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Abstract. The goal of this work is to investigate the performance of
classical methods for feature description and classification, and to iden-
tify the difficulties of the ImageCLEF 2010 modality classification sub-
task. In this paper, we describe different approaches based on visual in-
formation for classifying medical images into 8 different modality classes.
Since within the same class, images depict very different objects, we fo-
cus on global descriptors such as histograms extracted from scale-space,
log-Gabor and phase congruency feature images. We also investigated
different classification approaches based on support vector machines and
random forests. A grid-search associated to a 10 folds cross-validation
has been performed on a balanced set of 2390 images to find the best
hyperparameters for the different models we propose. All experiments
have been conducted with MATLAB on a Workstation with Intel Duo
Core 3.16 Ghz and 4Gb of RAM. Our approach based on simple SVM
and random forests give best performance and achieve respectively an
overall f-measure of 74.13% and 73.59%.

1 Introduction

In this paper, we investigate different classification approaches for the new Im-
ageCLEF subtask modality classification [1]. The problem brings new challenges
as in the database given as training set (see Fig.1), images show a very high
variability and very different kinds of anatomy appear within the same class.
Furthermore, the problem is different from classical object recognition, in which
features are especially designed for recognizing an object subject to different
imaging conditions. In the present case, we aim at recognizing the imaging
modality. Since we can not rely on the different structures appearing in images
to discriminate them, we propose to focus on statistics based on global texture
information. This is equivalent to making the assumption that each imaging
modality shows different texture patterns. To characterize statistical texture in-
formation, we propose descriptors based on different feature images such as scale-
space, log-Gabor and phase congruency feature images. Once a representation
has been chosen to describe global textural statistics, a multi-class classification
scheme is applied. Therefore, we investigated 3 different multi-class approaches:
a simple multi-class SVM, a multi-kernel multi-class SVM and random forests.



Fig. 1. Examples of images taken from the training set showing a very high variability
and different kinds of anatomy

The remaining of this paper is organized as follows: Section 2 formulates the
modality classification problem, Section 3 describes the different descriptors and
classification methods investigated, Section 4 reports our experiments on the
training dataset provided during for the modality classification subtask, and
Section 5 concludes this paper and gives an outlook on our future work.

2 Problem Statement

The modality classification problem is an instance of a multi-class classification
problem. We denote I : R2 → R an image we want to classify into one of the
8 different classes {Ck}k∈{1,··· ,8}, namely computerized tompography, graphics,
magnetic resonance imaging, nuclear medicine, positron emission tomography,
optical imaging, ultrasound and X-ray. I is described by a feature vector we
denote x, and y its corresponding class label. The goal of multi-class classification
is then to train a decision function Ψ such that:

Ψ(xn) = yn, ∀n ∈ {1, · · · , N} (1)

where {xn, yn}n∈{1,··· ,N} is the training set composed of image descriptors and
their corresponding class labels. In the following section, we will show how to
compute the different components of x.



3 Methods

3.1 Feature Representation

As mentioned in the introduction, we will focus on statistical texture features
to describe our images. We propose to use 3 different types of descriptors based
on scale-space, log-Gabor and phase-congruency feature images.

Scale-space statistical descriptors A basic approach to characterize the
image variations at different band of the frequency spectrum is to perform its
multi-scale analysis [2]. By convolving the input image with a smoothing kernel,
structure can be analyzed at different scales. As smoothing operator, a Gaussian
kernel with increasing values of variance σ provides coarser resolutions:

Gσ(i, j) =
1

2πσ
exp

(
− (i2 + j2)

2σ

)
(2)

where (i, j) ∈ [−s, s]2, (2s + 1) × (2s + 1) being the size of the filter mask. By
convolving the input image I with the kernel in Eq.2, we obtain following feature
images:

Lσ = I ∗Gσ (3)

By doing this for a set of scales {σm}m∈{1,··· ,M}, we obtain feature images

{Lσm}m∈{1,··· ,M}. For each of these feature images, we compute its correspond-

ing intensity histograms which gives us a set of descriptors {Hgauss
m }m∈{1,··· ,M}.

log-Gabor statistical descriptors A common approach to characterize tex-
tures is to use a bank of Gabor filters which permit to analyze different part
of the frequency spectrum for different orientations [3]. As suggested in [4], we
use a logarithmic variant of these filters which have a Gaussian response when
viewed on a logarithmic frequency scale. The transfer function of the log-Gabor
filter is defined as:

G(f) = exp

(
− (log(f/f0))2

(log(κ/f0))2

)
(4)

where f0 is the center frequency of the sinusoid and κ is a scaling factor of
the bandwidth. To cover the whole frequency spectrum, a range of different
scales and orientations must be considered while designing the filter bank. Af-
ter convolving the input image I with the corresponding even-symmetric and
odd-symmetric filters for a certain scale σ and orientation θ we obtain pairs if
response images Ieσ,θ and Ioσ,θ. From these responses, we compute the correspond-
ing amplitude and phase:

Aσ,θ =
√

(Ieσ,θ)
2 + (Ioσ,θ)

2 (5)

Φσ,θ = arctan
(
Ieσ,θ, I

o
σ,θ

)
(6)



By doing this for a set of scales σp∈{1,··· ,P} and orientations θq∈{1,··· ,Q}, we

obtain a set of feature images
{
Aσp,θq , Φσp,θq

}
p,q

. For each of them, we com-

pute the corresponding intensity histogram which finally gives us the descriptors{
Hgabor
p,q

}
p,q

.

Phase congruency statistical descriptors Phase congruency is an absolute
measure of feature significance which is invariant to changes in illumination or
contrast [5]. It is closely related to the concept of local energy model which
postulates that significant features are perceived at points of maximum phase
congruency. The phase congruency function is defined as:

PC =
E∑
σ Aσ

(7)

where E is the local energy and Aσ the Fourier amplitudes. It is possible to
approximate the function above by using quadrature filters such as the log-Gabor
filters described in the previous part. Indeed, by using the response images Ieσ,θ
and Ioσ,θ, we can approximate the phase congruency for a certain orientation as
follows:

PCθ =

√(
(
∑
σ I

e
σ,θ)

2 + (
∑
σ I

o
σ,θ)

2
)

∑
σ

√
(Ieσ,θ)

2 + (Ioσ,θ)
2

(8)

For different orientations θt∈{1,··· ,T}, we obtain the feature images {PCθt}t∈{1,··· ,T}.
For each of them, we finally compute the corresponding intensity histogram
which gives us the descriptors {Hpc

t }t∈{1,··· ,T}.

Global descriptors After computing all these descriptors for an input image
I, a global descriptor x is created by concatenating all histograms:

x =

 · · · Hgauss

m · · ·︸ ︷︷ ︸
scale-space

, · · · Hgabor

p,q · · ·︸ ︷︷ ︸
log-Gabor

, · · · Hpc

t · · ·︸ ︷︷ ︸
phase-congruency


T

(9)

3.2 Different multi-class classification approaches

We investigated several approaches to classify images according to the descrip-
tors we described in the previous section.

Simple Multi-Class SVM From a set of images and their corresponding la-
bels, we compute their descriptors and generate a training set {xn, yn}n∈{1,··· ,N}.
Recall the classifcation problem statement, we are looking for a function Ψ such
that:

Ψ(xn) = yn, ∀n ∈ {1, · · · , N} (10)



Let us first consider a 2 class classification problem where yn ∈ {−1, 1}. We
model the function Ψ as:

Ψ(x) = 〈w , ϕ(x)〉+ b (11)

where ϕ is a non-linear mapping from the space spanned by our descriptors
into a hidden feature space with higher dimensionality, w is a weighting vector
and b a bias. w, ϕ and b define a hyperplane separating the different classes in
the high-dimensional space. To find the optimal hyperplane, we maximize the
margin between the classes and this, with a minimum of classification errors [6].
This can be written as the dual convex optimization problem:

minimize
1

2
‖w‖2

subject to: yn(〈w , ϕ(xn)〉+ b) ≥ 1
(12)

Since the problem may not be separable, we allow misclassification errors by
introducing slack variables that induce a soft margin:

minimize
1

2
‖w‖2 + C

N∑
n=1

ξn

subject to: yn(〈w , ϕ(xn)〉+ b) ≥ 1− ξn

(13)

where C is a tradeoff parameter weighting the impact of the errors and thus the
flexibility of the model. After solving the dual, it can be shown that a solution
wopt of this minimization is always a linear combination of the training vectors
{xn}n with weights {αn}n∈{1,...,N}:

wopt =

N∑
n=1

αn ϕ(xn) (14)

which leads to the following model for Ψ :

Ψ(x) =

N∑
n=1

αi 〈ϕ(xn) · ϕ(x)〉+ b =

N∑
n=1

αi K(xn,x) + b, (15)

where K is the kernel associated to ϕ in the higher dimensional space. To handle
complex non-linear relations between the descriptors and their labels,K is chosen
as a RBF kernel, leading to the following decision function:

Ψ(x) =

N∑
n=1

αn exp
(
−γ ‖xn − x‖2

)
+ b. (16)

Now that we have a decision function for a binary classification problem, we
need to extend it to multi-class. Two common methods are to combine several
binary SVM into a multi-class model:

◦ One-vs-one: binary classifiers are built for each combination of classes
◦ One-vs-rest: a binary classifier is built for each class against all the others

Since the one-vs-rest combination is less suitable in terms of class balancing, we
choose a one-vs-one approach as suggested by [7].



Multi-Kernel Multi-Class SVM In the previous section, the descriptors x
are a concatenation of different feature histograms. Each of these feature types
spans its own space and may live in a different subspace. For this reason, it is
advantageous to use a kernel for each feature type that is especially adapted to
the features. This leads to a set of P decision functions where P is the number
of feature types considered:

Ψ (p)(x(p)) =

N∑
n=1

α(p)
n exp

(
−γ(p)

∥∥∥x(p)
n − x(p)

∥∥∥2)+ b(p). (17)

where x(p) is the descriptors of type p. The global decision function would be
then a combination of each ”specialized” decision function. In this paper, we
investigate two combination approaches:

linear multi-SVM: Ψ(x) =
1

P

P∑
p=1

Ψ (p)(x(p)) (18)

product multi-SVM: Ψ(x) =

P∏
p=1

Ψ (p)(x(p)) (19)

which we respectively call linear and product Multi-SVM in the remaining of
this paper.

Random Forests Random forests are basically a ensemble of T independent
random trees we denote

{
Θ(t)

}
t∈{1,··· ,T} which vote for the most popular class

[8]. Each tree Θ(t) can be seen as an ensemble of random split functions which
partition the feature space and give an estimate of the posterior probability
distribution P (Ck|x, Θ(t)) for each class Ck. The forest F =

{
Θ(1), · · · , Θ(T )

}
combines the trees estimates as follows:

P (Ck|x) =
1

T

T∑
t=1

P (Ck|x, Θ(t)) (20)

The class of an unseen point is then determined by using a maximum a posteriori
criterion:

y = argmax
k

(P (Ck|x)) (21)

A clear advantage of random forests over the SVM approaches is their inherent
multi-class characteristic.

4 Experiments and Results

4.1 Experimental setup

In this section, we compare the different approaches we decribed above by per-
forming a 10-folds cross-validation on a set of 2390 labeled images distributed
over the classes as follows:



◦ CT: Computerized tomography (314 images)
◦ GX: Graphics, typically drawing and graphs, (355 images)
◦ MR: Magnetic resonance imaging (299 images)
◦ NM: Nuclear Medicine (204 images)
◦ PET: Positron emission tomography including PET/CT (285 images)
◦ PX: optical imaging including photographs, micrographs, gross pathology

etc (330 images)
◦ US: ultrasound including (color) Doppler (307 images)
◦ XR: x-ray including x-ray angiography (296 images)

For each test, classes are rebalanced by using random subsampling. A grid-
search has been performed to find the best hyperparameters as shown on Fig.2.
For the SVM-based classifiers, the tradeoff parameter C and γ are optimized.
Concerning the random forests, we are looking for the best number of trees and
the best number of random tests at each node. Note that features are scaled so
that each dimension is in the range [0, 1].

Fig. 2. Grid-search cross-validation to find the best hyperparameters for the single
SVM (left) and the random forest (right)

4.2 Results and Discussion

To evaluate the different approaches, we compute several quality measures from
the confusion matrix: overall accuracy, precision, recall, f-measure and error rate.
Overall results summarized in Tab.1 show that the simple SVM and random
forests perform better than the multi-SVM approaches. This is contrary to what
could be expected from these methods designed to capture different aspects of the
features. Note that in the multi-SVM approaches, each of the SVM was trained
independently. A joint training of all kernels, called Multiple-Kernel Learning
(MKL) [9, 10], may perform better.

As feature representation, we relied on global statistical descriptors extracted
from the textural information contained in the images from the 8 different modal-
ities. To extract this textural information we used classical filters which are not



Overall Classification Results in %

Accuracy Precision Recall F-measure Error rate

Simple SVM 93.53 74.13 74.7 74 25.88

Multi SVM linear 91.31 65.25 69.99 65.11 34.75

Multi SVM product 91.34 65.38 69.79 65.33 34.63

Random Forest 93.45 73.81 74.78 73.59 26.19

Table 1. Classification evaluation over all modality classes

especially adapted to the high variability we can observe in the different classes.
Thus, the resulting texture information may not be discriminative enough. In-
deed, some images such as charts or drawing present almost no textural in-
formation. Moreover, by computing global statistics on these features, a lot of
information which might be usefull for classification is discarded. In the present
work, we did not make use of any RGB information, this would have definitely
helped to discriminate images from classes which do not contain any color im-
ages.

5 Conclusion

In the present work, our goal was to get a first insight into the ImageCLEF
challenge by taking part to its new subtask modality classification. We pre-
sented different approaches for the classification of medical images into 8 imaging
modalities. As a feature representation, we extracted global statistics computed
from the textural information contained in the images. We then investigated
four classification methods based on SVMs and random forests. Approaches
based on simple SVM and random forests give the best performance and achieve
respectively an overall f-measure of 74.13% and 73.59%. After analyzing our
preliminary results, there is clearly a lot of room for improvement concerning
our feature representation. In future work, we will focus on defining new sparse
and more discriminative representations of the data which should lead to better
classification results.
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