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Abstract. We present our first participation in a ShARe/CLEF eHealth
Lab contributing for task 2a. Task 2 is an extension of the 2013 lab
task 1 and consists of information extraction from clinical texts for
Disease/Disorder Template Filling; task 2a aims at predicting each at-
tribute’s normalization value.

This work constitutes a preliminary approach to the problem of extract-
ing and handling information from clinical texts. More than getting a
good result, our priority was to get a first hint on the questions and
problems that are posed within this area.

For that, we developed a system that combines information from cTAKES
output and the training corpus. The performance was measured using ac-
curacy. Our system ranked 7th with an accuracy of 0.802, a F; of 0.214,
a precision of 0.217 and a recall value of 0.211.

Keywords: Clinical texts, Template filling, Text normalization, cTAKES,
Medical Informatics

1 Introduction

The ShARe/CLEF eHealth Lab 2014E| [112] task 2 is an extension of the task 1
of the same lab from 2013 [3] and consists of information extraction from clinical
texts with the goal of disease/disorder template filling. For each disease/disorder
present in each clinical report there is a template with ten different attributes
and participants have to predict the value for each attribute. There are two
subtasks: 2a) assign normalization values to the ten attributes; 2b) assign cue
values to the nine attributes with cues.

This is our first participation in a ShARe/CLEF eHealth Lab and we con-
tributed to subtask 2a, building a system that uses previous implemented tech-
nologies. Being this the first time we work with medical information, our main
priority is to understand the problems associated with the extraction of infor-
mation in the area. In this paper we present the system architecture and the
decisions made; we also present and analyse the experimental results on the
training and test corpora.

! nttps://sites.google.com/a/dcu.ie/clefehealth2014/
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The paper has the following structure: Section [2] introduces the task, the
training and test corpora in detail and Section [3] presents the implemented sys-
tem. The results are discussed in Section (4] and conclusions and a glimpse of
future work are presented in Section

2 Task

As said in Section [T} task 2 is an extension of the 2013 task 1 lab aiming at
filling templates with attributes values and cues.

Files with empty templates for each disease/disorder (mentioned in the cor-
responding clinical text) were provided to the participants. Each template in-
dicates the Unified Medical Language System Concept Unique Identifier (CUI),
mention boundaries and the ten attributes needed to be filled. Each attribute
has two slot types: the normalized value and the lexical cue from the sentence
where the normalized value occurred. Task 2a evaluates the systems’ ability to
predict the normalized value for each attribute and task 2b the ability to find
the right cue slot value for each attribute.

Since we participated only on task 2a (that was mandatory), our templates
have default values in all the cue slots. Table [I| presents template information: a
header with the file name, the cue slot of the disease/disorder and its CUI, the
nine modifiers associated with the disease/disorder with normalized values (task
2a) and cue slots (task 2b) plus the DocTime modifier that only has a normalized
value.

2.1 Description of the training and test corpora

The train and test corpora provided are composed of clinical texts from four
different types: discharge summary, ECG report, ECHO report and radiology
report. Their distribution in each corpus is presented in Table [2]

Analysing both corpora we can observe some differences. In the training cor-
pus the Discharge summary type has 45.82% of documents while the remaining
classes have an equal number, 18.06%; in the test corpus there are only Discharge
summary documents.

3 System Architecture

This section presents the implementation of our system and the approaches taken
to tackle the modifiers.

3.1 cTAKES

As said before, our system uses previous implemented technologies for clinical
texts analysis and information extraction (this method was also used in task
1 [6I7IRQITOTTIT2IT3IT4] of 2013 ShARe/CLEF eHealth Lab).
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Table 1. Template representation with the default values identified by (*).

Header

File name
Cue slot

Concept Unique Identifier (CUI)

Modifiers

Attribute

2a) Normalized values

2b) Cue slot

Negation indicator (NI)

yes/no*

if value is yes

Subject class (SC)

patient®, family_member, other, null,
donor_family_member, donor_other

if different
of patient

Uncertainty indicator (UT)

yes/no*

if value is yes

Course class (CC)

unmarked*, changed, increased, decreased,
improved, worsened, resolved

if different
of unmarked

Severity class (SV)

unmarked*, severe,
slight, moderate

if different
of unmarked

Conditional class (CO) true/false* if value is true
Generic class (GC) true/false* if value is true
. NULL*, CUI, if different
Body location (BL) CUL Joss of NULL
*
DocTime class (DT) unknown™, before, after, no
overlap, before-overlap slot
. none*, date, time, if different
Temporal Expression (TE) duration, set of none

Table 2. Number and percentage of documents of each type in the train corpus and

test corpus.

Type Train Test
no.docs % |no.docs %
Discharge summary 137 45.82 133 100.00
ECG report 54 18.06 0 0.00
ECHO report 54 18.06 0 0.00
Radiology report 54 18.06 0 0.00
Total 299 100.00 133 100.00
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We used the output of the clinical Text Analysis and Knowledge Extraction
System (cTAKES) [] (version 3.1.1). cTAKEqﬂ is a open source linguistic tool
kit from the Apache Software Foundation. Some operations done by ¢TAKES
include:

— boundary detection;

— tokenization;

— morphological normalization;

— POS tagging;

— shallow parsing;

— negation detection;

— named entities detection with mapping to UMLS terms;
— relations detection

3.2 Modifiers

Negation and Uncertainty Indicators, Subject and Conditional Classes
and Body Location. For the modifiers NI, SC, UI, CO and BL we extracted the
information from the cTAKES output. Among the attributes related with the
diseases/disorders identified by ¢TAKES we found information that could be
directly used for some of the modifiers: we used the polarity attribute from
c¢TAKES to identify if the diseases/disorders were negated and assigning a value
to NI; for the SC, UI and CO modifiers, cTAKES have attributes with the same
name and we only needed to convert that information into the normalized values
of the task modifiers.

For the BL modifier we used a set of rules to know if there were body loca-
tions in the same sentence of the identified disease/disorders and extracted the
respective CUI. We tried to extract the CUI of the most specific body location
possible, so we searched the expression with a bigger number of words, using the
premise that more information means more specificity.

Course Class and Severity Class. For the CC and SV modifiers we used a
mapping approach. From the 299 clinical texts that compose the training corpus,
we extracted expressions (without repetition) related to each modifier value.
When using expressions from a mapping approach, there is the risk of identi-
fying equal expressions from the text but not in the correct context. To determine
if the modifiers CC and SV had this problem we checked the expressions in each
mappings file and concluded that the expressions were not too common and the
probability of identifying wrong expressions was acceptable for our objectives.

Generic Class. The GC modifier had a particular characteristic — there was no
example of it in the training corpus; assuming that the test corpus would follow
this, few to none appearances of this modifier expressions would appear. Based
on this assumption we used the default value (false) in every template.

2 http://ctakes.apache.org/
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DocTime. The DT modifier expresses the temporal relation between the dis-
ease/disorder and the time when the clinical text was written. It can have the
following values:

— Before-overlaps: disease/disorder identified in the past and still present;

— Before: disease/disorder identified and treated in the past;

— Overlap: disease/disorder present but there is no information about when
it was diagnosed or when it will pass;

— After: one action or event that it is still to come;

Unknown: no temporal relation information.

For this modifier we used a purely statistic approach, meaning that, for each
template we selected the most common value presented in the training corpus —
Overlap.

Table [3] presents occurrence percentage for training corpus for each possible
DT value; it can be noticed that more than half of the occurrences (56.35%) has
the Overlap value, so this one was chosen to fill all the templates. The Before
value had also an expressive number, but Overlap more than doubles it.

Table 3. DocTime values distribution in the training corpus.

Value no. occurrences | %
Before-overlaps 2814 16.41
Before 4205 24.52
Overlap 9666 56.35
After 442 2.58
Unknow 25 0.14

Total 17152 100.00

Temporal Expressions. To identify dates and hours we used regular expres-
sions. At first we thought of using a mapping approach too, but dates and hours
are very specific and if an expression appear in the same format but with one
day apart, that expression wouldn’t be identified.

Based in the training corpus, we created four regular expressions aiming to
identify DATE and two regular expressions to identify Time:

— DATE
e Day/Month/Year (dd/mm/yyyy);
e Day-Month-Year (dd-mm-yyyy);
e Year-Month-Day (yyyy-mm-dd);
e Month-Year (mm-yy).

— TIME
e 24 hours time (hh:mm);
e 12 hours time (hh:mm am/pm)

We didn’t consider the identification of expressions associated with the re-
maining values of the modifier — duration and set.
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3.3 Implementation

Our system was implemented using the Java programming language. Figure
presents the system’s architecture — it uses mapping files, regular expressions,
decisions based on the training corpus and ¢TAKES.

XML files were generated from ¢TAKES, and from them we extracted infor-
mation using a parser and applied the procedures described in the last subsec-
tion. With the obtained information, the system updated the modifiers’ values
and printed the templates with the final result.
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Fig. 1. System description

Next we explain the steps necessary to get the filled templates:

1. run cTAKES with the clinical texts as input;

2. load information from templates, namely the header (because the rest are

the default values), and the map files built for CC and SV;

process the XML from ¢TAKES using a set of rules to extract information;

4. use the information previously gathered to substitute the default values from
the templates.

©

Step 1. The first step can be also called a pre-processing one — the generation
of the XML files using cTAKES. It generates a XML file for each clinical text.
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¢TAKES has a large set of specific analysis engines and a set of aggregate ones
that combine the specific ones. These aggregate engines describe how particular
annotators can be combined using a set of rules that describe how each annotator
uses the analysis of the previous one.

Several aggregate engines were tested and the one that offered the best results
(and was used for the participation run) was AggregatePlaintextUMLSProcessor.

Step 2. On startup, the system loads the mapping files of CC and SV modifiers
obtained from the training corpus. It also loads the templates information into
a data structure that the system can use during all process.

Step 3. After steps 1 and 2, the system processes the XML files. We used
xPath expressions to extract the information considered necessary to task 2a;
this information was stored in data structures suited for being subsequently
processed. The information is extracted using two approaches:

— the ’strict’ one, where the system searches diseases/disorders with a perfect
match the information gathered from ¢cTAKES;

— the 'relaxed’ one, that is used in case the ’strict’ fails. This one, although less
accurate, verifies if the boundaries of the disease/disorder from the template
header are inside the ones of the chunk identified by ¢TAKES.

The CUI of the body locations associated to the disease/disorder is obtained
using a set of rules that joins information from the different data structures
mantained. In order to reach the most specific CUI, the system chooses the
longest body location term from the cTAKES output.

Step 4. The final step gathers all information from the previous steps, relying
mainly in the coordinates of the diseases/disorders in text.

To extract the modifiers information, the system searches the sentences where
the diseases/disorders were identified, looks for the cTAKES gathered informa-
tion, replaces the info in the respective template, searches for terms in the map-
ping, applies the regular expressions and writes the found info in the template.
Finally it writes the info for the DT and GC modifiers (that is equal for all tem-
plates).

4 Results

Table [4] presents the accuracy obtained by our system for the train and test
corpora, and also the best accuracy obtained for each modifier in the task 2a.
Analysing the table we see that the overall accuracy between the train and
test corpora have a difference less than 0.03. For most of the modifiers the
accuracy between the train and the test corpora don’t differ more than 0.02, but
in some of them the test corpus’s accuracy is better: BL has an improvement of
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Table 4. System’s accuracy for the train and test corpora and the best accuracy
reported on task 2a for each modifier.

modifier | train test best
NI 0.916 0.901 | 0.969
SC 0.991 0.987 | 0.995
Ul 0.932 0.955 | 0.960
CC 0.866 0.859 | 0.971
SV 0.915 0.919 | 0.982
CO 0.978 0.975 | 0.978
GC 1.000 1.000 | 1.000
BL 0.469 0.540 | 0.797
DT 0.59 0.024 | 0.328
TE 0.715 0.857 | 0.864
Overall 0.837 0.802 | 0.884

0.071 and TE an improvement of 0.142. For DT modifier, the training presents a
better result with an improvement of 0.57 over the test corpus.

Comparing the test corpus results with the best accuracy reported in task
2a we notice that in some modifiers like SC, UI, CO and TE the difference is lower
than 0.2 and the values for class GC are equal; for modifiers BL, DT and CC there
is a bigger discrepancy between the results. Nevertheless, in overall our system
stood behind 0.082 when compared with the overall value calculated.

Table [5| presents the Fj, precision and recall values for both the train and
test corpora. There we can see that the values are not so different between the
train and test corpora among most of the modifiers. Modifiers like SC, UI, CO, BL
and TE have better results in the test corpus; on the other side NI, CC, SV and
DT modifiers have better results in the training corpus.

Table 5. I, precision and recall for training corpus and test corpus.

train test

a2l precision recall | F} precision recall
NI 0.744 0.914 0.628 | 0.723 0.862 0.622
SC 0.495 0.408 0.631 | 0.556 0.532 0.581
Ul 0.409 0.886 0.266 | 0.451 0.813 0.312
CC 0.385 0.257 0.771 | 0.264 0.165 0.661
SV 0.670 0.546 0.868 | 0.547 0.400 0.866
CO 0.723 0.942 0.587 | 0.760 0.955 0.631
GC 0 0 0 0 0 0
BL 0.232 0.255 0.213 | 0.253 0.265 0.243
DT 0.592 0.590 0.593 | 0.024 0.024 0.024
TE 0.155 0.581 0.089 | 0.233 0.425 0.161

Overall | 0.479 0.513 0.448 | 0.214 0.217 0.211

modifier
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The DT modifier obtained widely different values with a F; of 0.592 in the
train and a corresponding value of 0.024 in the test corpus. This can be explained
because the value of this modifier is always the same for every template of
the output; this decision was based on the modifier statistics from the training
corpus.

We ranked seventh among all the participants of task 2a, as showed in Table
[l The best system had an overall accuracy of 0.868 and our system obtained an
overall accuracy of 0.802. This value is lower than the average accuracy value of
all participants. Our system also obtained values below the average in the Fi,
precision and recall.

Table 6. Relative performance for task 2a.

system accuracy Fi precision recall
TeamUEvora (rank 7) 0.802 0.214 0.217 0.211
Best system 0.868 0.499 0.485 0.514
Average 0.814 0.273 0.308 0.269

Table [7] shows the relative performance of full template accuracy of our sys-
tem, the best value obtained and the average of all participants. The best value
is below 0.2 and our system obtained a very low value of 0.007.

Table 7. Relative performance for task 2a of full template accuracy.

system accuracy
TeamUEvora (rank 11)|  0.007
Best System 0.196
Average 0.056

5 Conclusions and Future work

This paper presents the design and the implementation of our system, devel-
oped for participating in the task 2a of 2014 ShARe/CLEF eHealth Lab. The
task’s main goal was to obtain normalized attributes values for disease/disorder
template filling.

5.1 Conclusions

Our participation’s main goal was to understand the problems associated with
the design and implementation of a system to extract information from medical

164



data. The system gathers knowledge from already implemented technology in
the clinical area, namely ¢cTAKES; it also uses resources based on the training
corpus, regular expressions and decisions based on modifiers statistics.

Between 14 participants, it ranked 7th, with an accuracy value of 0.802.
Taking into account our goal, we consider this a good result; nevertheless there
is much space for improvement.

5.2 Future work

cTakes is one of the resources of our system and we intend to add more sources
of knowledge of the medical area so we can improve our system. One hypothesis
is MetaMap[b], widely used in task 1 of 2013 Lab. Last year, some participants
used only ¢TAKES [6l8], others used only MetaMap [(OITO/TTIT2] and others
used a joint approach [I3/14].

On the other hand, we intend to complement or substitute the approach
taken to some modifiers:

— for Course and Severity we want to try a machine learning approach;

— for temporal expressions, we want to improve the system by also identifying
duration and set expressions. For that we intend to use technologies in the
area of clinical time identification;

— for DocTime we intend to incorporate knowledge in order to give different
values to different examples (instead of using the same value for all of them):

— for Generic modifier, we aim to develop a more automatic way to detect
this class. Nevertheless, to do that we need some examples of this modifier
in the training corpus.
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