4472 0.2049 -0.67% nlx011nlRFW4FS6 0.7449 0.1562* 0.4478 0.2050 -0.53% nlFSnlR6S 0.7432 0.1504 0.4459 0.2051 -0.96% nlx021nlRFW4FS4 0.7454 0.1510 0.4488 0.2067 -0.31% nlx011nlRFW4FS4 3 0.7515 0.1544 0.4499 0.2068 -0.07% nlynlRFS3456 2 0.7504 0.1510 0.4502* 0.2073 -0.00% nlFSnlR4S 1 Robust bilingual runs: English to German 1 deFSdeRSen3S deFSdeRSen4S deydeRSenFS3456 deFSdeRSen2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.5251 0.0409 0.2458 0.0303 -24.21% deFWdeRSen2W 0.5548 0.0484 0.2688 0.0378 -17.11% deFWdeRSen4W 0.5673 0.0496 0.2809 0.0448 -13.38% deFWdeRSen3W 0.5735 0.0667 0.2912 0.0507 -10.21% deFSdeRSen2S 4 0.5757 0.0585 0.2997 0.0530 -7.59% dex021deRSenFW4FS5 0.5902 0.0610 0.3043 0.0540 -6.17% dex011deRSenFW4FS5 0.6054 0.0669 0.3135 0.0549 -3.33% deFSdeRSen5S 0.5776 0.0598 0.3023 0.0555 -6.78% dex021deRSenFW4FS6 0.5923 0.0629 0.3075 0.0566 -5.18% dex011deRSenFW4FS6 0.5789 0.0618 0.3070 0.0575 -5.33% dex021deRSenFW4FS4 0.6085 0.0706 0.3185 0.0577 -1.79% deFSdeRSen6S 0.5935 0.0644 0.3115 0.0587 -3.95% dex011deRSenFW4FS4 0.6208 0.0707 0.3213 0.0598 -0.93% deydeRSenFS3456 3 0.6137 0.0709 0.3220 0.0600 -0.71% deFSdeRSen4S 2 0.6008 0.0687 0.3164 0.0647 -2.44% dex011deRSenFW3FS3 0.6271* 0.0745* 0.3243* 0.0659 -0.00% deFSdeRSen3S 1 0.5983 0.0663 0.3133 0.0662 -3.39% dex021deRSenFW3FS3 Robust bilingual runs: French to Dutch 1 nlFSnlRLfr6S nlx011nlRLfrFW4FS6 nlx021nlRLfrFW4FS6 nlFSnlRLfr2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.6158 0.1164 0.3309 0.0738 -11.05% nlFWnlRLfr2W 0.6338 0.1140 0.3507 0.0886 -5.73% nlFWnlRLfr4W 0.6523 0.1236 0.3537 0.0975 -4.92% nlFSnlRLfr2S 4 0.6632 0.1219 0.3664 0.1025 -1.51% nlFSnlRLfr5S 0.6503 0.1237 0.3653 0.1029 -1.80% nlx021nlRLfrFW4FS5 0.6506 0.1219 0.3644 0.1029 -2.04% nlx011nlRLfrFW4FS5 0.6340 0.1072 0.3536 0.1032 -4.95% nlFWnlRLfr3W 0.6528 0.1307* 0.3692 0.1075 -0.75% nlx021nlRLfrFW4FS6 3 0.6536 0.1256 0.3682 0.1078 -1.02% nlx021nlRLfrFW4FS4 0.6696* 0.1300 0.3720* 0.1078 --0.00% nlFSnlRLfr6S 1 0.6544 0.1245 0.3677 0.1080 -1.16% nlx011nlRLfrFW4FS4 0.6560 0.1300 0.3699 0.1080 -0.56% nlx011nlRLfrFW4FS6 2 0.6657 0.1245 0.3680 0.1085 -1.08% nlFSnlRLfr4S 0.6684 0.1246 0.3687 0.1092 -0.89% nlynlRLfrFS3456 0.6421 0.1207 0.3621 0.1234 -2.66% nlx021nlRLfrFW3FS3 0.6457 0.1207 0.3614 0.1238 -2.85% nlx011nlRLfrFW3FS3 0.6658 0.1207 0.3634 0.1253 -2.31% nlFSnlRLfr3S Robust bilingual runs: Italian to Spanish 1 esx011esRLitFW3FS3 esx021esRLitFW3FS3 esFSesRLit3S esFSesRLit2S 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.4699 0.0384 0.2113 0.0361 -31.13% esFWesRLit2W 0.5072 0.0479 0.2511 0.0448 -18.16% esFWesRLit4W 0.5331 0.0548 0.2663 0.0554 -13.20% esFWesRLit3W 0.5671 0.0553 0.2689 0.0620 -12.35% esFSesRLit2S 4 0.5448 0.0663 0.2804 0.0643 -8.60% esx021esRLitFW4FS5 0.5524 0.0663 0.2818 0.0646 -8.15% esx011esRLitFW4FS5 0.5461 0.0686 0.2884 0.0668 -6.00% esFSesRLit5S 0.5933 0.0663 0.2884 0.0698 -6.00% esx021esRLitFW4FS4 0.5568 0.0686 0.2910 0.0709 -5.15% esx011esRLitFW4FS4 0.5463 0.0653 0.2881 0.0713 -6.10% esx021esRLitFW4FS6 0.5562 0.0653 0.2902 0.0723 -5.41% esx011esRLitFW4FS6 0.6019 0.0686 0.2963 0.0730 -3.42% esFSesRLit4S 0.6054 0.0691 0.2995 0.0740 -2.38% esyesRLitFS3456 0.5903 0.0653 0.2953 0.0743 -3.75% esFSesRLit6S 0.5719 0.0704* 0.3042 0.0812 -0.85% esx021esRLitFW3FS3 2 0.5836 0.0704* 0.3068* 0.0826 -0.00% esx011esRLitFW3FS3 1 0.6140* 0.0637 0.3037 0.0833 -1.01% esFSesRLit3S 3 Robust multilingual runs from English 1 ml5XRSFSen3S ml2XRSFSen3S ml6XRSFSen4S ml5XRSFSen4S ml4XRSFSen4S 0.8 mlRSFSen2S 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 at0 at1 avgp gmap % run x 0.7026 0.0000 0.2079 0.1047 -21.13% mlRSFSen2Sl 0.7246 0.0028 0.2245 0.1072 -14.83% mlRSFSen5S 0.7533 0.0031* 0.2267 0.1104 -14.00% mlRSFSen2S 4 0.7561 0.0000 0.2219 0.1117 -15.82% mlRSFSen5Sl 0.7027 0.0008 0.2113 0.1125 -19.84% ml6YRSFSen2Sl 0.7040 0.0005 0.2141 0.1142 -18.78% mlRSFSen2Sn 0.7232 0.0028 0.2278 0.1142 -13.58% mlRSFSen6S 0.7308 0.0029 0.2300 0.1156 -12.75% mlRSFSen4S 0.7027 0.0009 0.2140 0.1158 -18.82% ml5YRSFSen2Sl 0.7028 0.0010 0.2146 0.1165 -18.59% ml4YRSFSen2Sl 0.7559 0.0000 0.2266 0.1198 -14.04% mlRSFSen4Sl 0.7028 0.0011 0.2151 0.1201 -18.40% ml3YRSFSen2Sl 0.7040 0.0009 0.2155 0.1208 -18.25% ml1YRSFSen2Sn 0.7040 0.0009 0.2161 0.1210 -18.02% ml6YRSFSen2Sn 0.7028 0.0011 0.2156 0.1212 -18.21% ml1YRSFSen2Sl 0.7040 0.0009 0.2159 0.1213 -18.10% ml3YRSFSen2Sn 0.7040 0.0009 0.2160 0.1213 -18.06% ml3XRSFSen2Sn 0.7040 0.0009 0.2161 0.1213 -18.02% ml4XRSFSen2Sn 0.7040 0.0009 0.2157 0.1214 -18.17% ml2YRSFSen2Sn 0.7040 0.0010 0.2155 0.1214 -18.25% ml1XRSFSen2Sn 0.7040 0.0009 0.2163 0.1217 -17.94% ml5XRSFSen2Sn 0.7040 0.0009 0.2156 0.1219 -18.21% ml2XRSFSen2Sn 0.7040 0.0009 0.2161 0.1220 -18.02% ml5YRSFSen2Sn 0.7040 0.0009 0.2163 0.1220 -17.94% ml6XRSFSen2Sn 0.7040 0.0009 0.2160 0.1221 -18.06% ml4YRSFSen2Sn 0.7028 0.0011 0.2155 0.1222 -18.25% ml2YRSFSen2Sl 0.7430 0.0000 0.2255 0.1257 -14.45% mlRSFSen6Sl 0.7037 0.0019 0.2285 0.1293 -13.32% ml2XRSFSen2Sl 0.7041 0.0021 0.2287 0.1293 -13.24% ml1XRSFSen2Sl 0.7038 0.0019 0.2286 0.1294 -13.28% ml3XRSFSen2Sl 0.7561 0.0027 0.2303 0.1295 -12.63% ml1XRSFSen2S 0.7041 0.0018 0.2287 0.1296 -13.24% ml4XRSFSen2Sl 0.7561 0.0027 0.2306 0.1296 -12.52% ml2XRSFSen2S 0.7040 0.0019 0.2293 0.1297 -13.01% ml5XRSFSen2Sl 0.7560 0.0027 0.2314 0.1299 -12.22% ml5XRSFSen2S 0.7044 0.0019 0.2298 0.1300 -12.82% ml6XRSFSen2Sl 0.7547 0.0017 0.2300 0.1300 -12.75% mlRSFSen5Sn 0.7559 0.0027 0.2314 0.1300 -12.22% ml6XRSFSen2S 0.7560 0.0027 0.2312 0.1300 -12.29% ml4XRSFSen2S 0.7561 0.0027 0.2311 0.1300 -12.33% ml3XRSFSen2S 0.7669 0.0020 0.2403 0.1320 -8.84% mlRSFSen3S 0.7629 0.0010 0.2316 0.1329 -12.14% ml6YRSFSen5Sl 0.7428 0.0013 0.2338 0.1365 -11.31% mlRSFSen6Sn 0.7629 0.0012 0.2344 0.1372 -11.08% ml5YRSFSen5Sl 0.7464 0.0000 0.2299 0.1380 -12.78% mlRSFSen3Sl 0.7546 0.0018 0.2352 0.1380 -10.77% mlRSFSen4Sn 0.7629 0.0013 0.2349 0.1380 -10.89% ml4YRSFSen5Sl 0.7629 0.0015 0.2350 0.1383 -10.85% ml3YRSFSen5Sl 0.7607 0.0015 0.2370 0.1384 -10.09% ml6YRSFSen5Sn 0.7606 0.0017 0.2359 0.1388 -10.51% ml1XRSFSen5Sn 0.7607 0.0015 0.2371 0.1388 -10.05% ml5YRSFSen5Sn 0.7607 0.0016 0.2369 0.1388 -10.13% ml4XRSFSen5Sn 0.7607 0.0017 0.2364 0.1388 -10.32% ml3XRSFSen5Sn 0.7607 0.0015 0.2368 0.1389 -10.17% ml3YRSFSen5Sn 0.7513 0.0009 0.2358 0.1391 -10.55% ml6YRSFSen6Sl 0.7607 0.0015 0.2366 0.1391 -10.24% ml2YRSFSen5Sn 0.7629 0.0015 0.2353 0.1391 -10.74% ml2YRSFSen5Sl 0.7607 0.0015 0.2364 0.1392 -10.32% ml1YRSFSen5Sn 0.7607 0.0015 0.2369 0.1392 -10.13% ml4YRSFSen5Sn 0.7607 0.0017 0.2362 0.1394 -10.39% ml2XRSFSen5Sn 0.7607 0.0016 0.2373 0.1396 -9.98% ml6XRSFSen5Sn 0.7607 0.0016 0.2372 0.1398 -10.02% ml5XRSFSen5Sn 0.7629 0.0016 0.2354 0.1398 -10.70% ml1YRSFSen5Sl 0.7617 0.0010 0.2362 0.1402 -10.39% ml6YRSFSen4Sl 0.7513 0.0012 0.2386 0.1430 -9.48% ml5YRSFSen6Sl 0.7513 0.0013 0.2391 0.1438 -9.29% ml4YRSFSen6Sl 0.7617 0.0012 0.2390 0.1438 -9.33% ml5YRSFSen4Sl 0.7491 0.0013 0.2405 0.1439 -8.76% ml3YRSFSen6Sn 0.7491 0.0013 0.2401 0.1440 -8.92% ml2YRSFSen6Sn 0.7511 0.0000 0.2406 0.1440 -8.73% ml6YRSFSen3Sl 0.7491 0.0012 0.2405 0.1441 -8.76% ml6YRSFSen6Sn 0.7491 0.0012 0.2407 0.1441 -8.69% ml5YRSFSen6Sn 0.7513 0.0015 0.2393 0.1442 -9.22% ml3YRSFSen6Sl 0.7617 0.0015 0.2399 0.1443 -8.99% ml3YRSFSen4Sl 0.7617 0.0014 0.2396 0.1445 -9.10% ml4YRSFSen4Sl 0.7491 0.0014 0.2395 0.1446 -9.14% ml1XRSFSen6Sn 0.7491 0.0013 0.2399 0.1450 -8.99% ml1YRSFSen6Sn 0.7513 0.0015 0.2397 0.1450 -9.07% ml2YRSFSen6Sl 0.7491 0.0013 0.2406 0.1451 -8.73% ml5XRSFSen6Sn 0.7491 0.0014 0.2398 0.1451 -9.03% ml2XRSFSen6Sn 0.7491 0.0014 0.2404 0.1452 -8.80% ml3XRSFSen6Sn 0.7491 0.0014 0.2407 0.1452 -8.69% ml4XRSFSen6Sn 0.7491 0.0013 0.2408 0.1453 -8.65% ml6XRSFSen6Sn 0.7827 0.0024 0.2539 0.1453 -3.68% ml6XRSFSen5S 0.7514 0.0016 0.2398 0.1456 -9.03% ml1YRSFSen6Sl 0.7603 0.0016 0.2423 0.1458 -8.08% ml6YRSFSen4Sn 0.7617 0.0016 0.2402 0.1459 -8.88% ml2YRSFSen4Sl 0.7830 0.0024 0.2520 0.1459 -4.40% ml1XRSFSen5S 0.7601 0.0023 0.2534 0.1463 -3.87% ml4XRSFSen4Sl 0.7603 0.0016 0.2425 0.1463 -8.00% ml5YRSFSen4Sn 0.7830 0.0024 0.2529 0.1463 -4.06% ml3XRSFSen5S 0.7603 0.0016 0.2420 0.1464 -8.19% ml2YRSFSen4Sn 0.7603 0.0016 0.2422 0.1464 -8.12% ml3YRSFSen4Sn 0.7603 0.0016 0.2424 0.1464 -8.04% ml4YRSFSen4Sn 0.7830 0.0024 0.2525 0.1464 -4.21% ml2XRSFSen5S 0.7603 0.0016 0.2418 0.1467 -8.27% ml1YRSFSen4Sn 0.7603 0.0017 0.2412 0.1468 -8.50% ml1XRSFSen4Sn 0.7828 0.0024 0.2537 0.1468 -3.76% ml5XRSFSen5S 0.7603 0.0016 0.2426 0.1470 -7.97% ml6XRSFSen4Sn 0.7617 0.0016 0.2404 0.1470 -8.80% ml1YRSFSen4Sl 0.7603 0.0016 0.2415 0.1471 -8.38% ml2XRSFSen4Sn 0.7624 0.0023 0.2471 0.1471 -6.26% ml1XRSFSen5Sl 0.7603 0.0017 0.2420 0.1472 -8.19% ml3XRSFSen4Sn 0.7463 0.0010 0.2473 0.1473 -6.18% ml5YRSFSen3Sn 0.7464 0.0010 0.2470 0.1473 -6.30% ml4XRSFSen3Sn 0.7603 0.0016 0.2425 0.1473 -8.00% ml4XRSFSen4Sn 0.7603 0.0016 0.2426 0.1473 -7.97% ml5XRSFSen4Sn 0.7628 0.0023 0.2480 0.1475 -5.92% ml4XRSFSen5Sl 0.7491 0.0013 0.2406 0.1477 -8.73% ml4YRSFSen6Sn 0.7628 0.0023 0.2487 0.1484 -5.65% ml5XRSFSen5Sl 0.7628 0.0023 0.2494 0.1487 -5.39% ml6XRSFSen5Sl 0.7418 0.0005 0.2385 0.1498 -9.52% mlRSFSen3Sn 0.7794 0.0024 0.2549 0.1507 -3.30% ml1XRSFSen4S 0.7793 0.0024 0.2561 0.1510 -2.85% ml3XRSFSen4S 0.7792 0.0024 0.2567 0.1512 -2.62% ml5XRSFSen4S 2 0.7793 0.0024 0.2554 0.1512 -3.11% ml2XRSFSen4S 0.7767 0.0027 0.2561 0.1514 -2.85% ml1XRSFSen6S 0.7792 0.0024 0.2565 0.1516 -2.69% ml4XRSFSen4S 3 0.7767 0.0027 0.2566 0.1517 -2.66% ml2XRSFSen6S 0.7791 0.0024 0.2567 0.1517 -2.62% ml6XRSFSen4S 1 0.7766 0.0027 0.2573 0.1521 -2.39% ml3XRSFSen6S 0.7765 0.0027 0.2576 0.1522 -2.28% ml4XRSFSen6S 0.7765 0.0027 0.2576 0.1523 -2.28% ml5XRSFSen6S 0.7511 0.0009 0.2442 0.1524 -7.36% ml5YRSFSen3Sl 0.7764 0.0027 0.2578 0.1528 -2.20% ml6XRSFSen6S 0.7511 0.0010 0.2449 0.1532 -7.09% ml4YRSFSen3Sl 0.7487 0.0024 0.2511 0.1533 -4.74% ml1XRSFSen6Sl 0.7487 0.0025 0.2512 0.1539 -4.70% ml2XRSFSen6Sl 0.7491 0.0025 0.2518 0.1542 -4.48% ml3XRSFSen6Sl 0.7511 0.0011 0.2453 0.1544 -6.94% ml3YRSFSen3Sl 0.7495 0.0025 0.2523 0.1546 -4.29% ml4XRSFSen6Sl 0.7599 0.0023 0.2528 0.1550 -4.10% ml3XRSFSen4Sl 0.7600 0.0023 0.2523 0.1550 -4.29% ml2XRSFSen4Sl 0.7605 0.0022 0.2523 0.1551 -4.29% ml1XRSFSen4Sl 0.7496 0.0025 0.2528 0.1552 -4.10% ml5XRSFSen6Sl 0.7511 0.0011 0.2456 0.1553 -6.83% ml2YRSFSen3Sl 0.7500 0.0025 0.2535 0.1556 -3.83% ml6XRSFSen6Sl 0.7829 0.0024 0.2534 0.1556 -3.87% ml4XRSFSen5S 0.7511 0.0011 0.2457 0.1560 -6.79% ml1YRSFSen3Sl 0.7597 0.0023 0.2546 0.1560 -3.41% ml6XRSFSen4Sl 0.7600 0.0023 0.2539 0.1560 -3.68% ml5XRSFSen4Sl 0.7464 0.0010 0.2462 0.1561 -6.60% ml1YRSFSen3Sn 0.7464 0.0010 0.2469 0.1565 -6.34% ml6XRSFSen3Sn 0.7463 0.0010 0.2470 0.1567 -6.30% ml3YRSFSen3Sn 0.7463 0.0010 0.2471 0.1567 -6.26% ml4YRSFSen3Sn 0.7464 0.0010 0.2467 0.1567 -6.41% ml2YRSFSen3Sn 0.7464 0.0010 0.2471 0.1567 -6.26% ml5XRSFSen3Sn 0.7463 0.0010 0.2471 0.1568 -6.26% ml6YRSFSen3Sn 0.7465 0.0010 0.2468 0.1568 -6.37% ml3XRSFSen3Sn 0.7626 0.0024 0.2473 0.1568 -6.18% ml3XRSFSen5Sl 0.7627 0.0024 0.2470 0.1568 -6.30% ml2XRSFSen5Sl 0.7465 0.0010 0.2466 0.1570 -6.45% ml2XRSFSen3Sn 0.7466 0.0011 0.2463 0.1571 -6.56% ml1XRSFSen3Sn 0.7903 0.0013 0.2620 0.1636 -0.61% ml1XRSFSen3S 0.7904* 0.0013 0.2626 0.1640 -0.38% ml2XRSFSen3S 0.7903 0.0013 0.2631 0.1642 -0.19% ml3XRSFSen3S 0.7901 0.0013 0.2636* 0.1644 -0.00% ml6XRSFSen3S 0.7902 0.0013 0.2636* 0.1644 -0.00% ml5XRSFSen3S 0.7903 0.0013 0.2635 0.1644 -0.04% ml4XRSFSen3S 0.7504 0.0010 0.2611 0.1672 -0.95% ml3XRSFSen3Sl 0.7505 0.0009 0.2608 0.1672 -1.06% ml2XRSFSen3Sl 0.7506 0.0009 0.2608 0.1673 -1.06% ml1XRSFSen3Sl 0.7503 0.0010 0.2614 0.1674 -0.83% ml4XRSFSen3Sl 0.7497 0.0009 0.2618 0.1676 -0.68% ml6XRSFSen3Sl 0.7498 0.0009 0.2617 0.1677 -0.72% ml5XRSFSen3Sl References [1] Aoe, Jun-Ichi; Morimoto, Katsushi; Sato, Takashi. An Efficient Implementation of Trie Structures. Software Practice and Experience 22(9): 695-721, 1992. [2] Automatic Trans SL, Spain. Automatic translation server. On line http://www.automatictrans.es [Visited 18/07/2006]. [3] BabelFish translation resources. On line http://babelfish.altavista.com [Visited 18/07/2006]. [4] Babylon.com, Ltd, Israel. On line http://www.babylon.com [Visited 18/07/2006]. [5] de Pablo, C.; González-Ledesma, A.; Martínez-Fernández, J. L.; Guirao, J.M.; Martínez, P.; and Moreno, A. MIRACLE’s Cross-Lingual Question Answering Experiments with Spanish as a Target Language. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [6] de Pablo, C.; González-Ledesma, A.; Martínez-Fernández, J. L.; Guirao, J.M.; Martínez, P.; and Moreno, A. MIRACLE’s 2005 Approach to Cross-Lingual Question Answering. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [7] de Pablo, C.; Martínez-Fernández, J. L.; Martínez, P.; and Villena, J. miraQA: Experiments with Learning Answer Context Patterns from the Web. Multilingual Information Access for Text, Speech and Images: 5th Workshop of the Cross-Language Evaluation Forum, CLEF 2004, Bath, UK, September 15-17, 2004, Revised Selected Papers (Carol Peters, Paul Clough, Julio Gonzalo, et al., Eds.). Lecture Notes in Computer Science, vol. 3491, pp. 494-501. Springer, 2005. [8] de Pablo, C.; Martínez-Fernández, J. L.; Martínez, P.; Villena, J.; García-Serrano, A. M.; Goñi, J. M.; and González, J. C. miraQA: Initial experiments in Question Answering. Working Notes for the CLEF 2004 Workshop (Carol Peters and Francesca Borri, Eds.), pp. 371-376. Bath, United Kingdom, 2004. [9] Ergane multilingual translation dictionary. On line http://download.travlang.com [Visited 18/07/2006]. [10] Free2Translation. Free text translator. On line http://www.freetranslation.com [Visited 18/07/2006]. [11] Goñi-Menoyo, J.M.; González-Cristóbal, J.C.; and Villena-Román, J. MIRACLE at Ad-Hoc CLEF 2005: Merging and Combining without Using a Single Approach. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [12] Goñi-Menoyo, J.M.; González, J.C.; and Villena-Román, J. Miracle’s 2005 Approach to Monolingual Information Retrieval. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [13] Goñi-Menoyo, José M; González, José C.; Martínez-Fernández, José L.; and Villena, J. MIRACLE’s Hybrid Approach to Bilingual and Monolingual Information Retrieval. Multilingual Information Access for Text, Speech and Images: 5th Workshop of the Cross-Language Evaluation Forum, CLEF 2004, Bath, UK, September 15-17, 2004, Revised Selected Papers (Carol Peters, Paul Clough, Julio Gonzalo, et al., Eds.). Lecture Notes in Computer Science, vol. 3491, pp. 188-199. Springer, 2005. [14] Goñi-Menoyo, José M.; González, José C.; Martínez-Fernández, José L.; Villena-Román, Julio; García- Serrano, Ana; Martínez-Fernández, Paloma; de Pablo-Sánchez, César; and Alonso-Sánchez, Javier. MIRACLE’s hybrid approach to bilingual and monolingual Information Retrieval. Working Notes for the CLEF 2004 Workshop (Carol Peters and Francesca Borri, Eds.), pp. 141-150. Bath, United Kingdom, 2004. [15] Goñi-Menoyo, José Miguel; González-Cristóbal, José Carlos and Fombella-Mourelle, Jorge. An optimised trie index for natural language processing lexicons. MIRACLE Technical Report. Universidad Politécnica de Madrid, 2004. [16] González, J.C.; Goñi-Menoyo, J.M.; and Villena-Román, J. Miracle’s 2005 Approach to Cross-lingual Information Retrieval. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [17] Google language tools. On line http://www.google.com/language_tools [Visited 18/07/2006]. [18] Lana-Serrano, S.; Goñi-Menoyo, J.M.; and González-Cristóbal, J.C. MIRACLE at GeoCLEF 2005: First Experiments in Geographical IR. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [19] Lana-Serrano, S.; Goñi-Menoyo, J.M.; and González-Cristóbal, J.C. MIRACLE’s 2005 Approach to Geographical Information Retrieval. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [20] Martínez-Fernández, J.L.; Villena-Román, J.; García-Serrano, A.M.; and González-Cristóbal, J.C. Combining Textual and Visual Features for Image Retrieval. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [21] Martínez-Fernández, José L.; García-Serrano, Ana; Villena, J. and Méndez-Sáez, V.; MIRACLE approach to ImageCLEF 2004: merging textual and content-based Image Retrieval. Multilingual Information Access for Text, Speech and Images: 5th Workshop of the Cross-Language Evaluation Forum, CLEF 2004, Bath, UK, September 15-17, 2004, Revised Selected Papers (Carol Peters, Paul Clough, Julio Gonzalo, et al., Eds.). Lecture Notes in Computer Science, vol. 3491, pp. 699-708. Springer, 2005. [22] Martínez-Fernández, J. L.; García-Serrano, A.; Villena, J.; Méndez-Sáez, V.D.; González-Tortosa, S.; Castagnone, M.; and Alonso, J. MIRACLE at ImageCLEF 2004. Working Notes for the CLEF 2004 Workshop (Carol Peters and Francesca Borri, Eds.), pp. 545-553. Bath, United Kingdom, 2004. [23] Martínez, José L.; Villena, Julio; Fombella, Jorge; G. Serrano, Ana; Martínez, Paloma; Goñi, José M.; and González, José C. MIRACLE Approaches to Multilingual Information Retrieval: A Baseline for Future Research. Comparative Evaluation of Multilingual Information Access Systems (Peters, C; Gonzalo, J.; Brascher, M.; and Kluck, M., Eds.). Lecture Notes in Computer Science, vol. 3237, pp. 210-219. Springer, 2004. [24] Martínez, J.L.; Villena-Román, J.; Fombella, J.; García-Serrano, A.; Ruiz, A.; Martínez, P.; Goñi, J.M.; and González, J.C. Evaluation of MIRACLE approach results for CLEF 2003. Working Notes for the CLEF 2003 Workshop (Carol Peters, Ed.), pp. 115-124. Trondheim, Norway, 21-22 August 2003. [25] Martínez-González, A.; Martínez-Fernández, J. L.; de Pablo-Sánchez, C.; Villena-Román, J. Jiménez- Cuadrado, L.; Martínez, P.; and González-Cristóbal, J.C. MIRACLE at WebCLEF 2005: Combining Web Specific and Linguistic Information. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [26] Martínez-González, A.; Martínez-Fernández, J. L.; de Pablo-Sánchez, C.; Villena-Román, J. Jiménez- Cuadrado, L.; Martínez, P.; and González-Cristóbal, J.C. MIRACLE’s Approach to Multilingual Web Retrieval. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [27] Morphological, Hungary. MoBiCAT translation resources. On line http://www.morphologic.hu [Visited 18/07/2006]. [28] Porter, Martin. Snowball stemmers and resources page. On line http://www.snowball.tartarus.org [Visited 18/07/2006]. [29] Pro Langs Ltd., Bulgary. BULTRA translation resources. On line http://www.bultra.com [Visited 18/07/2006]. [30] Prompt-Online free automatic translation service. On line http://translation2.paralink.com [Visited 18/07/2006]. [31] Reverso translation resources. On line http://www.reverso.net/text_translation.asp [Visited 18/07/2006]. [32] Robertson, S.E. et al. Okapi at TREC-3. In Overview of the Third Text REtrieval Conference (TREC-3). D.K. Harman (Ed.). Gaithersburg, MD: NIST, April 1995. [33] Savoy, Jacques. Report on CLEF-2003 Multilingual Tracks. Comparative Evaluation of Multilingual Information Access Systems (Peters, C; Gonzalo, J.; Brascher, M.; and Kluck, M., Eds.). Lecture Notes in Computer Science, vol. 3237, pp. 64-73. Springer, 2004. [34] Skycode Ltd., Bulgaria. Webtrance translation program. On line http://webtrance.skycode.com/ ?current=&lang=en [Visited 18/07/2006]. [35] SYSTRAN Software Inc., USA. SYSTRAN 5.0 translation resources. On line http://www.systransoft.com [Visited 18/07/2006]. [36] Translation Experts Ltd. InterTrans translation resources. On line http://www.tranexp.com [Visited 18/07/2006]. [37] Travlang translating dictionaries. On line http://www.dictionaries.travlang.com/otherdicts.html [Visited 18/07/2006]. [38] University of Neuchatel. Page of resources for CLEF (Stopwords, transliteration, stemmers …). On line http://www.unine.ch/info/clef [Visited 18/07/2006]. [39] Villena-Román, J.; Goñi-Menoyo, J.M.; González-Cristóbal, J.C.; and Martínez-Fernández, J.L. MIRACLE Retrieval Experiments with East Asian Languages. Proceedings of the Fifth NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, pp. 138-144. Tokyo, Japan, 2005. [40] Villena-Román, J.; Crespo-García, R.M.; and González-Cristóbal, J.C. Effect of Connective Functions in Interactive Image Retrieval. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [41] Villena-Román, J.; González-Cristóbal, J.C.; Goñi-Menoyo, J.M.; Martínez Fernández, J.L.; and Fernández, J.J. MIRACLE’s Combination of Visual and Textual Queries for Medical Images Retrieval. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [42] Villena-Román, J.; González-Cristóbal, J.C.; Goñi-Menoyo, J.M.; and Martínez-Fernández, J.L. An Information Retrieval Approach to Medical Image Annotation. Accessing Multilingual Information Repositories: 6th Workshop of the Cross Language Evaluation Forum 2005, CLEF 2005, Vienna, Austria, Revised Selected Papers (Peters, C. et al., Eds.). Lecture Notes in Computer Science, vol. 4022, Springer (to appear). [43] Villena-Román, J.; González-Cristóbal, J.C.; Goñi-Menoyo, J.M.; and Martínez Fernández, J.L. MIRACLE’s Naive Approach to Medical Images Annotation. Working Notes for the CLEF 2005 Workshop. Vienna, Austria, 2005. [44] Villena, Julio; Martínez, José L.; Fombella, Jorge; G. Serrano, Ana; Ruiz, Alberto; Martínez, Paloma; Goñi, José M.; and González, José C. Image Retrieval: The MIRACLE Approach. Comparative Evaluation of Multilingual Information Access Systems (Peters, C; Gonzalo, J.; Brascher, M.; and Kluck, M., Eds.). Lecture Notes in Computer Science, vol. 3237, pp. 621-630. Springer, 2004. [45] Villena-Román, J.; Martínez, J.L.; Fombella, J.; García-Serrano, A.; Ruiz, A.; Martínez, P.; Goñi, J.M.; and González, J.C. MIRACLE results for ImageCLEF 2003. Working Notes for the CLEF 2003 Workshop (Carol Peters, Ed.), pp. 405-411. Trondheim, Norway, 21-22 August 2003. [46] WorldLingo Translations LLC, USA. WorldLingo free online translator. On line http://www.world- lingo.com/en/products_services/worldlingo_translator.html [Visited 18/07/2006].