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ABSTRACT

An important question in the practical application of Bayesian
knowledge tracing models is determining how much data is
needed to infer parameters accurately. If training data is
inadequate, even a perfect inference algorithm will produce
parameters with poor predictive power. In this work, we
describe an empirical study using synthetic data that pro-
vides estimates of the accuracy of inferred parameters based
on factors such as the number of students used to train the
model, and the values of the underlying generating param-
eters. We find that the standard deviation of the error is
roughly proportional to 1/y/n where n is the sample size,
and that model parameters near 0 and 1 are easier to learn
accurately.

Categories and Subject Descriptors
H.2.8 [Database Applications|: Data Mining

General Terms
Measurement, Theory.
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1. INTRODUCTION

Simple Bayesian knowledge tracing models a student’s ob-
served responses to a sequence of items as a Markov process,
with their knowledge state as a hidden underlying variable.
If values are given for the four standard parameters, learn-
ing rate, prior, guess, and slip, the likelihood of a particular
set of response sequences can be computed. Using standard
search procedures like expectation maximization (EM), the
parameter set giving the highest likelihood for a given set of
sequences can be determined, provided that the procedure
converges to the global maximum.

*This work published at the BKT20y Workshop in conjunc-
tion with Educational Data Mining 2014. The author waives
all rights to this work under Creative Commons CCO 1.0.

However, even if the procedure identifies the global maxi-
mum correctly and precisely, the resulting parameters may
not reflect the actual parameters that generated the data;
this is a sampling error effect. It’s clearest with very small
samples, such as samples of size 1, but exists with larger sam-
ples as well. Empirical studies with synthetic data generated
from known parameters show that the inferred parameters
for a given data set can differ substantially from the gen-
erating parameters, and this same issue would arise in real
settings. An understanding of the magnitude of sampling
error in a particular scenario can help to explain why the
resulting model does or does not make effective predictions.
Moreover, by providing a means to describe the distribution
of possible generating parameter values, the uncertainty of
calculations based on those parameters such as predictions
can also be determined.

2. RELATED WORK

For simple problems, such as identifying the mean value of
a parameter in a population, or the proportion of the popu-
lation falling into a subgroup, there are simple and well-
understood statistical approaches for determining sample
size based on statistical power. Such analytic approaches
are not immediately applicable to the problem of minimiz-
ing the HMM error function because of its complexity and
high dimensionality.

Falakmasir et al [2] have noted that training time increases
linearly with the size of the training set. Choosing an ap-
propriate sample size for a certain desired level of accuracy
can thus help to reduce training time, which is important
both for research and in some real-time interactive tutor
applications.

Nooraei et al [3] found that using only the 15 most recent
data points from each student to train a knowledge trac-
ing model yielded root mean-square error during prediction
comparable to using the student’s full history. For one data
set, the most 5 recent items sufficed. Our study conversely
does not vary the number of items per student, but instead
varies the number of students and the four parameters gen-
erating the data. By allowing sample size to be reduced
to meet a desired accuracy, our work offers an orthogonal
method of further reducing training time.

De Sande [8] has suggested that as samples become larger,
models with small parameter sets may no longer be rich
enough to capture the sample’s complexity. Thus our exclu-
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Figure 1: Given the fixed model learn=0.2,
prior=0.4, guess=0.14, slip=0.05, we generated
10000 samples with 1000 students each, and for each,
inferred all four parameters using EM. The distribu-
tion of the inferred learning rate parameter over the
samples is above. The mean differs by 3 x 107° from
the true generating parameter 0.2. The standard
deviation is 0.01121, and the orange line shows the
expected height of each bar if the proportions pre-
cisely followed a normal distribution. Scipy’s nor-
maltest [7] rejects that the distribution is perfectly
normal (p < 0.0002), and a small amount of negative
(left) skew is visible; the median is 0.00016 smaller
than the mean. But the distribution is close enough
to normal for our purposes.

sive reliance on a simple four-parameter BKT model even
for very large samples is a limitation of our approach.

3. METHODOLOGY

In our experiments we relied on a simple standard Bayesian
knowledge tracing model with four parameters: learning
rate, prior, guess and slip. There is only one value for
each parameter, and no specialization by student or prob-
lem. Each synthetic student responded to five items; we
do not vary this parameter in this study, since Nooraei et
al [3] report that increasing this parameter has diminishing
returns, but future work may investigate it.

We generate separate datasets for each of our experiments.
In each case, we enumerate a sequence of models (each spec-
ified by values for learn, prior, guess, slip, sample size), and
for each of those models, we generate a large number of
random samples consistent with that model. For example,
for a particular model, we may generate 1000 samples each
containing 1000 students.

We then run EM on each sample to find the parameter set
giving the maximum likelihood value. All parameters are
permitted to vary during the search. EM is run starting
at the generating parameters and run until fully converged
(within 10™'2 or until 100 iterations are complete). Start-
ing at the generating parameters is not feasible in a realistic
setting, but here it allows EM to run quickly and consis-
tently reach the global minimum. As shown in Figure 1, the
parameter values inferred from these samples approximate
a normal distribution with a mean equal to the generating
parameter.

Finally, we take all samples generated from a single model
and, for each parameter, record the mean and standard devi-
ation of the inferred values for that parameter. We chose the
number of samples generated for each model large enough
so that these statistics remain stable under repeated runs.
Mean values for each parameter were consistently near the
generating parameter, typically within at most 0.1 standard
deviations. Standard deviation provides an estimate of vari-
ation in the inferred parameter values, and is plotted. Dif-
ferent models yield different standard deviation values.

Because of the very large number of large samples involved
in this approach, we use the fastHMM C++ BKT library
designed by Pardos and Johnson [5] to quickly generate
datasets and perform EM, invoked from a Matlab script.

3.1 Varying one parameter

In our first experiment, we start with typical, plausible val-
ues for all four parameters: learn=0.2, prior=0.4, guess=0.14,
slip=0.05. These values are consistent with prior work that
found large guess and slip values (> 0.5) to be implausible in
most scenarios [6], and in our 5-problem scenario, the chance
of learning the material by the end is about 67%, which is
reasonable.

Then, for each of the four parameters, we hold the other
parameters at their single plausible value, and vary the re-
maining parameter from 0 to 1 in steps of 0.01. This results
in 404 total parameter sets.

For each parameter set, we generate 1000 random samples
of 1000 students each. In this experiment, the number of
students is fixed at 1000, which is large enough to consis-
tently produce a standard deviation not exceeding 0.03 —
this avoids the boundary effects near 0 and 1 that would
occur for very small samples.

In this experiment, we focus on the variance of our estimates
of the parameter that is being varied, and don’t consider
variance of the other (fixed) parameters.

3.2 Interactions between parameters

In this experiment, similiar to the first, we hold three pa-
rameters fixed (learn=0.2, prior=0.4, guess=0.14), and vary
slip between 0 and 1 in steps of 0.01. This gives 101 pa-
rameter sets. For each, we generate 1000 random samples of
1000 students each. However, in this experiment we exam-
ine variance of our estimates of all four parameters, rather
than just the one being varied (slip). This experiment helps
to demonstrate to what extent varying one parameter can
affect the difficulty of accurately inferring other parameters.

3.3 Varying sample size

In our third experiment, we fix the value of all four pa-
rameters, but vary the sample size in powers of two from
2 to 2097152. For sample sizes below 10000, we generate
1000 samples of that size, while for those above we generate
100 samples. The parameter values are heuristically chosen
based on the prior experiments above to generate large error
values (but not necessarily the worst possible error). We ex-
amine how variation of our estimates of all four parameters
varies with sample size, and identify any trends.
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Figure 2: Variation of inferred parameters, based on
underlying generating parameter. For each curve,
all parameters other than one being examined are
fixed at plausible values. Values near 0 and 1 are
the easiest to infer accurately, and each parameter
exhibits a unique pattern.

3.4 Interaction between sample size and pa-

rameters
In our final experiment, we vary both the learning rate (from
0 to 1 in steps of 0.01) and the sample size (between the val-
ues 1000, 10000, 100000) at the same time. This enables us
to examine whether there is any interaction between param-
eters and sample size. For 1000 and 10000 students we use
1000 samples, while for 100000 students we use 100 samples,
to reduce runtime.

4. RESULTS

4.1 Varying one parameter

As described in section 3.1, in this experiment we vary each
parameter between 0 and 1 while holding the other parame-
ters fixed, and examined how the variation in our inference
of that parameter changed with its value. As shown in Fig-
ure 2, parameters with values near 0 or 1 are easier to ac-
curately estimate, while those with values in the 0.4 to 0.8
range are more difficult to infer. Each parameter exhibits a
unique pattern, with prior behaving worst for small values,
guess behaving worst for values in the middle, and learning
rate performing worst for the largest values. Slip is unique
in having two peaks in its curve near 0.5 and 0.8.

4.2 Interactions between parameters

As described in section 3.2, in this experiment we vary slip
between 0 and 1 while keeping the other parameters fixed,
and examine how the variation of all four inferred parame-
ters varies, as shown in Figure 3. All variance values exhibit
a strong, complex dependence on the slip parameter—in par-
ticular there is a dramatic and unexpected drop from large
variance to small variance around slip=0.85. We conclude
that the variance of an inferred parameter depends not only
on the value of that parameter, but also the values of other
parameters.

4.3 Varying sample size
We fix the parameters at the values empirically determined
in section 4.1 to give maximum variance (roughly based on
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Figure 3: As the slip parameter is varied and

the other parameters are held fixed (learn=0.2,
prior=0.4, guess=0.14), the error in our inference
of all other parameters varies in a strong and com-
plex fashion, indicating interactions in the inference
of different parameters.

the maximums of the curves, with prior and guess at 0.5, and
learning rate and slip at 0.67). Because section 4.2 suggests
that there are interactions between parameters, this may not
give the worst-case variance possible of all combinations, but
it is a reasonable starting point for realistic values.

As described in section 3.3, sample size is varied in powers of
two from 2 to 2097152. Figure 4 shows the result, suggesting
that (except for very small samples) the standard deviation
of the error is roughly proportional to n=°%, or 1/4/n, where
n is the sample size. For these particular parameter values,
slip is consistently inferred most accurately, learning rate is
inferred least accurately, and guess and prior are between
the two and are similar.

4.4 Interaction between sample size and pa-

rameters

In our final experiment, as described in section 3.4, we vary
both the learning rate and the sample size at the same time.
The standard deviation curves for the three sample sizes are
then plotted on the same plot, each divided by the 1/v/n
factor, where n is the sample size, as shown in Figure 5.
The curves are nearly identical, and we find no evidence
of interaction between parameters and sample size, but we
can’t rule out interaction for other combinations of parame-
ter values. This also offers additional evidence for the 1/v/n
trend from the previous section.

S. DISCUSSION

Because accuracy is good for parameter values near 0 and 1,
this implies that for large enough samples, boundary effects
(in which the distribution of error is skewed because values
outside of the 0-1 range are not permitted) are not a serious
concern.

Interactions between parameters are complex, suggesting
that attempting to characterize error in each parameter in-
dependently is unlikely to yield good predictions of error.
Moreover, attempts to model these interactions analytically
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Figure 4: Accuracy of inferred parameters, based on
sample size (training set size), with fixed parame-
ters (prior=guess=0.5, learning=slip=0.67). This is
a log-log plot, and (once the y = 0.1 level is reached)
the lines each remain straight and have slope of
roughly -0.5. This suggests that the standard de-
viation of the error is roughly proportional to 1/\/n,
where n is the sample size.
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Figure 5: Here we vary learning rate from 0 to 1,
and also vary sample size between the values 1000,
10000, and 100000. The resulting standard devia-
tions are divided by 1//n to normalize for improve-
ment in error due to increased sample size. The
resulting curves are nearly identical; the curve for
100000 students appears noisier only because of a
lower number of samples (100 instead of 1000). We
find no evidence of interaction between sample size
and the learning rate.
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may be challenging because they cannot be fit well by low-
degree polynomials. A more viable strategy is to form a
conservative estimate of error by conducting a grid search
of parameter sets that are plausible in a given scenario. On
the other hand, once the range of variances at a particular
(sufficiently large) sample size is characterized, Figure 4 and
Figure 5 show that altering the sample size has a uniform
and predictable effect on the error.

The main result that standard deviation is proportional to
1/4/n suggests that, in order to decrease the margin of error
in the estimate of a parameter by a factor of 2, an increase
in sample size by a factor of 4 is required. Additionally,
Figure 4 shows that achieving even a single valid significant
digit in the learning rate requires sample sizes of 1000 stu-
dents or more. This suggests that studies using BKT with
less than 1000 students should be considered carefully for
sampling error.

5.1 Confidence Intervals and Decreasing Train-
ing Time

As noted in Figure 1, provided that the sample size is large
enough, the distribution of samples is approximated well
by a normal distribution, and the standard deviations com-
puted in synthetic simulations such as the preceding ones
can be used to compute confidence intervals containing the
true generating parameters (e.g. 95% of possible values are
within two standard deviations). Parameters used in these
simulations can be set either by using domain knowledge,
and/or by conservatively selecting values that give poor ac-
curacy.

To use our results to decrease training time for a large data
set, one approach is to create many small samples (e.g. 100
of size 1000) by sampling uniformly randomly with replace-
ment from the full data set. By training on these, we can
estimate the variance of our estimates of each parameter at a
sample size of 1000. Then, given a desired level of accuracy
and a desired probability of achieving it, we can use 1/4/n
to estimate the best final sample size. If the estimated sam-
ple size exceeds the data size, this suggests that more data
needs to be gathered.

6. IDENTIFIABILITY PROBLEM

Although we have in this work considered a particular gen-
erating parameter set to be the correct and desired param-
eters, BKT exhibits an Identifiability Problem [1] in which
there are an infinite family of four-parameter solutions that
make the same predictions. This creates the risk that a solu-
tion that appears to be far from the generating parameters
is actually very close to an equivalent parameter set (or an
equivalent solution is).

Van de Sande [9] more specifically characterized BKT (in
its HMM form) as a three-parameter system in which two

systems having the same slip, learning rate, and A value will
yield the same predictions, where A is given by

A = (1 — slip — guess)(1 — prior).

One way to address the issue is to perform both data gener-



ation and parameter search in this reduced three-parameter
system; this would be similar to our current approach, but
error in the A parameter is more difficult to interpret. In-
tuitively, we expect search in a lower-dimensional space to
give better accuracy with the same amount of data. How-
ever, Van de Sande also notes that the algorithm form of
BKT has no analytic solution, and so the degree to which
BKT is underdetermined may depend on the specific appli-
cation.

Beyond the underdetermined nature of BKT, there are also
information-theoretic bounds that limit the accuracy of in-
ferring parameters regardless of the system. In particular,
given a collection of at least k different parameter sets, and
student data that can only take on < k values, there is
no procedure that can reliably infer the generating param-
eters without error. As the size of the data continues to
decrease, the minimum possible error increases. Although
these bounds are general, they typically apply only to very
small data sets.

7. CONCLUSIONS AND FUTURE WORK

We’ve only explored a small part of the space of input pa-
rameters that can affect inferred parameter accuracy; the
possible interactions between parameters are complex and
not fully understood. It would also be useful to examine
different sizes of problem sets, scenarios where different stu-
dents complete different numbers of problems, models where
parameters such as learning rate and guess/slip are per prob-
lem, and models where priors are measured per student (as
in Pardos and Heffernan [4]).

Although it seems intuitive that insufficient sample size can
lead to poor parameter estimates with poor predictive power,
this deserves verification: it’s not clear which errors will
damage prediction and which are benign. An empirical syn-
thetic study that examines prediction accuracy could assess
this cheaply. Going a step further, it would be useful to
simulate an interactive tutoring system and assess a cost
function that penalizes the system for both incorrect assess-
ment of mastery, and for failing to assess mastery when it
is reached. By applying weights to these error types, the
simulation could represent the real-world cost of inaccurate
parameters in such a system.

Another important direction is extending our results to real-
world data. There are a few approaches. One is to use a
very large real-world data set and use its inferred param-
eters as the ground-truth generating parameters, then ex-
amine smaller subsets to determine whether parameters are
inferred less accurately. If the BKT model is appropriate,
we expect to observe similar relationships between sample
size and variance as with our synthetic data. This approach
can be compared to one experiment of Ritter [6] (Figure 4),
in which they took a large real data set and computed mean-
squared error using the best-fit parameters on subsets with
smaller number of students ranging from 5 to 500.

There are other approaches to real-world validity. One would
be a survey of prior BKT applications, to identify whether
there is a consistent relationship between sample size and
reported prediction accuracy. A third approach would be a
controlled experiment in which two groups of very different

sizes each use an ITS, the BKT is trained on the result-
ing data, and then the groups continue to use the ITS and
their learning performance is examined (note however that
asymmetric group sizes limit statistical power).

Finally, an analytical model that can explain some of our
empirical results—such as the skewed normal distribution
of inferred parameter values, the improvements in parame-
ter inference near 0 and 1 parameter values, or the 1/y/n
relationship between sample size and standard deviation—
would be a valuable contribution.
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