
Load Balancing to Save Energy in Cloud Computing

Theodore Pertsas

University of Manchester

United Kingdom

tpertsas@gmail.com

Usman Wajid

University of Manchester

United Kingdom

usman.wajid@manchester.ac.uk

Abstract— While load balancing techniques have been designed

and evaluated for efficient resource utilization in cloud

computing, achieving energy efficiency as a consequence of load

balancing often does not get direct attention. In this paper we

describe two load balancing algorithms that focus on balancing

workload distribution among physical hosts in the cloud

infrastructure. The test results presented in this paper reveal the

strength and weaknesses of the algorithms. In future work we

aim to analyze the impact of our load balancing on energy

consumption in the cloud infrastructure.

Index Terms—energy efficiency, load balancing, cloud

I. INTRODUCTION

Cloud computing offers a scalable and economical solution

for addressing rapidly increasing computational needs of ICT

applications. Increasing popularity and widespread adaptation

of cloud computing is resulting in continual growth in terms of

numbers and size of cloud facilities, raising questions about

effective management of workloads as well as long term

environmental implication of cloud computing model. In fact,

management of cloud applications with the view to achieve

energy efficiency is now being considered a critical challenges

to be dealt with in cloud computing.

Existing techniques for achieving energy efficiency in

cloud computing focus on strategic power management

operations e.g. by suggesting the use of low powered machines

[1] and deploying applications on fewer machines or spreading

them evenly across available resources/machines [2].

Typically, such techniques are applied at the initial deployment

stage i.e. while deploying new applications on cloud. In the

work presented in this paper we address the load balancing and

energy efficiency issues at post-deployment stage. Particularly,

we focus on load balancing as a way to ensure effective and

efficient utilization of cloud resources and consequently to find

alternative deployment configurations that can contribute

towards saving energy in the cloud infrastructure.

The two load balancing algorithms we describe in this

paper aim to minimize wastage of cloud resources as a result of

under-utilization of some resources; and minimize lengthy

response times as a result of over-utilization, where both cases

contribute towards excess energy consumption. We adopt an

agent-based system development approach for the

© Copying permitted only for private and academic purposes.

This volume is published and copyrighted by its editors

implementation and testing of the load balancing algorithms. In

the proposed system, cloud applications are decomposed into

independent but interrelated tasks, each of which can be

deployed and executed on Host Agents that are tightly coupled

with a physical hosts or servers in the cloud infrastructure. Host

agents implement the load balancing algorithms and interact

with each other to perform load balancing operations.

The definition and testing of load balancing algorithms,

reported in this paper, will lead to further investigation about

their potential impact on energy consumption within the cloud

infrastructure. The comparative evaluation of the algorithms

reveals their strengths and weaknesses and more importantly

provide motivation for further work in the area of energy

efficient and environmentally aware cloud computing.

The structure of the paper is as follows, Section II presents

the preliminary details about the load balancing algorithms.

Section III presents the design details of the system, where the

load balancing algorithms were implemented and tested.

Section IV describes the two load balancing algorithms.

Section V presents the results of testing the algorithms in a

cloud environment. The paper ends with a summary in Section

IV.

II. PRELIMINARIES

This section describes the preliminaries concerning the

cloud infrastructure and load balancing algorithms.

Task is an application component which is either executed

or stored in a virtual machine (VM) with specific CPU,

memory and disk space. A cloud application can have several

tasks each running on a VM.

Host is a physical server capable of hosting several VMs.

Load can be considered to be a number of tasks which

currently exist at a host

As tasks arrive at a host, the load of the host is increasing.

Due to the heterogeneity of the system tasks can be completed

at different time intervals and therefore some hosts will be

more loaded than the others at any given time. Thus load

balancing, as the name implies, is a method to distribute the

load to the hosts in the system.

A load balancing algorithm needs to consider various

factors in order to decide if the system needs balancing and

how to perform it. Depending on how these decisions are

taken, where they are taken, how they are performed and what

additional benefit is being sought (e.g. energy efficiency in our

perspective), we can identify different types of heuristics and

policies for load balancing.

Before we delve into more technical details about our load

balancing algorithms it is worth noting our reasons for its

importance:

 Reduces overloading of certain resources e.g. hosts

 Energy efficiency by virtue of minimizing the overall

execution time of tasks in cloud infrastructure

 Maximises the amount of work done by the cloud

infrastructure (throughput).

In a cloud infrastructure, we assume that tasks can be

migrated between hosts and new tasks can arrive at any host at

any time. In a cloud infrastructure, there can be N number of

hosts, which form the set H. Each host , has a load at

any time . The load depends on the used CPU, memory,

disk capacity, etc. of the host. Denoting the set of

values for CPU, memory, capacity, any other quantity that

affects the load of a host, we define the load function

, for each host i.

Following the utility-based optimization approach [1] the

utility of each task is defined as the inverse of its load. Hence,

we define the utility function for a host i as

The utility function is a metric for the load of a host.

Depending on the load balancing heuristic, we need to

minimise or maximise . Below we denote the system utility

function, which represents the overall optimisation problem at

the system level. We are trying to find solutions that will end

up minimizing over time.

III. SYSTEM DESIGN

Here we describe the design features of the different

modules which contribute towards the design of a system that

allow us to implement and test our load balancing algorithms

and give a solution that is applicable in cloud computing.

A. Tasks

A task is executed at the host and has certain requirements.

In our system each new task has certain characteristics or

structure, as shown in Figure 1.

 Figure 1: Task agent structure

Each task has a certain type and can only be executed if the

host supports this type. Otherwise, it remains in the waiting list

of the host.

B. Host

A host is a central entity in the cloud infrastructure and is

the place where the load balancing happens in our system.

Figure 2: Internal structure of host Agent

Each host is represented by an agent that runs individually

from other host agents in the cloud infrastructure. The internal

structure of a host agent is composed of five components, the

network component, the processor, the task manager, the

logger and the load balancer as shown Figure 2.

Network Component: each host agent is able to interact

with other host agents by sending and receiving messages in a

reliable manner. In this respect, a host agent acts as both a

server and a client. As a server, it runs continuously in the

background, in order to accept messages and tasks.

Processor: The component that represents the running tasks

in a host is the processor component. In this respect, the

processor is responsible for creating or setting up the VMs

where tasks can be deployed and executed. The processor starts

the creation of VMs and subsequently execution of tasks by

picking them from a waiting list, which is basically a

temporary storage space in the host agent where new task

(request) arrives. New tasks wait in the waiting list until their

required resources are allocated (e.g. a VM is setup).

Task Manager: The task manager is the component of host

agent that is responsible for receiving and analysing new tasks,

and loading tasks from waiting list to the processor.

Logger: The logger component (as shown in Figure 3)

receives messages from the load balancer about the state of the

host and any requests that are received from other hosts. The

logger can log messages, as list of events, either locally or

receive messages from other hosts in the cloud infrastructure.

Figure 3: Logger component and format of a Log

Load Balancer: The most important and decision making

entity in the host agent is the load balancer. Depending on the

algorithm that will be used, the decisions for the load balancing

operation will be taken here. The load balancer is able to

communicate with the processor, in order to get latest load

information. It will use the network component to send

messages to other hosts. The network component will pass any

received messages to the load balancer for evaluation. If a task

is received, then the load balancer uses the task manager to

check the task details/structure. The load balancer has an

address book that holds the addresses of other host agents in

the system. The decision making about load balancing

operation is based on the notion of state transitions. In this

respect, each host agent, can be in one of the following states at

any time:

A host agent can determine the state by checking its current

load (in the Processor component) against the

thresholds in a local statistical

table. The following table shows the relation between the

thresholds and the states.

Each host agent determines its state independently from the

others and takes the appropriate action depending on the load

balancing algorithm.

IV. LOAD BALANCING

Here we describe two algorithms for load balancing and

energy efficiency. The algorithms are based on heuristics and

their main focus is to achieve efficient utilization of available

resources and consequently lower the energy consumption,

while having a minimal overhead in the system.

A. Secretaries

This heuristic is inspired by the swarm intelligence

approaches and the reality of an office environment. For

example, in a company, when a manager wants a task done, he

delegates it to a secretary. The secretary in her part, makes a

couple of phone calls, or goes around the office, and finds a

suitable person to execute the task. If we imagine a situation, in

which there is more than one secretary, then we can have the

necessary background for a swarm intelligence approach. Each

one of the secretaries will perform their quest, independently of

the others and once they find a candidate they either pass-over

their task, or move to the next candidate. The manager in our

system is the host in which the task arrives, and the candidates

are the other hosts in the network.

This algorithm is triggered when a host reaches the high

threshold, which sets the host in high load state. Before we start

the discussion on the load balancing algorithm, we need to set

the following policies for host agents:

a) Transfer policy: We use a preset ‘High’ threshold value,

above which the host agent triggers the load balancing

operation. The host agent starts looking for candidate host

agents to send tasks. If a host is below this value, then it

may be able to receive more tasks.

b) Selection policy: Host agents follow a two-step process to

choose tasks to send. In the first step, tasks are selected

based on type e.g. small, medium or large VM instances.

On the second step, hosts randomly choose from the set of

tasks of the same type. We receive tasks of the type that

we can execute in the respective hosts.

c) Location policy: Host agents can send requests to all the

hosts in their address book and then wait for an answer. If

more than two answers are received at the same time, then

the hosts choose randomly from the two. Host agents wait

for a period of time before they resend any requests, to

avoid flooding the network with unnecessary messages.

d) Information policy: Host agents follow a demand-driven

approach, since the requests are sent only when there is

change in state of the host agent.

Algorithm 1: Secretaries (Stage 1)

Initialise a statistics table

while cancellation has not been requested do

 get host waiting list load

store the values in the statistics table

if the statistics table has adequate size then

calculate average waiting list size

determine the state of the host

if the state is High then

Decide number and type of tasks to send out

Send load balancing request to hosts in the

address book

If the algorithm decides that the host has high load, then it

proceeds to ask for help. The “ask for help” operation will be

referred as Load Balancing Request (LBR). As mentioned

before, a host is in high state when it is over the high threshold.

In this algorithm, host agents follow the strategy that they need

to send as many tasks as they can to other hosts, in order to fall

under the high threshold. In this case, this will happen when the

hosts send the excessive items of the waiting list.

Once a host agent sends the LBR, the next stage happens in

the load balancing algorithm of the host agent that receives it.

Algorithm 2: Secretaries (Stage 2)

Check host state

if host state is not High or High Average then

Check if the types of tasks (within LBR) can be

executed on this host

if they can be executed then

Decide number of tasks to ask for

Accept the LBR and send the number of tasks

back to the sender

else

Forward the LBR to host agents in the address book

The receiver host agent, checks its status looking at the

local statistics table. If the state is Low or Low Average, then it

can accept the LBR. The host agent asks for as many tasks as it

is needed to reach the High threshold, or just over it, thus

setting its state at High Average or High. The main criterion for

this to happen is the local queue size, because this determines

the size of the batch. After receiving the tasks, the host agent

can still accept more tasks until an acceptable state is reached.

Once the host accepts the LBR message, it sends back to

the initial host agent the number of tasks that it can receive, in

order to help the initial sender/requester host agent. This leads

us to the third and last stage of the algorithm.

Algorithm 3: Secretaries (Stage 3)

if suitable candidate was found after sending LBR then

Stop load balancing

Pick up the desired number of tasks from the

waiting list

Send tasks

Figure 4: Some of the possible states of host agents. Load

balancing starts when the host agent is in High load state.

The numbers represent the stages of the algorithm.

Once a suitable candidate is found that is willing to accept

excess load of the initial requester (host agent), the first step at

this stage is to stop the load balancer. The final number of tasks

to send out is the maximum number that the other host agent

can accept. The next step is to pick up the tasks that will be

sent out. To perform this step we choose the tasks randomly

without adding further complexity to the algorithm.

B. Eager Worker

This algorithm is inspired by the epidemic protocols; a

relatively new approach to load balancing by spreading

information around the system in a similar way that a virus (or

gossip) spreads. In this scenario, the central role is played by a

worker who does not have any work to do. However, since he

is eager to work, he goes to all the people that he knows and

announces his availability (“infects”). Since he cannot do

anything else, he waits for someone to call him. The people

who know this fact now have the option to either use him, or

spread the rumor around that there is an available worker

(“spread the infection”). In our case, worker is a host agent

who goes under the average threshold and is in either Low

Average or Low state. The algorithm has following policies:

a) Transfer policy: Host agents use the Average threshold

value in order to trigger the load balancing operation.

Below this value the hosts will be able to receive tasks.

b) Selection policy: This policy is the same as in the

“Secretaries” algorithm.

c) Location policy: Host agents are selected for sending a

load balancing request. After sending the requests, the

sender host agent waits for a reply. Requests are sent in

an interval, to avoid flooding the system. If a request for

help arrives from two or more host agents, then host

agents operate in a “first-come, first-served” manner.

d) Information policy: Host agents follow a demand-driven

policy. The requests are sent, when the host is in Low or

Low Average state.

This algorithm follows a more opportunistic model: if there

is help, the host agent will make use of it without considering

the overall state of the system.
The algorithm has a two-stage execution, contrary to the

three stages in “Secretaries” algorithm. At the first stage a host

agent determines the state of the host and then sends the LBRs.

Algorithm 4 includes the pseudo-code for this stage.

Algorithm 4: Eager Worker (Stage 1)

Initialise a statistics table

while cancellation has not been requested do

get host waiting list load

store the values in the statistics table

if the statistics table has adequate size then

calculate average waiting list size

determine the state of the host

if the state is Low or Low Average then

Decide number and type of tasks to send

Send load balancing request to host agents in

the address book

Most of the steps in this algorithm are similar to the

“Secretaries” algorithm. When deciding for the number of tasks

and types to send, we base our calculations on the waiting list

of hosts, since this is what determines the amount of tasks to

delegate. The host agents in this algorithm ask for as many

tasks as needed, in order to remain under the High threshold.

When the number and types of tasks to ask is decided, a

LBR is sent to either a random number of host agents in the

address book or to all of them. If the LBR is sent to all of them

then this might lead to an overflow of messages in the system.

Since this algorithm follows an epidemic approach, the LBRs

will reach to all the host agents in the system..

Algorithm 5: Eager Worker (Stage 2)

if load balancing request was received then

Check host state

If host state is High or High Average then

Check if the sender host agent can execute the

tasks of this host

if they can be executed then

Stop load balancing

Decide number of tasks to send and choose

tasks

Accept the LBR and send the tasks

Start load balancing

else

Forward LBR to host agents in the address book

The next stage of the algorithm is executed by the host

agent that receives the request.

This time the host agent accepts the LBR if its state is in

High Average or High. The High Average state is included as

well, because the host agent at this stage needs tasks to finish

execution. Since the algorithm follows an opportunistic model,

if there is an idle worker, then it sends tasks across. The

number of tasks depends on the total size of the waiting list. It

sends either the maximum tasks that can be executed in the

other hosts, or in the case of High Average state, enough tasks

so as to get close to the Average threshold.

The load balancing operation needs to stop for the same

reasons as before and it is restarted after the host agent finishes

the transfer of tasks.

The choice of tasks to send follows a similar pattern to the

“Secretaries” algorithm. In this initial design, we decided to

choose the tasks in a random way.

If there is no need for load balancing, then the LBR is

forwarded to other hosts of the network. If the LBR arrives

back to the original host agent, then it is rejected automatically,

thus, avoiding duplicate requests going through the network.

Figure 5: Possible states of host agents. Load balancing

starts when the host agent is in Low or Low Average state. The

numbers represent the stages of the Eager Worker algorithm

V. RESULTS

The algorithms were tested in a single site cloud environment.

The message exchanges between host agents happen in a

round-robin format. A host agent “knows” only one other host

agent. The reasoning behind this scenario, compared to

broadcasting or n-to-n interactions, was to minimize the

complexity of managing multi-agent interactions (which was

not the focus of the work presented here) and more importantly

to see if the algorithms develop any behavior. We used

ZeroMQ (http://zeromq.org/) technology to realize message

exchange between host agents. Command messages travel in

one direction starting from one host agent to the last but task

transfer can happen between any two host agents.

We ran our experiments for each algorithm five times and

we get averages of the number of tasks at each host after an

interval. We create a set of 75 tasks in individual VMs and

deployed them in the first host. Our aim was to observe how

the algorithms handle spikes of load and energy consumption at

a host. Furthermore, we monitored the number of messages

exchanged between the host agents every minute.

The results of testing both algorithms are shown in Figure

76 and Figure 7.

For Eager Worker load balancer, Table 1 shows the

average messages per minute circulating in the network.

Table 1: Eager Worker: Number of messages (avg. five runs)

Total transferred tasks 60

LBRs per minute 32,8

Messages per minute 234

http://zeromq.org/

On average there were around 33 LBR messages every minute

since a number of host agents with low or low-average states

were asking for tasks.

Table 2: Secretaries: Number of messages (avg. five runs)

Total transferred tasks 49

LBRs per minute 0,5

Messages per minute 191

For Secretaries load balancer, the first host agent sends a

LBR every time it needed load balancing – as shown in Table

12, hence the very low number of LBRs in the network.

As shown in Figure 6, it is obvious that Eager Worker

achieves a better overall performance at the expense of

increased network traffic. The load is distributed uniformly

among the nodes. In particular, Host B did not get as many

tasks due to the preset MaxRetransmits value that restricts host

agents to transmit only 5 messages during the testing period.

Figure 6: Distribution of tasks on each node after

approximately 5 minutes of operation (averaged and rounded)

Whereas, in the case of secretaries algorithm, as shown in

Figure 7, Host A was 7 hops away from Host H, hence its LBR

messages never arrived that far. Due to the design of the

algorithm, LBRs are always trying to find overloaded hosts.

Overall, Eager worker generates approximately 28% more

traffic than Secretaries, but converges faster to an overall load

balanced state. On the other hand, Secretaries tend to form

“neighbourhoods” e.g. host agent A visits first its closest

neighbor and gives them work to do and then slowly spreads its

load to the rest. For this reason the further hosts seldom receive

any tasks. Even if there were more tasks, Host H would have

never been reached due to the preset MaxRetransmits value.

Removing the MaxRestransmits constraint or increasing its

preset value may allow spreading the tasks to further hosts.

However, the advantage of secretaries algorithm is lower

network traffic: LBRs are sent only when it is needed. On the

other hand, due to the formation of neighborhoods and slower

distribution of load, the execution finished almost 2 minutes

later than Eager Worker.

Figure 7: Distribution of tasks on each node after approximately 10

minutes of operation (averaged and rounded)

VI. SUMMARY AND FUTURE WORK

This paper presents two heuristics-based algorithms for

load balancing. The results of testing both algorithms reveal

their advantages and disadvantages as one might be performing

better than the other in any given context. By tweaking the

various parameters, we can achieve better performance, but

there is always a trade-off. The work presented in this paper

focuses on testing the load balancing aspect of the algorithm. In

future work, we aim to analyze the impact of these algorithms

on the energy consumption of cloud infrastructure within the

context of ECO2Clouds project (www.eco2clouds.eu).

ECO2Clouds allows quantification of energy consumption

and environmental impact (CO2 emissions) at three different

levels of cloud infrastructure. These include testbed, physical

host and VM levels. The ability to quantify the energy

consumption at testbed and physical host level will allow us to

investigate the use of our load balancing heuristics as runtime

adaptation mechanisms that can balance resource utilization

with reduction in energy consumption.

REFERENCES

[1] G. Luigi Valentini, W. Lassonde, S. U. Khan, N Min-
Allah, S. A. Madani, J. Li, L. Zhang, L. Wang, N. Ghani,
J. Kolodziej. H. Li, A. Y Zomaya, C. Z. Xu, P. Balaji, A.
Bishnu, F. Pinel, J. E. Pecero, D. Kliazovich. P. Bouvry.
An overview of energy efficiency techniques in cluster
computing systems. In Cluster Computing. March
2013, Volume 16, Issue 1, pp 3-15

[2] P. Lindberg, J. Leingang, D. Lysaker, S. U. Khan, J. Li.
Comparison and analysis of eight scheduling heuristics
for the optimization of energy consumption and makespan
in large-scale distributed system. In Journal of
Supercomputing. January 2012, Volu. 59. Issue 1, pp.
323-360.

[3] L. Skorin-Kapov, et al., "Approaches for Utility-Based
QoE-Driven Optimization of Network Resource
Allocation for Multimedia Services," in Data Traffic
Monitoring and Analysis. vol. 7754, E. Biersack, et al.,
Eds., ed: Springer Berlin Heidelberg, 2013, pp. 337-358.

http://www.eco2clouds.eu/
http://link.springer.com/journal/10586/16/1/page/1

