
Extracting Data from the Deep Web with Global-as-View
Mediators Using Rule-Enriched Semantic Annotations

Benjamin Dönz1, Harold Boley2

1Vienna University of Technology, Institute of Computer Technology, Vienna
2University of New Brunswick, Faculty of Computer Science, Fredericton, NB, Canada

doenz[AT]ict.tuwien.ac.at, harold.boley[AT]unb.ca

Abstract. The Deep Web offers approximately 500 times more information
than the Open Web, but is “hidden” behind search-forms intended for human
users, and typically requires interaction, which makes it difficult to index by
Web crawlers. We argue that traditional data extraction is therefore not suitable
for the Deep Web and suffers from coverage problems similar to those search
engines face when trying to index its content. Instead, it is proposed to trans-
form and forward queries on demand using Global-as-View Mediators. To al-
low automated interaction with databases on the Deep Web, we use rules that
exploit features (e.g. HTML attribute values) to identify elements on a Web
page and infer semantic annotations that link these elements to known concepts
(e.g. query parameters or result values). Using a prototypical implementation,
Deep Web Mediator, the performance of this approach is demonstrated in a
classified-advertising use case. Our system is able to answer complex queries
by transforming and forwarding them to multiple sites as well as integrating the
local results.

Keywords: Semantic Technologies, Mediated Data Access, Data Integration,
Distributed Querying, Deep Web, Global-As-View Mapping, Rule-Based Map-
ping.

Introduction

The conventional approach for querying a set of independent databases is ETL
(Extract – Transfer – Load): Here, the data from the local sources is transformed to fit
a global schema and loaded into a common database, which is then used to answer
queries. This transformation has to be done beforehand, for example every day at
night. This means that the data available for queries is not up-to-date and only reflects
the state at which it was last extracted. If this discrepancy or the effort and resources
required for the ETL process are not acceptable, the alternative is to transform the
query rather than the data, and forward subqueries to the local sources at query time.
This is referred to as a mediator-based approach [1], since a third party, i.e. the media-
tor, accepts the initial query and then forwards it on behalf of the initiating party.

While querying multiple sources is the main task in data warehousing, the task of
integrating information from disparate sources is not limited to businesses: anyone

who is looking for a new apartment on the Web must sift through offers on realtor
websites, and anyone that is trying to find the best deal for a specific product or ser-
vice is faced with a similar problem. Rather than being provided with a single inter-
face, users must access several sites and manually compile the results of individual
queries. The part of the World Wide Web that includes the database content accessi-
ble through Web shops, real estate offers and other database-interfaced portals is re-
ferred to as the “Deep Web”, and is estimated to contain approximately 500 times
more information than the common “Surface Web” [2]. Since these systems require
filling out fields and calling functions, it is considered hidden from search engines,
because Web crawlers generally only follow hyperlinks from document to document.
Published results for existing approaches to bring this information to the “surface”
using Web crawlers reveal that the coverage is as low as 10% - 30% [3].

In any case, the content that can be accessed is not used to directly answer queries,
but only to direct the user to the site. For answering queries, an approach similar to
ETL in data warehousing could be applied. However, in the context of the Deep Web,
the actual data source is normally not directly accessible. This means that the data
must be extracted using the available Web forms. An extraction tool must therefore
submit suitable keywords and permutations of different parameters. Not only can this
produce considerable traffic to the site, the extraction program cannot be sure if all of
the content was actually accessed, resulting in a coverage problem similar to that
search engines have. In addition, it is unknown when records change. Therefore, fre-
quent periodic extraction runs are required to keep the database up to date, which may
be not be possible due to limitations of the site.

So, while extracting data beforehand does not seem suitable for the Deep Web, a
query forwarding approach may be a viable alternative: if the parameters of the initial
query can be used to fill out the fields on the query form, submitting permutations of
parameters will not be necessary reducing the traffic to the site and overcoming the
coverage problem, while also returning up-to-date information without requiring fre-
quent extraction runs. This paper therefore proposes a solution that allows access to
data on the Deep Web by offering a SPARQL endpoint that transparently unfolds and
forwards queries to multiple Web databases, returning the integrated results. To allow
interaction with these sites, the elements of the pages are annotated by evaluating
rules that use features they expose, e.g. the tag name or adjacency to certain labels, to
identify and link them to known semantic concepts.

Related Work

Before describing the proposed system, the required background on mediators and
existing solutions for data extraction and other approaches for semantic access to the
Deep Web are discussed.

Accessing Data with Mediators

Given a number of independently developed systems, it is very likely that data is
not structured in the same way and that different terms are used to describe equivalent

concepts even if all of the systems are in the same domain. To answer queries that
span multiple databases, it is therefore necessary to align the data structure and vo-
cabulary used in the query with that used in the individual databases. While this is
done beforehand in an ETL approach by transforming and loading the data from all
the individual systems into a common database, a mediated approach allows doing
corresponding processing at query time. Here, a third party, i.e. the mediator, accepts
the initial query and then transforms and forwards it on behalf of the initiating party
[1]. To allow this, a mapping between the global schema and that of the local data-
bases is required. This can be provided either by defining a mapping from the global
ontology to the local schemas, e.g. in the form of a view that contains all the relevant
sources (Global-as-View) [4], or by doing the opposite, i.e. creating a mapping for
each source to the global schema (Local-as-view) [5]. In both cases, the resulting
query consists of a set of subqueries that are forwarded to the individual sites to re-
trieve intermediate results, which are integrated and used to answer the initial query.

Besides the advantage of allowing integration at query time, this allows using a
high level conceptual view of a domain by defining an ontology that is independent of
that used by the actual data sources. Commercial systems such as Openlink Virtuoso’s
Sponger technique1 or Ontobroker2 use mapping rules to integrate various types of
sources ranging from relational databases to file-based sources such as XML and also
Web services, and offer the possibility to execute SPARQL queries that span multiple
sources. Examples of academic projects in this field include Quest[6] and Mastro
Studio [7]. Ontology-Based Data Access (OBDA) is also based on this approach and
current efforts in this field, e.g. Optique [8], aim at offering a unified ontology based
query interface that uses mediators to integrate not only conventional databases, but
also other sources like data streams, XML or Excel documents.

Semantic Access to the Deep Web

As shown in Fig. 1, four different methods for semantic access to the data on the
Deep Web can be identified and categorized along two dimensions – extraction on
demand vs. extraction beforehand and direct access to the database vs. access via a
Web form interface. The first of these approaches is source conversion: Here, data is
converted from its original format to a semantic database, which is then used to an-
swer queries, similar to the ETL approach. This conversion can be done either manu-
ally or by leveraging the database schema. In the case of relational databases, for
example, a transformation is possible by defining a type for each table, a property for
each column and individuals with the appropriate type and property values for each
record [9]. On this basis, the W3C defined the direct mapping method [10] as a rec-
ommendation for a fully automated conversion to RDF. However, in this case merely
the format is changed, but the original relational data structure remains, and also the
names of the tables and columns are directly used as names for the corresponding
types and properties. Since they are not linked to any existing vocabulary, interpreta-

1 see virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtSpongerWhitePaper
2 see www.semafora-systems.com/en/products/ontobroker/

tion by a program is not possible and a human is generally still required to disambigu-
ate terms or map the automatically generated vocabulary to a full ontology. Hence, it
may become necessary to define the mapping manually, for example by using the
second W3C recommendation for this task, i.e. R2RML [11], or other tools like
Triplify [12]. If the underlying data changes frequently, it may be prudent to trans-
form the query rather than the data itself, which corresponds to the data access ma-
nipulation approach. Here, as described in the previous section, a mediator is included
as a third party, which transforms and forwards the original query to the individual
sources.

Fig. 1. Methods for semantic access to data on the Deep Web

Both of the approaches described above require access to the underlying data
source. In cases where this is not possible, the available interfaces have to be used,
e.g. Web forms intended for human users in the case of the Deep Web. Similar to the
previously described approaches, data can be prepared beforehand or accessed on
demand during query time. As discussed in the introduction, extracting data from
Web databases beforehand suffers from two main problems: the first being that up-
dates require extracting the full database every time, since there is no way to tell
which records may have changed since the last extraction was performed if this is not
explicitly published. While some databases, for example Wikipedia [13], have made
such an update notification available, this cannot be expected for all Web databases.
The second problem is coverage: since – without access to the source – it is difficult
to determine how many records actually exist in order to determine if all of them have
been extracted. In addition, some sites require that mandatory parameters are set on a
query interface, and only values relevant for that database will produce any results at
all. To overcome this, current projects first try to determine the domain, for example
by query probing [14], and then submit relevant terms for that domain. However cov-
erage may still be low as shown in [3].

The final approach, i.e. query forwarding, has the advantage that the parameters of
the initial query can be used and forwarded to the site instead of “guessing” relevant
parameters. Besides this, the data is always up-to-date, and no periodical updates have
to be performed that may consume considerable resources by producing high traffic
for the sites and store values that may never be required for a query. This approach
has also been successfully applied in projects such as MetaQuerier [15] and WISE
Integrator [16] to create combined search interfaces that forward queries to multiple
sites and return combined results and is also the basis of the OBDA paradigm as men-
tioned in the previous section.

Web Data Extraction

To forward queries and extract results from a site on the Deep Web, a program has
to interact with an interface originally intended for human users. While some sites
consist of free text or documents collections, 77.3% of the data on the Deep Web is
provided in structured form [3]. If it is known, for example, that a specific table con-
tains one instance or record per row, and every column corresponds to a specific at-
tribute, the content can be extracted from this table and the values can be used to pop-
ulate a relational database [17] or an ontology [18]. If a set of results is presented in a
more complex form than a simple table, the task of determining which attributes exist,
and what values they have for each record becomes more demanding. Several infor-
mation extraction approaches assume that Web databases return query results by fill-
ing out fixed templates with values from a database, e.g. [19], [20], [21]. To interact
with such sites, information about the purpose of filter fields, or the location of specif-
ic result values is required. This set of information is referred to as a wrapper [22].
While several different approaches for defining Web wrappers can been identified,
the basic task is to reference an element on the page and link it to a known concept. In
order to define such a reference, features ranging from text-based patterns, e.g. phone
numbers, to structural features of the HTML document [21], to style-based and visual
features of the rendered page [23] can be used.

Regarding the generation of wrappers, projects like [24] or [25] propose fully au-
tomatic wrapper generation, but only cover specific domains and search engines. In
addition, these projects make certain assumptions about how the site must work since
the tools interact with the site in a predefined manner. These assumptions are, howev-
er, not clearly defined and the limitations of the approaches are not stated, which
makes it difficult to compare solutions. On the other hand, semi-automatic wrapper
generation tools are already available as commercial products for both laypersons,
e.g. Dapper3 or Mozenda4, as well as professionals, e.g. Lixto [26]. While the latter
allows many more degrees of freedom, but requires sophisticated configuration, Dap-
per and Mozenda can only be used within certain limitations that reflect the develop-
ers’ assumptions about how Web databases work. Another commercial product in this
field is Connotate (formally fetch.com)5. Here, both the navigational structure of the
site as well as a wrapper for each of the involved pages can be defined by employing
a semi-automatic wrapper generation process based on machine learning [27]. The
authors acknowledge that the rules produced in this way are not comprehensible by
the user and hence cannot be fine-tuned even by expert users.

Model for Web Databases

In contrast to existing solutions, the concept proposed in this paper is based on a
clearly defined model for Web databases. While this model may not fit every database

3 see open.dapper.net
4 see www.mozenda.com
5 see www.connotate.com

on the Deep Web, it unambiguously allows determining if a given site is compatible
and can be included as a source. In addition, the model can be extended systematical-
ly to allow including more sites and hence improve the solution incrementally. This
section gives an overview of this model originally published in Ref. [28].

Fig. 2. Interfaces and Navigation

As shown in Fig. 2, the model assumes that sites consist of three types of pages:
The first is the query interface, which can be reached by a fixed URL and offers fields
for defining the parameters of the query. A single submit function allows submitting
the query and returns a list of results. Each result may offer a link to a detail page,
where further attribute/value pairs for a given record are presented. If the result list is
limited to show only a maximum number of results, a “next page” link can be fol-
lowed to access another result list that presents the next set of records. While the que-
ry interface is a fixed Web form, the result list and record detail pages are both tem-
plate-based, i.e. the basic layout of the page remains the same independent of the
records that are returned, merely the presented values change.

The data source is considered to be a single table. Since the real structure is un-
known, the actual database does not need to be implemented in this way, but the re-
sults must allow assuming this structure6. This means that all records have to be of the
same type, every record has to have the same attribute/value pairs, and there are no
nested subtables. Transforming the content to RDF triples is done by defining a class
for the table and a property for each column of the table. Each actual fact is then giv-
en similarly to [99] by defining a blank node with the table’s type, and then assigning
the values of the individual columns using the associated properties.

Based on this data structure and the interfaces described above, the query process
itself is then defined to work as follows: each parameter on the query interface is as-
sociated with a single column of the table and a filter function, e.g. “equal to” or “less
than”. When submitting the query, each filter function is evaluated independently for
each record, and only records where all filters are evaluated to be true are included in
the result set. The model only allows conjunctive filters, but disjunctive queries can
be answered by splitting the query into conjunctive subqueries, submitting them sepa-
rately and creating the union of the results.

While the overall model is deliberately designed to be simple in order to form a
base line from which it can be extended, evaluation in two domains, i.e. used car
dealerships (111 sites evaluated) and realtor websites (167 sites evaluated), showed
that, respectively, 58% and 50% are fully compliant while 79% and 63% of the sites

6 If a site consists of multiple different interfaces with different parameters and sets of output

values it can be treated as a set of independent databases and still meet this requirement.

are at least compatible to the model. In this context, “compliant” means that the sites
follow the model to an extent that allows accessing all records and attribute/value
pairs, while “compatible” sites allow accessing all records, but not all of their values,
for example due to an incompatible detail page.

Our evaluation showed that the main reasons for sites failing to be compatible were
mandatory fields in the query interface and additional navigational requirements such
as having to select a category, e.g. choose between rental or sale offers for real es-
tates, before the actual query interface can be accessed. Extending the model to in-
clude these two features would result in nearly full coverage for these two domains,
with the exception of those sites that do not publish structured data. The majority of
sites in the two evaluation domains is however already compatible to the basic model.
It will therefore be retained in order to explore the limitations of the fundamental
concept before adding features to increase coverage.

Query Process

Based on the model described in the previous section, a method for interacting with
compatible sites can be derived. This allows developing a mediator that offers a
SPARQL endpoint for submitting queries, which are then transparently forwarded to
Deep Web sites to return the integrated and extracted results. An overview of this
process is shown in Fig. 3.

Fig. 3. Query Process Flowchart

In the first row of Fig. 3, the outer interface of the system is predefined to be a
SPARQL endpoint, and hence the process is initiated by submitting a query. Since the
model only supports conjunctions, the filter of the query has to be transformed into its
disjunctive normal form and be split into a set of conjunctive subqueries. After deter-
mining relevant Web databases by comparing the properties and types used in the
query to those published by the available sources, the query is unfolded to include the
union of relevant sources in our Global-as-View approach. The resulting subqueries
must then be forwarded to the local sources following the subprocess shown in the
second row of Fig. 3. The information gathered in this way is then integrated as an
intermediate data set before the actual query is executed and the results are returned.

The subprocess that forwards the query to the site and extracts the results can be
derived directly from the model and requires carrying out the following tasks: the
query interface has to be loaded, and filter values included in the subquery that are
also available on the page have to be set in the corresponding fields. Following the
model, after calling the submit function on the query page, a result list is returned that

contains the top results, which are extracted creating RDF triples as described in the
previous section. If detail pages are available, they are accessed to also include the
attribute/value pairs presented there. And finally, if a next link is available on the
result page, it is followed to access further results and proceed in the same fashion.

In Fig. 3 the individual steps are color-coded to show which parts of the process
are generic (blue) and which parts depend on information about a specific Web data-
base (purple). As can been seen, the controlling outer process is completely generic
and only the part of the process that interacts with the site depends on site specific
information. Since the elements required for the interaction are defined by the model,
the algorithm itself is also generic, but what is needed is a link between each element
of the model and the corresponding element on the actual website. To achieve this, it
is proposed to use semantic annotations that create this relationship and then use a
generic algorithm to perform the actual tasks, e.g. setting or getting values and trig-
gering functions. Since embedded annotations, e.g. using RDFa, would require chang-
ing the source of the page, which can only be done by the publisher, it is suggested to
infer the annotations using rules that exploit features of elements on the page to de-
termine which annotations to apply. This set of rules can then be encapsulated as a
site-specific wrapper, which contains all the non-generic information necessary to
allow accessing and interacting with the site.

Rule-Based Annotation

The annotations must be sufficient to allow a generic algorithm to treat any com-
patible system in the same way. Following the process described in the previous
Chapter, this includes setting parameters, submitting the query, extracting results from
the list and detail page, and iterating through multiple result lists. To describe all the
elements involved, a meta-vocabulary covering the basic terms required for this pro-
cess is shown in Table 1. The elements defined here using RDF terminology form the
basis for concrete implementations that include more detailed and specific concepts.
The only class is PageElement, which represents an element of the Web page’s
DOM, i.e. an HTML tag. In order to state that a specific field (_:field) restricts a
property such as domain:price to be less or equal than the value given in that
field, a triple such as _:field annot:restrictLessOrEqual do-
main:price is used, where annot:restrictLessOrEqual is a subproperty
of restrictProperty in a concrete implementation. Similar to this, other types
of restrictions can be defined that allow expressing other filter operations.
ExecuteFunctionWith is the base property for all operations and is used to

define subproperties for the operations in a concrete implementation. The model in
the current state requires exactly three such operations: executeSearchWith,
executeNextListWith and executeGetDetailWith. The triple
_:button annot:executeSearchWith "Click", for example, states that
triggering the click event will execute the search.

Both the elements of the result list and those of the detail pages are linked to the
properties of the values they contain using containsProperty. This property can

be used directly to define that the inner text of an element is the value for that
property, but variations could also be defined to state that a certain attribute value
contains the property, e.g. the src attribute of an image. In addition, subproperties of
hasValueFormat can be used to define a certain data type or format, e.g. the
actual value followed by a currency symbol or a specific date format. To group
elements, i.e. attribute/value pairs in this case, that belong to the same record,
properties based on belongsToRecord can be used, for example to state that all
elements of the same row of a table belong to the same record.

Table 1. Annotation Meta-Vocabulary

Class/Property Description

PageElement Class representing an element on a Web page

restrictProperty Base property for all query filters

executeFunctionWith Base property for all operations

containsProperty Base property for all result value associations

hasValueFormat Base property for defining data types or representation of
values

belongsToRecord Base property for assigning a value that allows grouping
attribute/value pairs of the same record

hasFeature Base property for all features

Finally, the property hasFeature is the base property for features an element

exposes. This can be a certain tag type, attribute value or also adjacency to other ele-
ments, e.g. a label. These features can be discovered by a generic algorithm that anal-
yses a page’s DOM.

With reference to the subprocess in the second row of Fig. 3, the non-generic in-
formation required for interacting with a concrete Web site is provided in the form of
annotations using terms based on the meta-vocabulary described above. These annota-
tions must therefore be created before the actual task (e.g. forward query parameters)
can be performed. Hence, for each of the purple steps in Fig. 3, the page is first ana-
lyzed by a generic feature extractor to create a list of PageElement instances and
assert the features they expose as triples of the form _:element an-
not:hasFeature "feature value". The rules contained in the wrapper for
the site are then used to identify elements on the basis of these features and infer addi-
tional annotations, which link them to the concepts of the model and allow the media-
tor to interpret the page. The rules used for this process are object-centered Datalog
rules, whose conditions consist of conjunctions of required features and whose con-
clusions specify properties that are not feature-related. Since rules thus cannot infer
facts that trigger other rules, a single efficient evaluation pass of all rules against a
candidate page is sufficient for annotating the page.

To illustrate this approach, an example is shown in Fig. 4: The top left part of the
figure shows an example query page with parameters for selecting a brand, model and
price range. The HTML code of the page is passed to the feature extractor, which
returns feature annotations such as those shown to the right, e.g. that the selection box

is adjacent to a label “Brand”, or that the button has the value “Search”. The rules
shown in the middle of the Figure, which would be contained in the wrapper for this
site, use combinations of these features as the condition to assert the additional anno-
tations. The first rule, for example, states that any element adjacent to the label
“Brand” restricts the property “car:brand” with an equalTo operation as shown
in the bottom of the figure. It should be noted that, in practice, the feature extractor
returns thousands of triples even for small web pages and that annotation rules typi-
cally contain conjunctions of 3 or 4 features per rule. After applying all these rules
and inferring the annotations, the elements on the page are linked to the well-known
concepts of the model Web database and hence allow a generic algorithm to interact
with the site, i.e. set parameters, submit the query by triggering the click event of the
button, and extract the results.

Fig. 4. Example of Rule-Based Annotations

Implementation

The evaluation of our approach is carried out in the domains that were also used to
validate the database model, i.e. used cars and real estate. For both domains, a global
vocabulary in the form of a small ontology was developed that contains the concepts
that can be used for queries in these domains and are mapped to the individual
sources. A concrete model taxonomy based on the meta-vocabulary described in the
previous section was implemented which offers a set of 15 features that are used to

define annotation rules, e.g. hierarchical position, common attributes and adjacent
texts7. The model-related properties of the meta-vocabulary were also extended: Re-
garding functions, subproperties of executeFunctionWith were defined for
search submission, next link and detail link. For the query interface, concepts for
less, lessOrEqual, greater, greaterOrEqual, equal, unequal and
containsString are defined as subproperties of restrictProperty. And
finally the hasValueFormat property was extended to allow defining the data type
and match or replace patterns from the text using regular expressions.

A prototype, the Deep Web Mediator, was also implemented by the first author and
offers a standard SPARQL query endpoint that accepts queries passed as the q-
parameter of a GET http-command, and additional Web services to upload and down-
load wrappers, as well as a session-aware variant of the SPARQL endpoint that al-
lows accessing intermediate status notifications and additional information, such as
the transformed query and included sites for evaluation purposes. The mediator in-
cludes a custom parser that allows transforming a query into the style of conjunctive
subqueries required by the model and injecting relevant sources from the available
wrappers in our Global-as-View approach. Asynchronous control flow allows for-
warding multiple subqueries to the local sources in parallel, collecting intermediate
results in an RDF store (OpenLink Virtuoso8) before finally executing the query. The
query process and the interaction with the sites follow a generic algorithm, but use the
annotations created by the rules contained in the wrapper to identify the model ele-
ments on the actual Web page. The evaluation of these rules is done using a proprie-
tary implementation rather than an existing rule engine so there is no interface related
overhead. Our Deep Web Mediator is also available online9 and offers a standard
SPARQL endpoint, a wizard-based GUI, and a set of running examples. Experimental
Validation
To evaluate our approach we designed a set of use cases that interact with sources that
vary from plain lists to sites incorporating the full model and that cover different
types of queries and integration problems. For the domain of used cars, 3 different
used-car dealership websites and a site containing test results are used, and for the
domain of real estate, 3 different realtor websites and a site containing average lot
prices are used10. Table 2 shows the complete list of use cases, which are also availa-
ble as running examples on the project’s website.
The first three use cases cover the different page types of the model: use case #1 uses
a site that consists only of the result list, which is split into several pages that can be
accessed following a “next” link. Use case #2 accesses a source that requires submit-
ting a query to access the result list, and use case #3 accesses a source that uses all
three types of pages, i.e. query interface, result list and record detail. All three use
cases are covered and accurately return the records and values relevant for the given

7 The list of features is available via semann.bdoenz.com/downloads/annotVoc.ttl
8 The homepage for OpenLink Virtuoso can be accessed via virtuoso.openlinksw.com
9 Deep Web Mediator project homepage can be accessed via semann.bdoenz.com
10 The list of sites is given on the project homepage semann.bdoenz.com/default.aspx

filter, which was evaluated by manually submitting the queries and comparing the
results.

Table 2. Overview of use cases

Name Description

1 Plain list Extract the average rent per town from a single site.

2 Search and result list Extract test results on cars of the brand Audi from a single
site and return brand, model and the test conclusion.

3 Search, list and detail page Extract real estate offers from a single site and return details
for offers with 3 or more rooms and a rent of 800€ to 1200€.

4 Disjunctive query Extract used car offers from a single site and return details of
all offers for cars of the brand “Audi” that are priced under
12.500€ if the construction year is after 2011 or under
15.000€ if the construction year is after 2012.

5 Union Extract used car offers from all available sites and return
details of offers for cars of the brand “Audi” that are priced
under 12.500€ and have a construction year after 2011.

6 Disjunctive union Extract used car offers from all available sites and return
details of all offers for cars of the brand “Audi” that are
priced under 12.500€ if the construction year is after 2011 or
under 15.000€ if the construction year is after 2012.

7 Relations between sources Extract average rents and real estate offers from all available
sites and return those that are located in a specific town and
have a lower rent/m² than the average for that town.

8 Deep Web and local data-
bases

Extract real estate offers from all available sites and add the
type of town and population from a local dataset.

9 Deep Web and external
databases

Extract real estate offers from all available sites and add a
description of the town and the population from an external
SPARQL endpoint (dbPedia).

As an example, Fig. 5 shows use case #3: The SPARQL query is given at the top (a)
of the Figure. It asks for town name, offer name, description, rent, rooms and floor
space for offers from a specific site and filters these by restricting the rent to the range
of 800€ to 1200€ and the number of rooms to a value greater than 3. Underneath (b-
d), the three types of pages of the source site are shown. The first is the query inter-
face. After navigating to this page, our mediator uses the annotations created by the
feature extractor and annotation rules to determine the relevant fields, set the parame-
ters of the initial query and submit them. The second screenshot shows the result list
for that query, which also offers a link to a detail page for each record that is shown to
the right. Again, both the list and detail pages are annotated to allow extracting the
values and navigating. The values collected in this manner are then used to answer the
query and return the results shown at the bottom of the Figure (e).

Fig. 5. Use Case #3: a) Input query, b) Source’s query interface, c) Source’s result list,
d) Source’ record detail, e) Deep Web Mediator Result

The next three use cases listed in Table 2 cover additional types of queries. While the
first three queries only used conjunctions, use case #4 includes a disjunction. This
query is transformed and split into two conjunctive subqueries by our Mediator,
which are executed independently and returned as a concatenated list. While the pre-
vious use cases only accessed a single site, use case #5 accesses all available sites of
the domain and returns the union of the collected records. Use case #6 then extends
this to also include a disjunction, resulting in 6 sub queries (2 queries for 3 sites).
The final three use cases cover integration from different sources: use case #7 extracts
information from a Deep Web site that publishes average rents per square meter and
then uses the value to restrict the offers extracted from realtor websites so only those
that are below this average are returned. And finally, use cases #8 and #9 combine
real estate offers taken from Deep Web Sites with information taken from a local
database (#8) and dbPedia (#9).
All nine use cases could be implemented successfully and are available as running
examples on the project’s homepage.

Conclusion and Outlook

Our approach allows accessing and integrating sources on the Deep Web with
Global-as-View mediators. The application of a model as the basis of the extraction
process has proven to be valuable in two respects: it allows employing a generic ex-
traction process that can be tested, improved and enhanced independently of the actu-
al sources. Secondly, in contrast to other projects, where the success of the extraction
approach is shown by stating the percentage of correctly extracted facts, but the rea-
sons for the success or failure with individual sources cannot be clearly explained, the
presented approach involves no such uncertainties: If the site is compatible to the
model, which can be determined by comparing a set of constraints derived from the
model, it can be reliably included as a source, and if it is not, the reason, i.e. the crite-
ria that could not be met by the site, is clearly defined. Furthermore, the approach is
extensible in the sense that the model and the set of features used by the annotation
rules can be extended to allow including further sites.

Our next steps will be to extend the model to include additional sites and to use
reasoning as a means to integrate different vocabularies that might be used in the
query or the sources, but are linked by relations such as owl:sameAs. In addition,
we are planning experiments to apply machine learning to generate the wrappers.
While fully automated, domain-independent wrapper generation may be out of reach,
creating rule sets for a site of a specific domain using a manually created training set
for the same domain seems feasible and should at least allow us to create an automat-
ed suggestion, or possibly even fully applicable rule sets for new sites on demand.

References

1. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25,
38-49 (1992)

2. Bergman, M.K.: The Deep Web: Surfacing Hidden Value. vol. 7. The Journal of Electronic
Publishing (2001)

3. He, B., Patel, M., Zhang, Z., Chang, K.C.-C.: Accessing the Deep Web: A Survey.
Communications of the ACM 50, 94-101 (2007)

4. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J.,
Widom, J.: The TSIMMIS Project: Integration of Heterogeneous Information Sources.
Proceedings of the 10th Meeting of the Information Processing Society of Japan 7-18 (1994)

5. Y.Levy, A., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Informatin Sources Using
Source Descriptions. Proc. of the 22nd Int. Conference on Very Large Databases 251-262
(1996)

6. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL Reasoner for Ontology-Based
Data Access. Semantic Web 2, 43-53 (2011)

7. Civili, C., Console, M., Giacomo, G.D., Lembo, D., Lenzerini, M., Lepore, L., Mancini, R.,
Poggi, A., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F.: Mastro studio: managing
ontology-based data access applications. In: Proceedings of the VLDB Endowment VLDB
Endowment, pp. 1314-1317. (2013)

8. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase, P.,
Horrocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö., Rodríguez-Muro, M., Rosati, R.,

Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Optique: Towards OBDA Systems for
Industry. Lecture Notes in Computer Science 7955, 125-140 (2013)

9. Berners-Lee, T.: Relational Databases on the Semantic Web (1998)
10. Arenas, M., Bertails, A., Prud'hommeaux, E., Sequeda, J.: A Direct Mapping of Relational

Data to RDF. World Wide Web Consortium - W3C (2012)
11. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. (2012)
12. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify – Light-Weight

Linked Data Publication from Relational Databases. In: Proceedings of the 18th
international conference on World wide web (WWW'09), pp. 621-630. (2009)

13. Hellmann, S., Stadler, C., Lehmann, J., Auer, S.: DBpedia Live Extraction. Lecture Notes in
Computer Science 5871, 1209-1223 (2009)

14. Wang, J., Wen, J.-R., Lochovsky, F., Ma, W.-Y.: Instance-based Schema Matching for Web
Databases by Domain-specific Query Probing. In: 30th VLDB Conference, pp. 408-419.
(2004)

15. Chang, K.C.-C., He, B., Zhang, Z.: Toward Large Scale Integration: Building a MetaQuerier
over Databases on the Web. In: 2nd Biennial Conference on Innovative Data Systems
Research (CIDIR), pp. 44-55. (2005)

16. He, H., Meng, W., Yu, C., Wu, Z.: Automatic integration of Web search interfaces with
WISE-Integrator. The VLDB Journal 13, 256-273 (2004)

17. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring the
Power of Tables on the Web. In: Proc. of the VLDB Endowment, pp. 538-549. (2008)

18. Jannach, D., Shchekotykhin, K., Friedrich, G.: Automated Ontology Instantiation from
Tabular Web Sources - The AllRight System. Web Semantics: Science, Services and Agents
on the World Wide Web 7, 136-153 (2009)

19. Liu, B., Grossman, R., Zhai, Y.: Mining data records in Web pages. In: Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 601-606. (2003)

20. Furche, T., Gottlob, G., Grasso, G., Orsi, G., Schallhart, C., Wang, C.: AMBER: Automatic
Supervision for Multi-Attribute Extraction. arXiv (e-Print), (2012)

21. Kahan, J., Koivunen, M.-R., Prud'Hommeaux, E., Swick, R.R.: Annotea: an open RDF
infrastructure for shared Web annotations. Computer Networks 39, 589-608 (2002)

22. Laender, A.H.F., Ribeiro-Neto, B.A., Silva, A.S.d., Teixeira, J.S.: A Brief Survey of Web
Data Extraction Toolst. SIGMOD Record 31, 84-93 (2002)

23. Liu, W., Meng, X., Meng, W.: ViDE: A Vision-Based Approach for Deep Web Data
Extraction. IEEE Transactions on Knowledge and Data Engineering 22, 447-460 (2010)

24. Furche, T., Gottlob, G., Guo, X., Schallhart, C., Sellers, A., Wang, C.: How the Minotaur
turned into Ariadne: Ontologies in Web Data Extraction. Lecture Notes in Computer
Science 6757, 13-27 (2011)

25. Zhao, H., Meng, W., Wu, Z., Raghavan, V., Yu, C.: Fully Automatic Wrapper Generation
for Search Engines. In: World Wide Web Conference (WWW 2005), pp. 66-75. (2005)

26. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data extraction
project: back and forth between theory and practice. In: Proc. of the 23rd ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 1-12. (2004)

27. Minton, S.N., Ticrea, S.I., Beach, J.: Trainability: Developing a responsive learning system.
In: Proc. of the 2003 Workshop on Information Integration on the Web, pp. 27-32. (2003)

28. Dönz, B., Bruckner, D.: Extracting and Integrating Structured Information from Web
Databases Using Rule-Based Semantic Annotations. In: 39th Annual Conference of the
IEEE Industrial Electronics Society. (2013)

