An Easy to Use Repository for Comparing and Improving
Machine Learning Algorithm Usage

Michael R. Smith! and Andrew White? and Christophe Giraud-Carrier 3 and Tony Martinez*

Abstract.
are used for a specific purpose and then discarded. Thisscaigse
nificant loss of information and requires rerunning experits to
compare learning algorithms. Often, this also requiressearcher
or practitioner to implement another algorithm for compan, that
may not always be correctly implemented. By storing the Itesu
from previous experiments, machine learning algorithms ba

The results from most machine learning experimentsperience (results from previous machine learning experig)eAl-

though some research from the machine learning communitydia
cused on meta-learning (e.g., see [17, 5, 2, 3, 8]), mucheofatus
of machine learning research has been on developing mareriga
algorithms and/or applying machine learning in specific diors.

Part of the difficulty of meta-learning is due to the lack of ac
cessible results. As meta-learning requires running aélearning

compared easily and the knowledge gained from them can lik uselgorithms and hyperparameter settings over many data gats

to improve the performance of future machine learning erpamts.
The purpose of this work is to provide easy access to predaus
perimental results for learning and comparison. Thesedtm@sults
are comprehensive — storing the prediction for each tetdnos as
well as the learning algorithm, hyperparameters, anditrgiset that
were used in the experiment. Previous experimental reatdtpar-
ticularly important for meta-learning, which, in a broachse, is the
process of learning from previous machine learning resuith that
the learning process is improved. While other experimetdalusses
do exist, one of our focuses is on easy access to the datanatim
ing any learning curve required to acquire the desired médion.
We provide meta-learning data sets that are ready to be daded
for meta-learning experiments. Easy access to previousriemental
results aids other researchers looking to do meta-leawamiighelps
in comparing meta-learning algorithms. In addition, siengleries
to the underlying database can be made if specific informagide-
sired. We also differ from previous experiment databaselsanour
database is designed at the instance level, where an iestaag ex-
ample in a data set. We store the predictions of a learningyitthgn
trained on a specific training set for each instance in thesttsData
set level information can then be obtained by aggregatiagehults
from the instances. The instance level information can leel disr
many tasks such as determining the diversity of a classifiaign-
rithmically determining the optimal subset of trainingtasces for a
learning algorithm.

1 Introduction

The quality of an induced model is dependent on, among other a

pects, the learning algorithm that is chosen, the hypearpater set-
tings for the chosen learning algorithm, and the qualityhefttaining
set. Choosing a learning algorithm for a given task, settsmyper-
parameters, and selecting which instances to train on, Vewes
non-trivial. Meta-learning deals with the problem of howstlect a
learning algorithm and set its hyper-parameters basedemious ex-

1 Brigham Young University, USA, email: msmith@axon.cs.legu

2 Brigham Young University, USA, email: andrewkvavlewhitg@ail.com
3 Brigham Young University, USA, email: cgc@cs.byu.edu

4 Brigham Young University, USA, email: martinez@cs.bywed

ering results requires large amounts of computationaluress. In
addition to the computational requirements, results froeléarning
algorithms may differ due to slight differences in their iepenta-
tions. Thus, comparing results among meta-learning ssumieomes
difficult.

To aid in further research in meta-learning, we have deesldpe
machine learning results repositofiILRR) that provides data sets
ready for download for meta-learning problems, akin to ti@d tata
repository for machine learning problems. We refer to thia dets
for meta-learning ameta-data set® distinguish them from the data
sets that are used in the machine learning experiments. €tedata
sets provide a snapshot of an underlying database that st@ee-
sults of machine learning experiments. Users can updatiathdase
with new results from machine learning experiments and tipefate
the meta-data sets for meta-learning. A revision historiejst so
that comparisons among meta-learning algorithms is fatéldl. As
a starting point, meta-data sets are provided by MLRR forcglp
meta-learning tasks, such as, given a set of meta-featpredict
which learning algorithm and/or hyperparameter settingse.

The MLRR stores instance level meta-features and the pireac
made on each instance by the learning algorithms. Providifag-
mation at the instance level allows studies to be perfornrethe
instances themselves. Studying the effects of machinaileaon a
single instance and/or the effects of a single instance empénfor-
mance of an algorithm has generally been overlooked. Instiavel
information is important in several areas of machine leaynhow-
ever. In ensembles, computing the classifier diversity efeéhsem-
bled classifiers using the predictions for each instanagp®itant in
determining the effectiveness of the ensembling techniti2ie6, 1].
In curriculum learning, the training set is incrementallygenented
such that “easier” instances are presented to the leariijogithm
first, thus creating a need to understand and identify theereas
stances [4]. Smith et al. used instance-level predictionsléntify
and characterize instances that are likely to be miscladqi#3] and
used this information to create a curriculum [22]. Other kvbas
also used the instance-level predictions for meta-legrriihe clas-
sifier output difference (COD) measures the distance betviwe
learning algorithms as the probability that the learningoathms
make different predictions on test instances [16]. Unstiped meta-

learning (UML) clusters learning algorithms based on tf@®D

scores (rather than accuracy) to examine the behavior detrae-

ing algorithms [13]. Meta-learning for algorithm selectioan then
be done over the clusters rather than a larger set of leaalgw

rithms to recommend a cluster of learning algorithms thaiethave
similarly [14]. Additionally, several techniques treasiances indi-
vidually during the training process, such as filteringanstes from
the training set based on their instance-level meta-feat[21] or
weighting the instances [18].

When we refer to an experiment, we mean the results fromimigen
learning algorithri with hyperparamter settingson a training set.
We first describe how we manage experiment information, hed t
describe the provided meta-data sets.

2.1 Experiment Information

The information about each experiment is provided in thedses
in MLRR. Which learning algorithm and hyperparameters wesed

Other attempts have been made at creating a repository fok provided in a file structured as shown in Table 1. It progithee
machine learning experiments from which learning can be- contoolkit including the version number that was ran, the l@agralgo-

ducted [20, 24]. However, we feel that they lack simplicitydéor
extensibility. In addition to providing instance-levefanmation, we

rithm, and the hyperparameters that were used. This allowsil-
tiple learning algorithms, hyperparameters, and tooliitbe com-

hope to bridge this gap with the MLRR. Probably the most promi pared. In the examples in Table 1, the class names from tha Wak

nent and well-developed data repository is ExpDB, an erpemt
database that provides a framework for reporting experiaher-
sults and their associated workflow [24]. The purpose of EBp®
to comprehensively store the workflow process of all expenits for
reproducibility. One of the results of storing the experitseis that
the results can be used for meta-learning. Unfortunathretis a
relatively steep learning curve to access the data due timhieeent
complexity involved in storing all of the details about exaepro-
ducibility. Because of this complexity and formality, it éfficult

to directly access the information that would be most beizéfior

meta-learning, which may deter some potential users. Autditly,

ExpDB does not currently support storage and manipulatfcamg
instance level features.

We acknowledge that maintaining a database of previousriexpe

ments is not a trivial problem. We do, however, add our voicsuip-

port the importance of maintaining a repository of machasating

results and offer an effective solution for storing resdiltsn pre-

vious experiments. Our primary goal is to maintain simpfi@nd

provide easily accessible data for meta-learning to 1) patpnote

more research in meta-learning, 2) provide a standard skttafsets
for meta-learning algorithm comparison, and 3) continugtitaulate
research at the instance level.

We next describe our approach for providing a repositorynfar
chine learning meta-data that emphasizes ease of accéssmeta-
data. MLRR currently has the results from 72 data sets, Silegr
algorithms and 10 hyperparameter settings for each |egraligo-
rithm. The database description is provided in Section 3v koadd
new experimental results to the database is detailed inddettWe
then give a more detailed description of the data set levélian
stance level meta-features that are used in the MLRR. Csiocisi
and directions for future work are provided in Section 6.

2 Meta-data Set Descriptions

The purpose of thenachine learning results reposito(MLRR) is
to provide easy access to the results of previous machinahegex-
periments for meta-learning at the data set and instane¢slebhis,
in turn, would allow other researchers interested in me&arling and
in better understanding machine learning algorithms timecess to
prior results without having to re-run all of the algorithmslearn
how to navigate a more complex experiment database. Thiyqofl
an induced model for a task is dependent on at least thregsthin

1. the learning algorithm chosen to induce the model,
2. the hyperparameter settings for the chosen learningitdgg and
3. the instances used for training.

chine learning toolkit [9] and the Waffles machine learniogjkit [7]
are shown. LAseed corresponds to the learning algorithm that was
used (LA) and to a seed that represents which hyperparaswitirg
was used (seed). The Léeed will be used in other tables as a foreign
key to map back to this table. A seed of -1 represents the léfau
perparameter settings as many studies examine the deédavior

as given in a toolkit and the default parameters are commaseyl

in practice.

Table 1. The structure of the meta-data set that describes the
hyperparameter settings for the learning algorithms dtor¢he database.

LA_S | Toolkit| Version |Hyperparameters
BP.1 3.6.11

weka weka.classifiers.functions.MultilayerPerceptyon
—-L0.261703 -M 0.161703 -H 12 -D
weka.classifiers.functions.MultilayerPerceptyon
—-L 0.25807 -M 0.15807 -H 4

walffles 13-12-09neuralnet -addlayer 8 -learningrate Q.1

-momentum 0 -windowsepochs 50

BP.2 | weka| 3.6.11

BP_3

C451| weka| 3.6.11 |weka.classifiers.trees.J48 — -C 0.443973 -M 1

As the parameter values differ between toolkits, there isjpping
provided to distinguish hyperparameter settings. For gtanWeka
uses the “-L” parameter to set the learning rate in backgatian
while the Waffles toolkit uses “-learningrate”. Also, sonmmlkits
have hyperparameters that other implementations of the $zemnn-
ing algorithm do not include. In such cases, an unknown valliée
provided in the meta-data set. This mapping is shown in T2lte
the backpropagation learning algorithm. The first row cmstahe
values used by MLRR. The following rows contain the command-
line parameter supplied to a specific toolkit to set that hyaexme-
ter.

Table 2. The structure of the table for mapping learning algorithm
hyperparameters between different toolkits for the bambagation learning
algorithm.

Command line parameters
toolkit LR Mo HN DC WE
weka -L -M -H -D ?
waffles | -learningrate -momentum -addlayer ? -windowsepochs

A mapping of which instances are used for training is alse pro
vided in a separate file. The structure of this table is showFable

3. Each row represents an experiment as tagki#dnumFoldsfold. Table 4. In the given example, instance 77 is shown. The firetf”
The toolkit represents which toolkit was used, the seedcsgmts the section provides the instance level meta-features forittsaance.
random seed that was provided to the toolkit, numFolds sgmts The actual class label is 2. The predictions from the expantsion
how many folds were ran, and fold represents in which foldran i this data set are provided in the following columns (i.epeximent
stance was included for testing. The values in the follovdolymns ~ BP_1/1 predicted class 3, BR/1 predicted class 2, etc.).
represent if an instance was used for training or testingrd s one

column for each instance in the data set. They are storecabgale Table 4. The structure of the meta-data set at the instance level.
ues. This allows for the situations when training instarttege as-

sociated weights. In the file, an unknown value of “?” représe

testing instance, otherwise a real value represents antdimstance. inst meta ‘ ‘ predictions
A value of 0 represents a filtered instance, a value of 1 reptesn # |KAN MV ... |act|BP.1/1 ... BPN/1 ... BRN/M C4.5111 ...
092 0 ..|2| 38 .. 2 .. 2 3

unweighted training instance and any value between 0 angré+e 77
sents the weight for that training instance. In the casegevtiere
are specific training and testing sets, then the row will telied
as toolkit0_0_1 and information for the training set can be entered
as before. A random test/training split of the data is regmeed as

toolkit_seedpercentSplitl where “percentSplit” represents the per- 4 g general meta-data set that stores the data set meteefeatut

At the data set level, several meta-data sets are provided:

centage of the data set that was used for testing as genératae the averageV by 10-fold cross-validation accuracy for all of the
toolkit. data sets from a learning algorithm with a given hyperpatame
setting.
Table 3. The structure of the meta-data set that indicates whichrmess o for each learning algorithm a meta-data set that stores dkee d
were used for training given a random seed. set meta-features, the learning algorithm hyperparansetéings,
toolkit_seed# folds.fold 1 5 3 and the averag&’ by 1.0-fold cross-validation accuracy for all of
the data sets for the given hyperparameter setting.
wekal 101 1 1 1
wekal.10.2 1 01 The structure for the general meta-data set is provided e Ta
: : S The structure and information of this meta-data set is i€ that
weka1.10.10 074 1 2 .. used in previous meta-learning studies that provides a mgfmpm
weka2.1.10 ? 1 1 data set meta-features to accuracies obtained by a setroifigal-
gorithms. Most previous studies have been limited to onigguthe
default hyperparameters, however. The MLRR includes tlcerae

cies from multiple hyperparameter settings. The hyperpater set-
tings from each learning algorithm are denoted by a “#Awhere
LA refers to a learning algorithm and # refers to which hypegmn-

2.2 Meta-data sets eter setting was used for that learning algorithm.

One of the features of MLRR s its focus on storing and present
ing instance level information, namely, instance levelrabteristics Table 5. The structure of the meta-data set at the data set level.
and associated predictions from previous experimentsedddthe
MLRR is designed intentionally from the instance level pexive,
from which data set level information can be computed (&ccu-

data set meta-featurfs LA accuracies
racy or precision).

data sefnuminst numAttr ..|BP.1 BP.2 ... BRN C4.51 ...

As one of the purposes of the MLRR is ease of access, the MLRR g'bsalon 4115707 g - gg:gg gg:gz o gigz gg:gg o
stores several data sets in attribute-relation file forlARKF) which
is supported by many machine learning toolkits. In essehREF is
a comma or space separated file with attribute informatiahpas-
sible comments. The precomputed meta-data sets inclutknaes The meta-data sets for each learning algorithm are desigmed
level meta-data sets and data set level meta-data sets. aid in algorithmic hyperparameter estimation, i.e., gieedata set,

At the instance level, MLRR provides for each data set a metacan we predict which hyperparameter setting will give thghkit
data set that stores the instance level meta-features amgredic- classification accuracy. For each learning algorithm, aardeta set
tion from each experiment. This allows for analyses to beedexx is provided that contains the data set meta-features, thkittthat
ploring the effects of hyperparameters and learning dlgms atthe was used, the hyperparameter setting and the average exdara
instance-level, which is currently mostly overlooked. Each data each unique tool kit/hyperparameter combination. Thectire of
set, a meta-data set is provided that gives the values fonstence the meta-data set for each learning algorithm is providethlie 6.
level meta-features, the actual class value (stored as anwwalue), The accuracy (“acc”) represents the average accuracy Iférfald
and the predicted class value for each experiment. Therigaget ~ validation runs (i.e., multiple runs of the same learningoathm
and learning algorithm/hyperparameter information igesidn the with different random seeds to partition the folds). Thdkitds also
column heading as “L&seed/hyperparameter” where LA is a learn- provided to allow a user to compare toolkits or only do hypeam-
ing algorithm and hyperparameter is the hyperparameténgéor eter estimation for a single toolkit.
the learning algorithm. Together, they map to the entri€Eainle 1. MLRR provides easy access for researchers and practitiocoer
The seed represents the seed that was used to partitiontthésda large and varying set of meta-data information as shownerahles
Table 3). The structure of the instance level meta-dat@&sttawn in ~ above. The provided meta-data sets are a snapshot of arlyimgler

learning results. The MLRR also stores the original data &etl-
low a user to add results from additional experiments on theeat
set of data sets. The results from experimentation on a neavsga

Table 6. The structure of the table for mapping learning algorithm
hyperparameters among toolkits.

DS meta features | toolkit | hyperparameter require that the new data set be uploaded as well as the meyeri
data set| numinst _numAttr ‘ weka | LR Mo 1 acc tal results. Scripts are provided to calculate the metasfea for the
iris 150 4 ...| weka | 0.71 0.61 ...| 96.80 new data set. In the case where a data set is proprietary atlnes
iris 150 4 -..| weka | 0.11 025 ...| 97.04 privacy/licensing issues that prevent it from being posted meta-
: : : : : : : features can be calculated on the data set without storimgdtual

data set.
database that stores all of the previous experimentaltsethidt can Currently, scripts are provided to upload the output fromning

be updated as more results are obtained. A revision histthealata ~ Weka. This provides a simple way to upload experimentalltesu

sets is provided so that results can be Compared even if ttee dlata from a Commonly used toolkit. The file is Sl|ght|y modified bBubat
set has been updated. the first line provides which learning algorithm and hypegpaeters

were used. The database will have the ability to upload fieeeg
. ated by other toolkits in the future.
3 Database Description Of course, there are issues of data reliability. Curreailyof the

MLRR uses MongoDB as the database to store the results from maesults stored in the MLRR are from our experiments. To heth w
chine learning experiments. MongoDB is a NoSQL database thadata reliability, we require that the script(s) and exeblst) re-
allows for adding new features (such as new learning alyost quired to reproduce the results are uploaded along withebelts.
and/hyperparameters), thus, escaping the rigidity of theertradi- This allows the results to be verified if their validity is gtiened. If
tional SQL databases. This allows for easily expanding ttafthse ~ the results from an experiment are thought to be invalid; da can
with new learning algorithms and/or hyperparameters. Qfs®, this be flagged, and inspected for possible removal from the MLRR.
is theoretically also possible in a relational databaseyiged the

database has been designed adequately. For example, ddeesu 5 [ncluded Meta-features

tainly have, and that would indeed be following good designgy
ples, one table for the algorithms and one table for the hppeam-
eters with appropriate foreign keys. However, such deséguires
some amount of foresight. In traditional relational datasa the in-
formation that needs to be stored (and how) has to be plaruméd f

advance. Otherwise, when new features are desired, a nemnach

needs to be created and then the database has to be migrated o@l' [23]. As the underlying_database_is aNoSQL databassi!;imtai
to the new schema. With a NoSQL database, new learning adgd”_neta-features can be easily added in the future. We nowitlesbe

rithms/hyperparameters and other pieces of informationezsily m?ﬁ'feat%reifr%m ez(.:lh stuldy.5 ined ranking | . |
be added into the MLRR. e study by Brazdil et al. [5] examined ranking learningoalg

The data is stored as a document database as collections H*hms using instance-based leaming. The meta-fgatue&kamgned
key-value pairs. Each collection represents the expetmher- t_o be quickly calculated and to represent properties tHatghlgo-
sults on a particular data set. In each collection, the kegs a rithm performance.

LA _hyperparameterSetting. The value then is a JSON text datume o Number of exampledhis feature helps identify how scalable an

In this section, we detail the meta-features that are irddud the
machine learning results repository (MLRR). We store a $elata
set meta-features that have been commonly used in previets m
learning studies. Specifically, we used the meta-featuoes Brazdil
et al. [5], Ho and Basu [10], Pfahringer et al. [17], and Sndth

that stores the results of an experiment (e.g., the restilt§-6old algorithm is based on the size of its input.

cross-validation on the iris data set using C4.5). Thesaimeats o Proportion of symbolic attributed his feature can be used to con-

also contain pointers to other documents that hold infolenatbout sider how well an algorithm deals with symbolic or numerie at

training/testing sets for each experiment. The data sttfice level tributes.

meta-features are stored in separate documents in th@eatd® o Proportion of missing valued his features can be used to consider

data set collection. A separate collection stores infoilonaabout how robust an algorithm is to incomplete data.

the learning algorithms and their hyperparameters. o Proportion of attributes with outliersAn attribute is considered to
The best way to visualize the database is as a hierarchy ef key have an outlier if the ratio of variances of the mean valuethed

value pairs as shown in Figure 1. At the top-level, there ailec- a-trimmed mean is smaller than 0.7 where= 0.05. This feature

tions - these are the individual data sets in the databaszh &a can be used to consider how robust an algorithm is to outlying

them holds a collection of documents that represent an ofitpy numeric values.

or experiment, named by its learning algorithm with two nemsb ¢ Entropy of classesThis feature measures one aspect of problem
that correspond to the random seed used to partition theatata difficulty in the form of whether one class outnumbers anothe
the hyperparameter setting. In these documents, the pimdidor
each instance is stored. Collections for which instance® weed
for training hyperparameter settings are also included.

Ho and Basu [10] sought to measure the complexity of a data set
identify areas of the data set that contribute to its conipléacusing
on the geometrical complexity of the class boundary.

4 Extending the Database e Measures of overlap of individual feature values:

— The maximum Fisher’s Discriminant rati@his is the Fisher's

The data provided by MLRR only contains a snapshot of current discriminant ratio for an attribute:

machine learning results. To allow more machine learnisglts to
be added and to allow the MLRR to evolve as the state of machine f= (1 — p2)?
learning evolves, MLRR provides a method to upload new nmachi 02 4 o2

)

e Measures of class separability:

wherey; ando? represent the mean and variance for a class. selected instances of the same class. The error rate ofa line

The maximum Fisher's discriminant value over the attribute classifier trained with the original training set on the geted
is used for this measure. For multiple classes, this measure test set is returned.
expanded to: — The nonlinearity of the one-nearest neighbor classiifetest

ZC ZC ;i (s — 1) set is created as with the previous feature, but the errerafat

fo &= j:igl PiPj\fi — Hj a 1-nearest neighbor classifier is returned.
2
Zi:l pig; — The fraction of maximum covering spheréscovering sphere

where (' is the number of classes apd is the proportion of is created by centering on an instance and growing as much
instances that belong to thé' class. as possible before touching an instance from another class.

Only the largest spheres are considered. The measuregeturn
the number of spheres divided by the number of instances in
the data set and provides an indication of how much the in-
stances are clustered in hyperspheres or distributedrnnehi
structures.

The overlap of the per-class bounding baxEsis feature mea-
sures the overlap of the tails of the two class-conditionsd d
tributions. For data sets with more than 2 classes, the awerl
of the per-class bounding boxes is computed for each pair of

classes and the sum over all pairs of classes is returned.
— The average number of points per dimensidhis measure is

the ratio of instances to attributes and roughly indicates h
sparse a data set is.

The maximum (individual) feature efficiendyis feature mea-
sures how discriminative a single feature is. For eachbaitiz]
the ratio of instances with differing classes that are ndahi

overlapping region is returned. The attribute that prodube \tj-class modifications are made according to the impletaion
largest ratio of instances is returned. of the data complexity library (DColL) [15].

The collective feature efficiencihis measure builds off of Pfahringer et al. [17] introduced the notion of using parfance
the previous one. The maximum ratio is first calculated as bevalues (i.e., accuracy) of simple and fast classificatigorthms as
fore. Then, the instances that can be discriminated areveino meta-features. The landmarkers that are included in the R1aRe
and the maximum (individual) feature efficiency is recadtetl listed below.

with the remaining instances. This process is repeatetinmti] o] -~]
more instances can be removed. The ratio of instances that cg® Linear discriminant learnerCreates a linear classifier that finds a

be discriminated is returned. linear combination of the features to separate the classes.

e One nearest neighbor learneRedundant with the leave-one-
out error rate of the one-nearest neighbor classifier fromahtb

— The minimized sum of the error distance of a linear classifier ~ Basu [10].

This feature measures to what extent training data is lipear o Decision node learningA decision stump that splits on the at-

separable and returns the difference between a lineaiif@ass tribute that has the highest information gain. A decisians is

and the actual class value. a decision tree with only one node.
The training error of a linear classifieiThis feature also mea- ® Randomly chosen node learnér decision stump that splits on a
sures to what extent the training data is linearly separable randomly chosen attribute.

e Worst node learnerA decision stump that splits on the attribute
that has the lowest information gain.

Average node learnerA decision stump is created for each at-
tribute and the average accuracy is returned.

The fraction of points on the class boundafyis feature esti-
mates the length of the class boundary by constructing a ming
imum spanning tree over the entire data set and returning the
ratio of the number of nodes in the spanning tree that are con-
nected and belong to different classes to the number of inThe use of landmarkers has been shown to be competitive kéth t
stances in the data set. best performing meta-features with a significant decreasernpu-
The ratio of average intra/inter class nearest neighbor-dis tational effort [19].

tance This measure compares the within class spread with the Smith et al. [23] sought to identify and characterize inseanthat
distances to the nearest neighbors of the other classesatlor ~ are difficult to classify correctly. The difficulty of an irsice was
instance, the distance to its nearest neighbor with the skass determined based on how frequently it was misclassified.HEr-c
(intraDist(z)) and to its nearest neighbor with a different acterize why some instances are more difficult than otherdat®

class ¢nter Dist(x)) is calculated. Then the measure returns: Sify correctly, the authors used different hardness measurhey
N include:
>, intraDist(x;)

Zf\r inter Dist(x;)

e k-Disagreeing NeighbotsThe percentage df nearest neighbors
that do not share the target class of an instance. This nmesathe

whereN is the number of instances in the data set. local overlap of an instance in the original space of the.task

e Disjunct size This feature indicates how tightly a learning algo-

rithm has to divide the task space to correctly classify ataince.

It is measured as the size of a disjunct that covers an instanc

divided by the largest disjunct produced, where the disgiace

The leave-one-out error rate of the one-nearest neightamssit
fier. This feature measures how close the examples of different
classes are.

e Measures of geometry, topology, and density of manifolds formed using the C4.5 learning algorithm.

— The nonlinearity of a linear classifieFollowing Hoekstra and e Disjunct class percentagélhis features measure the overlap of
Duin [11], given a training set, a test set is created by liea an instance on a subset of the features. Using a pruned @4,5 tr
terpolation with random coefficients between pairs of ranigo the disjunct class percentage is the number of instanceslis+ a

junct that belong to the same class divided by the total nurobe
instances in the disjunct.

level information resulting from preprocessing, but itde@ mecha-
nism to store the preprocessing process. Integratingrifosmation

e Tree depth (pruned and unprunedyee depth provides a way to
estimate the description length, or Kolmogorov complexifyan
instance. It is the depth of the leaf node that classifies staite
in an induced tree.

e Class likelihood This features provides a global measure of over- 1]
lap and the likelihood of an instance belonging to the tactgets.

Itis calculated as:

il [2]
p(zift(z))
U (3]
where |z| represents the number of attributes for the instance
andt(z) is the target class of. [4]

e Minority value This feature measures the skewness of the class
that an instance belongs to. Itis measured as the ratiotaioss |5
sharing the target class of an instance to the number ofnicessa
in the majority class.

e Class balanceThis feature also measures the class skew. First,[e]
the ratio of the number of instances belonging the targssda
the total number of instances is calculated. The differeidais
ratio with the ratio of one over the number of possible clagse
returned. If the class were completely balanced (i.e. as<had
the same number of instances), a value of 0 would be retuored f
each instance.

[7]
(8]

. .. 9
The hardness measures are designed to capture the chiatiastef ol
why instances are hard to classify correctly. Data set nreastan
be generated by averaging the hardness measures overtdreas [10]
in a data set.
[11]

6 Conclusions and Future Work

In this paper, we presented tmeachine learning results reposi- [12]
tory (MLRR) an easily accessible and extensible database fa-met
learning. MLRR was designed with the main goals of providamg

easily accessible data repository to facilitate metariegrand pro- (3]
viding benchmark meta-data sets to compare meta-learxipgrie [14]
ments. To this end, the MLRR provides ready to download rdata-

sets of previous experimental results. One of the impoféattres of [15]

MLRR is that it provides meta-data at the instance level. @irse,
the results could also be used as a means of comparing ongks wo
with prior work as they are stored in the MLRR. The MLRR can be[16]
accessed dtt t p: // axon. cs. byu. edu/ m rr.

The MLRR allows for reproducible results as the data sets arg; 7]
stored on the server and as the class names and toolkitsoardqat.
The ExpDB tends to be a lot more rigid in its design as it is Hase
on relational databases and PMML (predictive model marlamp |

guage), thus exhibiting a relatively steep learning curvértport (18]
and extract data. The MLRR is less rigid in its design allayar
easier access to the data and more extensibility, with #duetoff of [19]

less formality.

One direction for future work is to integrate the API provddat
OpenML® (an implementation of an experiment database) to incor-[zo]
porate their results with those that are in the MLRR. Thid t&lp
provide easy access to the results that are already stofegenML
without having to incur the learning cost associated wittiaratand-
ing the database schema.

Another open problem is how to store information about how a
data set is preprocessed. Currently, the MLRR can storaftarice [22]

[21]

5 www. openni . or g

in an efficient way is a direction of current research.

REFERENCES

M. Aksela and J. Laaksonen, ‘Using diversity of errors éelecting
members of a committee classifiePattern Recognition39(4), 608—
623, (2006).

S. Ali and K.A. Smith, ‘On Learning Algorithm Selectiomif Classifi-
cation’, Applied Soft Computing2, 119-138, (2006).

S. Ali and K.A. Smith-Miles, ‘A Meta-learning Approacle tAutomatic
Kernel Selection for Support Vector MachineBleurocomputing70,
173-186, (2006).

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, n@ulum
learning’, inProceedings of the 26th International Conference on Ma-
chine Learningpp. 41-48. ACM, (2009).

P. B. Brazdil, C. Soares, and J. Pinto Da Costa, ‘Ranké&agrling al-
gorithms: Using ibl and meta-learning on accuracy and tiesailts’,
Machine Learning50(3), 251-277, (2003).

G. Brown, J. L. Wyatt, and P. Tino, ‘Managing diversity iegression
ensembles.’ Journal of Machine Learning Research, 1621-1650,
(2005)

M. S. Gashler, ‘Waffles: A machine learning toolkipurnal of Ma-
chine Learning ResearcMLOSS 12, 2383-2387, (July 2011).
T.A.F. Gomes and R.B.C. Prudéncio and C. Soares andDA.Rossi
and A. Cravalho, ‘Combining Meta-learning and Search Teples to
Select Parameters for Support Vector Machinbigyurocomputing75,
3-13, (2012).

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemaamd |. H.
Witten, ‘The weka data mining software: an upda@®GKDD Explo-
rations Newsletterl1(1), 10-18, (2009).

T. K. Ho and M. Basu, ‘Complexity measures of supervistabsifi-
cation problems’|EEE Transactions on Pattern Analysis and Machine
Intelligence 24, 289-300, (March 2002).

A. Hoekstra and R. P.W. Duin, ‘On the nonlinearity of teat classi-
fiers’, in Proceedings of the 13th International Conference on Patter
Recognition pp. 271-275, (1996).

L. I. Kuncheva and C. J. Whitaker, ‘Measures of diversit classifier
ensembles and their relationship with the ensemble acgyristachine
Learning 51(2), 181-207, (2003).

J. Lee and C. Giraud-Carrier, ‘A metric for unsuperdiseetalearning’,
Intelligent Data Analysis1&(6), 827—-841, (2011).

J. Lee and C. Giraud-Carrier, ‘Automatic selection tdssification
learning algorithms for data mining practitionershtelligent Data
Analysis 17(4), 665-678, (2013).

A. Orriols-Puig, N. Macia, E. Bernado-Mansilla, aidK. Ho, ‘Doc-
umentation for the data complexity library in c++', Techali®Report
2009001, La Salle - Universitat Ramon Llull, (April 2009).

A. H. Peterson and T. R. Martinez, ‘Estimating the pa&rfor com-
bining learning models’, irProceedings of the ICML Workshop on
Meta-Learning pp. 68-75, (2005).

B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrideta-learning
by landmarking various learning algorithms’, Proceedings of the
17th International Conference on Machine Learnipg. 743-750, San
Francisco, CA, USA, (2000). Morgan Kaufmann Publishers Inc

U. Rebbapragada and C. E. Brodley, ‘Class noise mitigathrough
instance weighting’, irProceedings of the 18th European Conference
on Machine Learningpp. 708-715, (2007).

M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. DehgAutomatic
classifier selection for non-expert®attern Analysis & Applications
17(1), 83-96, (2014).

M. Reif, ‘A Comprehensive Dataset for Evaluating Apacbes of Var-
ious Meta-learning Tasks’, iRroceedings of the 1st International Con-
ference on Pattern Recognition Applications and Methqys 273—
276, (2012).

M. R. Smith and T. Martinez, ‘Improving classificatiocairacy by
identifying and removing instances that should be mistiags in
Proceedings of the IEEE International Joint Conference ennsl Net-
works pp. 2690-2697, (2011).

M. R. Smith and T. Martinez, ‘A comparative evaluatiohcarriculum
learning with filtering and boosting in supervised clasatfin prob-
lems’, Computational Intelligenceaccepted, (2014).

[23] M. R. Smith, T. Martinez, and C. Giraud-Carrier, ‘An tagace level
analysis of data complexity’Machine Learning 95(2), 225-256,
(2014).

[24] J. Vanschoren, H. Blockeel, Bernhard Pfahringer, aneofteey
Holmes, ‘Experiment databases - a new way to share, orgamide
learn from experimentsMachine Learning87(2), 127-158, (2012).

Root

" erparameterg
e oo sets m

3
oy
Y ® o .
/S g §

=

() [¢) e p p R

e (sl BEEEL)y MF:val fg fold: {#:Pred} \ ME:val sed seednumFolds fold | #| #HP setting
1{] 1{15:1, 1473, ..} kAN:0.97 | | 1{1(1{15:1,147:3, ..} KAN:0.24 | | 1.1 1.10.1{1:1, 2:2,
2{2 2{26:1,67:2,..} DS:0.84

..... 1{Co
2{9 2{26:1,67:2,..}

1.1(1.102{1:1, 2:1, ..}

2{C{ 2{LR:0.26,M0:0.13
) e L e

BP_1

waffles

Cq5

1{LR:0.26,M0:0.16

7
Figure 1. Hierarchical representation of how the results from maelh#arning experiments are stored in the NoSQL databasbddMLRR. Each data set has a collection containing the predsfor each
instance from a learning algorithm as well as its meta-featuA separate collection stores all of the informationtffierlearning algorithms and which hyperparameters were. és®ther collection stores the
information for which instances were used for training

