
Programmable Analytics for Linked Open Data

Bo Hu
Fujitsu Laboratories of Europe

Middlesex, UK
bo.hu@uk.fujitsu.com

Eduarda Mendes
Rodrigues

Fujitsu Laboratories of Europe
Middlesex, UK

Emeric Viel
Fujitsu Laboratories Ltd

Kawasaki, Japan
emeric.viel@jp.fujitsu.com

ABSTRACT
LOD initiative has made a major impact on data provision.
Thus far, more than 800 datasets have been published, con-
taining tens of billions of RDF triples. The sheer size of
data has not resulted in a significant increase of data con-
sumption. We contend that a new programming paradigm
is necessary to simplify LOD data utilisation. This paper
reports an early phase development towards programmable
web of LOD data. We propose to tap into a distributed
computing environment underpinning the popular statistical
toolkit R. Where possible, native R operators and functions
are used in our approach so as to lower the learning curve.
The crux of our future work lies in the full implementation
and evaluation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.12 [Interoperability]: Data mapping
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Linked Open Data, RDF, R, Programmability

1. INTRODUCTION
As of mid 2013, totally 870 datasets had been published as
part of the Linked Open Data (LOD) cloud, exposing nearly
62 billion RDF triples in a computer-readable representation
format1. These numbers are still rapidly growing largely at-
tribute to open governmental data initiatives and “online”
high-throughput scientific instruments. As greater amounts
of data become available through LOD cloud, the expected
virtuous cycle–more data leading to more consumption and
thus encouraged data publication–has not been clearly wit-
nessed. On the contrary, it is observed that, in many occa-
sions, after the initial spark of interest and test applications,
data use at many linked data hosting sites declined signifi-
cantly [3]. Some critics believed that the massive amounts of

1http://stats.lod2.eu. Accessed: January 2014.
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semantic-rich data accumulated so far have actually driven
away potential users. On the one hand, it adds extra layers
of abstraction/conceptualisation to the data, making them
not suitable for toolkits tuned against data represented in
tabular format. On the other hand, the sheer volume of
data renders many semantic web tools less productive. We
contend that a major obstacle that prevents ordinary users
from tapping into LOD cloud is the lack of a mechanism
that allows people to make “sense” out of the overwhelming
amount of data. More specifically, in order to facilitate the
general uptake of LOD by research communities and practi-
tioners, simply making the data available is not sufficient. It
is essential to offer, along side the data, a means of utilising
such resources in such a way that is comprehensible to users
with a wide range of backgrounds and potentially limited
knowledge of semantic technologies.

In this paper, we propose a solution that tightly integrates
linked data computing with the popular statistic program-
ming platform R. This brings together two well established
efforts and thus two large user bases: R offers a declara-
tive and well formed programming language for mining and
analysing LOD datasets while the LOD Cloud paves the way
to instantaneous access to a large amount of structured data
on which existing R functions and packages can be applied.

1.1 Programmability of LOD
Thus far, data available through LOD Cloud are accessed
primarily using SPARQL. Typically, this is conducted by
submitting query scripts to a SPARQL endpoint and based
on the query results, filtering/joining/aggregating (available
from SPARQL 1.1) candidate results either on the server
side or at the local clients. SPARQL is based on set al-
gebra. This is both an advantage and a disadvantage. It
resembles the prevailing SQL for RDB. People familiar with
the latter can, therefore, enjoy a fast learning curve when
making the paradigm shift. On the other hand, SPARQL
is mainly a query language and thus does not stand-out for
post-query data processing. In many cases, the results of
SPARQL queries are extracted and converted into the na-
tive data structures of other programming languages (e.g.
Java) for further manipulation.

Equipping and/or enhancing LOD with high programmabil-
ity beyond SPARQL has been investigated previously. The
(dis)similarity between RDF as the underlying data struc-
ture of LOD and the general object oriented methodology
inspired ActiveRDF [5], where semantic data are exposed



through a declarative script language. Along the same di-
rection, RDFReactor [9] packs RDF resources as Java ob-
jects where instances are objects and properties are accessed
through java methods.

Unfortunately, the above integrations have not lowered the
threshold to fully exploring LOD cloud. Among other rea-
sons, the most prominent ones include the follows. It will be
very difficult for such approaches to deal with missing values
and sparse structures, which abound in uncurated or auto-
matically produced collections. The size and quality of LOD
cloud lends itself to statistical data analysis. Performing
such analysis using SPARQL queries can become cumber-
some in many cases, requiring recursive SPARQL queries
and multiple join operations. Moreover, neither SPARQL
nor the integrated framework enjoys native support to ma-
trix operations and solving linear equations, while such char-
acteristics become increasingly critical in processing large
amounts of data.

R, as a dynamic and functional language, offers good capac-
ity to enhance the programmability of LOD and remedy the
shortcoming of existing approaches.

1.2 Why R?
R is a programming language and a software toolkit for data
science. Though not outspoken, R is designed for domain
experts instead of conventional software programmers. It
focuses on transactions that are more familiar to the for-
mer, e.g. organising data, manipulating spreadsheets and
data visualisation. R is open source with over 2,000 pack-
ages/libraries for a wide variety of data analytics2. The
most distinctive feature of R is its native support to vector
arithmetics. In addition, versatile graphics and data visual-
isation packages as well as easy access to a large number of
specialist machine learning and predictive algorithms make
R a widely adopted computing environment in scientific com-
munities (c.f. [2]). R is essentially single threaded. Scaling
R for Big Data analysis can be achieved with RHadoop3. In
this paper, we focus on adapting R for LOD data structure.

Integrating R and LOD has been inspected previously. The
SPARQL R Library [8] aims to expose RDF data and wrap
SPARQL endpoints with a black-box style connector library.
Largely in the same vein, the most recent effort, rrdf li-
brary [10], allows loading and updating RDF files through
manually crafted RDF-R mapping. The in-memory RDF
models can then be queried using SPARQL. We see the
following issues with SPARQL-based integration. Firstly,
SPARQL queries and the target RDF data sets are not
transparent to R users, making it difficult to validate and
optimise the processes. Arbitrary SPARQL queries can in-
cur global scans that drastically impede the system perfor-
mance. Secondly, R environment loses the regulatory control
over SPARQL queries. Such a blindness subjects the system
to safety and security concerns. Finally, domain experts and
statisticians are required to manually compose the SPARQL
queries. This means learning the fundamentals of RDF and
a new query language.

2http://www.r-project.org. Accessed: January 2014.
3https://github.com/RevolutionAnalytics/RHadoop/wiki

2. PROGRAMMABLE LOD
LOD Cloud provides a framework to access and navigate
through apparently unrelated data, with conceptual models
capable of explicating hidden knowledge. The logic based
axioms (underpinning RDF) in many cases are not powerful
enough to capture all the regularities in the data. We vision
that a programming language, aiming to utilise and inter-
act with LOD cloud (the datasets therein), is preferably to
present the following characteristics.

Native support to LOD data structure. The underlying data
structure of LOD is RDF triples which essentially compose
a directed, labelled graph. SPARQL, the standard RDF
querying language, transforms data into tabular form for
better alignment with the RDB conventions. This extra
formatting layer is not always necessary when the underlying
data structure can be accessed with native graph operators.

Native support to data analysis. Better data accessibility
inherent to LOD presents itself as both an opportunity and
a challenge. With better access, an LOD data consumer is
exposed to data linked in through semantic relations, most
of which he or she may not be aware of. More data is not al-
ways necessarily a merit. In this case, the consumer is likely
to be overwhelmed by data with different formats and differ-
ent semantics, making analysis struggling. A programming
platform capable of dynamically handling different format
becomes desirable.

Ready for distributed processing. Applications accessing LOD
Cloud can easily be exposed to billions of triples, tanta-
mount to terabyte-grade data transactions. Single machine
and single threaded statistical offerings will find themselves
struggling in such situations. The programming platform
should offer parallelisation capacity for good scalability.

Inspecting R within the scope of the above requirements, we
can make the following observations. Firstly, R is a func-
tional language with lazy evaluation, wherein functions are
lifted to become first class citizen. Also, R has a dynamic
type system. These fit well with RDF’s idiosyncrasy. Sec-
ondly, R is designed for statistical computing. Missing value
support and sparse matrix handling permeates all R func-
tions and operations. Finally, though R is single-threaded,
for many machine learning tasks it is possible to distribute
the underlying R data structures and facilitate process dis-
tribution over a layer of data abstraction.

3. SYSTEM ARCHITECTURE
The concept of programmable LOD is experimented on the
BigGraph platform, denoted as BGR. BigGraph aims at a
generic distributed graph storage with RESTful interface.
Figure 1 illustrates the main building blocks of BGR. At
the top, there is the user interface. An BGR user programs
using R primaries with dedicated functions that facilitate
the RDF to R data type mapping. BGR programs are sub-
mitted to a master node as the main entry point through
which the user interacts with the system. The runtime at
the master is responsible for the following tasks: 1) inter-
preting BGR programs; 2) interacting with the in-memory
graph model for graph transactions; and 3) deciding which
data server/worker it should directly query.
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Figure 1: System architecture

The runtime on each data server mainly consists of two key
components: R environment and storage driver. Each lo-
cal R installation executes statistical analysis directly or ex-
poses such analytical capacity through the in-memory graph
model. A storage driver is responsible for I/O with the un-
derlying storage unit.

3.1 Mapping RDF resources to R variables
The fundamental data structure for storing data in R is vec-
tor, where a single integer for example is seen as a vector of
length one. Variations and extensions of vector data type
include matrices, arrays and data frames. Though RDF
graphs can be easily stored as adjacency matrices or adja-
cency lists, we would opt against a full conversion of LOD
cloud, adding extra computing expenses. Rather, a direct
one-to-one mapping between RDF resources (being classes
and instances) and R variables can provide a seamless and
smooth integration while at the same time ensures the in-
tegrity of the original data. For instance, an RDF instance
becomes an R dataframe consisting of single-element vectors.
Similarly, an RDF class can be assigned to a two dimen-
sional dataframe with rows corresponding to instances and
columns the properties. Instance values can be loaded ei-
ther column wise or row wise depending on the analytical
and performance requirements. In the following example,
column-based initialisation is conducted.

> s <- data.frame(name=av, age=bv, email=cv)
> s

age name homepage
P1 5 foo foo@bar.com
P2 6 john john@bar.com
...

Note that in this example, a class resource is extensionally
represented by the set of its instances at the snapshot of
data loading.

3.2 Mapping to the underlying storage
In order to accommodate the sheer size of LOD Cloud and
leverage parallel data loading, a distributed storage is nec-
essary. We opt for an edge-based storage solution that fits
nicely with the principles of a Key-Value Store (KVS) [4].
KVS plays a key role in our approach to scale-out RDF
graphs. RDF triples are, however, not KVS ready. The first
and foremost step is therefore to define the key-value tuples
that a standard KVS can conveniently consume. In BGR,
different components of a triple are concatenated together
and encoded as UUID which is then treated as the key while
the value parts of KVS are reserved for other purposes, e.g.
named graph, provenance, and access control.

An RDF triple is indexed three times each. Even though pre-
senting a replication factor of at least three, our approach is
under the consideration of query performance and fault re-
covery. Loading RDF data into R variables is normally tak-
ing the form of localised range queries, fixing either the sub-
ject or object of the triples and replacing the rest with wild-
cards. For instance graph.find(s, null, null) retrieves all
the triples of a resource while graph.find(null, p, o) presents
an inverse traverse from object o. By replicating triples,
data can be sorted according to not only subjects but also
predicates and objects. This improves query execution.

3.3 Loading graph
For performance, LOD datasets are treated in the following
ways. For datasets with RESTful API (e.g. DBpedia), the
RDF resource to R variable mapping can be realised straight-
forwardly. Some datasets expose only SPARQL endpoints.
SPARQL queries become necessary with the restriction that
only local scans (e.g. 〈s, ∗, ∗〉 or 〈∗, ∗, o〉) are permitted. Ide-
ally, results of scan are used to construct local data graph.
In the long run, on-demand data crawling can maintain lo-
cal copies of frequently used datasets, helping to ensure data
quality and manage mappings through local data curation.

3.4 Processing data
R is inherently a single threaded application, though paral-
lelisation has been implemented using snow and snowfall

packages [6]. The use of LOD Cloud falls into the following
categories for which we proposed solutions to achieving good
scalability.

3.4.1 Bulky processing
This OLAP-like data processing aims to emerge patterns
(such as hidden semantic relationships and semantic data
clusters) out of data held in LOD Cloud. Such a process nor-
mally is performed on preloaded data and is not time criti-
cal. While a plethora of R packages can be leveraged for data
mining, the main difficulty lies in populating R dataframes
with LOD data that can facilitate R functions. By encoding
each RDF resource as one R variable, it is easy to construct
matrices that fit with special purposes. For many predictive
machine learning tasks, voting based aggregation (e.g. bag-
ging [1]) can distribute the overall learning tasks to carefully
sampled subsets of the target datasets. This can be easily
achieved and managed by traversing the graph to the se-
lected subsects of concept instances.

Example. Given a dataset with patients data, the follow-
ing code fragment splits the set of patient instances into 10



subsets4. Traversal with named vertices and edges can be
carried out along both inbound and outbound directions.

1: patient_v <- graph_get_vertex("Patient")
2: all_patients <- graph_get(patient_v, edge="rdf:type")
3: for(i in 1:10) {
4: vname <- paste("p_set", i, sep="");
5: assign(vname,

sample(all_patients,length(all_patients)/10))
6: saveRDS(vname, file="...")
7: }

Here, we assume the entire set of patient instances will be
loaded into memory. Alternatively, a partial loading can be
executed to lower the demand for computing resources and
latency. In the following example, edges of patient resource
is indexed. Sampling is conducted against the index. Only
selected instances are loaded.

1: patient_v <- graph_get_vertex("Patient")
2: patient_size <- graph_get_edge_count(patient_v,

edge="rdf:type")
3: patient_index <- graph_edge_index(patient_v,

edge="rdf:type")
4: n <- c(1:patient_size)
5: ns <- sample(n, size/10)
6: for (i in ns) {
7: ins<-graph_traverse(patient_v,edge=index[i])
8: saveRDS(ins, file="...")
9: }

The following code fragment intends to construct a random-
forest-based prognosis model (line 11) for a certain disease
based on a patient’s gender and age. The patient data are
loaded with a graph traverse transaction over the given pa-
tient instance vertices and the given outgoing edges (line 3-
6, where wildcard indicates all the outgoing edges). Missing
values are set to a default one (i.e. age = 75) for simplicity
(line 9).

1: p_partition<-readRDS(file="...")
2: patients <- data.frame()
3: for(i in p_partition) {
4: p_data <- graph_traverse(vertex=i, out_edge="*");
5: patients <-rbind(patients, p_data)
6: }
7: size <- length(patients)
8: training_set <- data.frame(

age=patients$has_age,
gender=patients$has_gender, ...)

9: training_set$age[is.na(training_set$age)] <- 75
10: labels <- as.factor(patients$status);
11: rfp <- randomForest(training_set, labels)

In this example, we assume that the patient data partitions
are passed using data file residing on the disk (line 1). This
is for illustrative purposes only and does not exclude shared
memory or message passing based solutions.

3.4.2 Incremental processing
OLTP-like realtime data processing is supported through an
event-driven mechanism that applies classifiers (obtained as

4Based on the literature, bagging should take a fraction be-
tween 1/2 to 1/50 depending on the size of the sample data.

in the previous section) to data in an incremental fashion.
This incremental characteristic is two-fold. Firstly, the sys-
tem should detect the difference between existing classified
data and inputs so as to isolate the changes and restrain re-
classification only against the differences. Secondly, the sys-
tem should update only those classifiers whose input data
have changed since the most recent retraining. BGR ac-
commodates both requirements through distributed logging
of graph structural changes and localised event propagation
observing graph structures. For instance, “OutEdgeCreat-
edEvent” is issued by the storage listener if an edge is in-
serted. This event instance carries information such as the
edge (in triple form) and on which vertex (vs) this edge is
created. Events propagate along paths that originate from
vs to avoid global scans. As a result, affected classifiers along
the propagation routes are scheduled for update. Note that
some machine learning algorithms can be easily adapted to
fulfill the requirements (c.f. random forest [?]).

Versioning resources. An RDF resource normally consists
of multiple triples jointly stating the constrains on the re-
source. Therefore, the event-driven incremental processing,
which only has visibility of individual triples, requires a
mechanism to obtain complete statements of the resource.
We use versioning to ensure consistency when data are clas-
sified and when classifiers are retrained. Version information
is stored at the value part of the key-value tuples and version
updates are treated as atomic operations.

Multiple threads. Multi-threaded R is not likely to be avail-
able in the near future. As spawning threads is not possible,
BGR runs multiple processes communicating through socket.
For instance, one R process listens to the underlying storage
driver for fetching graph structural events through a dedi-
cate socket address. The events are then parsed to extract
event types, triples that raise the events, and versions of the
triples. Other R processes handle the events and dispatch
them for further actions when necessary, again by writing
to a socket address. Socket-based communication may not
provide ideal performance; in many cases it becomes the
main bottle neck of performance. It, however, offers the
most cost-effective solution to increase parallelism without
dismantling R.

3.5 Resource local processors
We advocate and practice a declarative and resource-centric
approach in BGR. More specifically, expected analytics are
constructed at the resource level and are associated with
the target resource through RDF property declarations. For
instance the following RDF triples assign an R random-forest
classifier (defined in section 3.4.1) to a resource (i.e. the
“Patient” class).

:Patient a owl:Class ;
rdfs:subClassOf
[ a owl:Restriction ;

owl:onProperty :has_behaviour ;
owl:someValuesFrom
[ a owl:Class ;

owl:oneOf (:new_patient_behaviour
:update_patient_behaviour)]].

...
:new_patient_behaviour
a :Behaviour , owl:NamedIndividual ;



:event :onNewInstanceAdded ;
:has_handler "R:rfp" .

This essentially defines how a resource (e.g. Patient) reacts
to (or behaves against) events (e.g. onNewInstanceAsserted
event), realised using the attached process (e.g. R:rfp). At
the ontology class level, enumeration (owl:oneOf) is used
to establish conceptual relationship between the Patient

class and the desired functionalities w.r.t. the correspond-
ing events. The actual implementation of behaviour in-
stances can be realised, for example, in R. Depending on
the size of the compiled code, the implementation can be
stored either entirely at the value part of the KV tuple
of 〈:new_patient_behaviour, :has_handler, "R:rft"〉 or
separately with a pointer from the value part of the tuple.
When a new patient instance is asserted, an event is raised
which will trigger the embedded R function to react to such
a change in the storage.

Several advantages are evident by assigning behaviour and
storing its implementation close to a resource. Firstly, for
a distributed data storage, this implies a close proximity of
data and process localities. Secondly, behaviour enhances
the reactive programming principle by packing small pro-
cess units against very specific data units. Thirdly, data be-
haviours and their implementations are conceptualised with
well-formed RDFS constructs. This facilitates ontological
inferences when necessary, though with caveats: i) increased
inference complexity and ii) anonymous resources complicat-
ing RDF query handling.

4. PRELIMINARY RESULTS
BGR is still under development. This section reports the
system design that has been considered so far and lists out
potential future work.

The underlying graph storage is a distributed KVS based on
HBase. HBase also handles data partition, locality, replica-
tion and fault tolerance. Jena graph introduces the neces-
sary abstraction layer for indexing and retrieving triples in
the KVS. A simple graph programming interface is respon-
sible for graph traversal and scan operations. It follows the
Tinkerpop Blueprint convention5 and currently talks to Jena
graph so as to construct resource subgraph from the edge
based storage data structure. The use of Jena is mainly for
the convenience of leveraging Jena models when in-memory
ontology inference becomes necessary. In the future, direct
communication between storage and graph API is expected
to improve the overall system performance. This is at the
price of reduced ontological inference capacity.

Both storage and graph modules are implemented in Java.
R communicates with the storage driver through an R-Java
interfacing library, rJava package [7]. Calling Java methods
are straightforward as illustrated in the following example:

1: .jinit()
2: # do something before loading the graph
3: g.obj<- .jnew("Graph")
4: # do something else
5: graph.find <- function(x, y) {

5https://github.com/tinkerpop/blueprints/wiki

6: .jcall(g.obj, "S", "find", x, y)
7: }

We intend to minimise the effort of extending R, i.e. avoid-
ing introducing compiled R packages. This is under mainly
practical considerations. It lowers the learning curves for
people already familiar with R, as basically no extra opera-
tors need to learn. Also, it increases the visibility of data
management with respect to the underlying data structure.

5. CONCLUSIONS
This paper calls for user-friendly and programmable LOD
by leveraging and enhancing R, a free software toolkit for
statistical computing and graphics.

Note that there are a few R packages (e.g. bigmemoRy) that
aims in particular at Big Data computing. There are also R

packages (e.g. foreach, ff, etc.) for strengthening R par-
allelism. Our proposal is not to compete with such existing
solutions but to advocate a collaboration of two indepen-
dent efforts and provide solutions that fit the visions and
requirements of linked data paradigm.

We also do not see competition with the RESTful movement,
such as Linked Data Platform (LDP, [?]) which already
gained momentum in the LOD community. LDP works at a
layer lower than the proposed LOD/R integration, assisting
data exposure so that the data can be consumed by the BGR

functions and operators.
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