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Abstract. In this work, we present a system which is able to 
track objects over time even in situations the objects are not 
apart enough to get separated input data. The system 
processes distance data repeatedly acquired from a distance 
sensor. More specifically, it tracks balls rolling on the floor 
using laser rangefinder measurements. The noisy data is first 
filtered, then processed for ball detection and consecutively 
paired with long-term data of objects movement. Finally, 
Kalman filter helps to bridge the drop-outs of object position 
information caused by interactions between the balls and 
occlusions. 

Based on the tracked movements and smart predictions, the 
system is able to cope well with two principally different and 
poorly distinguishable situations: when two balls pass close to 
each other without touching and when two balls collide and 
bounce away.  

The system has been successfully implemented on a real robot 
equipped with a short-distance IR laser rangefinder. 

1 Introduction 

In robotics, only few systems can work without sensing 

and observing the real-world environment in which they 

perform their actions. Moreover, simple sensing is usually 

not enough. Sensed low-level data needs to be processed 

further to obtain high-level object data so that the control 

system has enough information about its working 

environment to be able to perform its high-level task. 

Among the methods for such data manipulation, object 

recognition, matching and tracking is often used. Low-level 

sensor data is processed so that higher-level object 

information or description is retrieved. Then, the 

recognized objects are matched against the recognized set 

of objects and consecutively such objects are tracked over 

time. However, in not so rare situations, the objects are 

very similar which makes the matching and tracking 

challenging. Moreover, when there are more similar objects 

in the scene close to each other, they can get easily 

mismatched and exchanged during the matching process 

which leads to wrong high-level data being processed at 

high control levels. The situation could get even worse 

when the objects move and get close to each other or when 

they even interact. Therefore, good detection and matching 

is highly important. 

2 Moving Object Tracking 

There are many systems which use video stream or still 

pictures as basic input data. Object recognition, matching 

and tracking is done using many various methods.  

For example, Cheriyadat, Bhaduri and Radke use in [1] 

the following approach: the objects are searched based on 

their movement between the time snapshots when two 

pictures were taken. Input images are interpreted as 

2D matrices where each pixel is represented by a real 

number. The two directly following pictures (the matrices) 

are subtracted and a resulting matrix represents the change 

of position of the objects between the two image 

acquisition times. The highest numbers can be found at the 

edges of moving objects. The process continues by finding 

corners using the Shi-Tomasi-Kanade corner detector [2] 

and Rosten-Drummond corner detector [3]. Then, the path 

along which the corners travel is found using the Kanade-

Lucas-Tomasi (KLT) algorithm [4]. The authors define the 

metrics of the “movement similarity” of the corners. Then 

they look for corners which appear to move similarly 

according to this metrics and gather them in sets. Such 

corner sets are then announced as the result of moving 

objects detection. 

There are many different object tracking algorithms 

which take video images as input data. Most of them not 

surprisingly work under specific conditions and suffer from 

different weaknesses. Some authors therefore suggest using 

more different algorithms and then compiling their results. 

To illustrate, Siebel and Maybank propose in [5] to track 

people using combination of tracking moving areas, 

searching human body silhouettes and searching head 

silhouettes. The hypotheses of moving people which result 

from those different algorithms are then compiled and 

filtered which results in a robust algorithm. They can 

correctly detect two people holding conversation: while 

they could be detected as one bigger moving region, the 

body silhouette-searching algorithm correctly detects two 

distinct bodies. 

Another approach to people tracking was presented by 

Cui, Song, Zhao, Zha, and Shibasaki in [6]. The authors use 

rangefinder sensors placed close to the ground at ankle 

level. They aggregate measurements from multiple sensors 

placed around the area and check the ends of individual 

rangefinder emitted rays. Such ends denote an obstacle. 

The points at those ends are filtered using the Parzen 

windows algorithm [7] and the local maxima are 

considered to be people legs. The authors focus on the leg 

which is still during the walk and pair the legs belonging to 

one person. Finally, based on the leg movements they 

output the person position. 

An interesting combination was also presented in [8]: the 

authors extend the rangefinder-based system by using an 

additional video camera. By positioning the camera at other 

place than the rangefinders, they can also address situations 

when the rangefinder is occluded and does not provide 

relevant source data. In such situations, the camera may see 

the objects because of different observation angle. 
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3 Motivation 

For our work, we have selected one of the sub-tasks 

needed for implementation of a robot for the SICK Robot 

Day 2012 Competition [9]. During the contest, three robots 

compete in a circular arena, collecting coloured balls. Each 

robot is assigned one colour – green, yellow or white. Its 

task is to collect balls of that colour and bring them to 

a target area of the same colour. The arena is about 15m in 

diameter and 10 balls of each colour are randomly spread 

there (see Fig. 1). The three robots have to operate at the 

same time. At the start of the match, the balls are still. 

However, due to their number and as three robots 

independently run there, the balls easily become moving 

and bouncing. It is therefore impossible to operate statically 

using an image of the scene taken at the match start. 

For the operation, the robot may use nearly any type of 

sensor. A combination of a colour camera and a laser 

rangefinder was selected for ball detection and tracking
1
. 

The camera used is a standard “webcam”-type camera. The 

rangefinder (SICK LMS 100) provides distance 

measurements within 0.5-20m in the angle of 270° with 

configurable step of 0.5° or 0.25°. The scanner is mounted 

so that we acquire data at the level of approximately the 

ball semidiameter (example of data is shown at Fig. 2). 

From the camera, the control system finds out the ball 

colour. However, due to the significantly varying 

illumination both at different places and directions on the 

scene (standard gymnasium with full-height windows over 

the long side) as well as during the day (as the sun 

proceeds), it is quite difficult to obtain proper colours of 

objects visible by the camera. Therefore, the idea was to get 

the colour whenever possible and connect it with object 

tracking which is due to the nature of a laser rangefinder 

not colour-aware. For object tracking as such, the colour is 

not important. Therefore it is not considered in the 

following text. 

                                                           
1
 Other sensors were used on the robot too, but they are 

irrelevant to the topic of this paper.  

4 Solution 

For the ball tracking, the following algorithm was 

proposed and implemented: 

1. Data is read from the laser rangefinder 

2. Data noise is filtered 

3. Positions of individual balls are calculated 

4. Calculated positions are matched with tracked balls 

5. Balls are tracked over long-time  

This algorithm is repeatedly run throughout the whole 

robot run. 

In the following sections, individual steps will be 

described more in detail. 

4.1 Data Acquisition 

As mentioned above, the data was acquired using the 

SICK LMS 100 laser rangefinder. Example of a scan is 

shown at Fig. 2. The principle of measurement is in 

measuring the time of flight of a laser beam. Full set of data 

was available 20 times per second which was more than 

enough for our task. However, the data was subject to noise 

and disturbances caused by the nature of the measurement 

method. For example, the laser can easily get reflected on 

a shiny surface or can interact with dust in the air. Also, the 

distance data may vary with the different properties of the 

object from which the laser mirrors. Last, but not least, due 

to the speed of the signal, time measuring is crucial and any 

inaccuracy in time measuring directly influences the 

calculated distance. This can be easily seen as non-linear 

room edge at Fig. 2. 

4.2 Noise Filtering 

To filter the noise, a simple median filter is used. 

Originally, floating average was used, but the median filter 

better preserves the edges. 

Fig. 1. SICK Robot Days 2012 circular playing arena.  

Green team starting place (marked by two green balls) 

can be seen at far right; white and yellow starting places 

are not visible from this position as all the starting places 

are located 120° apart around the arena. 

 
Fig. 2. Example of SICK LMS 100 data. Red dot 

denotes the sensor position, red lines show individual 

range scans (only a selected subset shown). Two blue 

circles are the balls with their scan “shadows” clearly 

visible. Black boundaries mark the distance measured at 

the specific angle. 
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4.3 Ball Position Calculation 

In the scan, the ball makes “a shadow.” The distance 

measured directly to the side of the ball and to the ball itself 

differs a lot. Interpreting the scan as a one-dimensional 

picture, the boundary between the ball and the background 

is represented by an edge. Therefore, the balls are detected 

using the edge detection algorithm. Every shadow which is 

detected on the scan is then checked for the expected size – 

from the distance data, we know the distance to this object 

and knowing the ball diameter we can estimate its width in 

the data. All objects which do not correspond to this simple 

check are discarded. They can result from the noise (if the 

object is too narrow) or they can represent an opponent 

robot (if it is too wide as the robots are much bigger than 

the balls). 

From the edges (shown as blue lines at Fig.3), the 

expected ball centre is calculated (shown as a cross). 

Usually the shortest ray in the middle between the 

boundaries prolonged by a ball semidiameter is a good 

guess (see also Fig. 4). 

4.4 Ball Matching 

For this part of the algorithm, the inputs are a set of 

actually detected balls and a set of long-time maintained set 

of tracked balls. The output will be three sets: balls paired 

with measurements, solitary measurements and solitary 

balls. 

This part of the task is an optimization task. Formally, 

we try to minimize the weighted pairing on a full and 

symmetric bipartite graph. For this, the Hungarian 

algorithm
2
 [10] is used. We minimize the sum of distances 

between the ball tracked in long time and the paired ball 

detected in the current measurement. As the Hungarian 
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 Also known as Kuhn-Munkres or Munkres assignment 

algorithm 

algorithm expects the same number of objects in the two 

sets to be paired, we add virtual balls in case of uneven 

number in the two sets (see Fig. 5). These will be 

eliminated after the optimization and it can be proven they 

do not affect the optimality of the solution found. 

 

4.5 Ball Tracking 

The balls are tracked over time using a basic version of 

the Kalman filter (described e.g. in [11]) – we want to 

acquire a velocity vector from a series of position 

measurements in time which are subject to noise and 

dropouts (see later). Despite the strong preconditions for 

Kalman filter (especially the requirement that the noise has 

 
Fig. 3. Ball position calculation. Blue lines mark the 

boundaries (edges) of a ball, the cross denotes the 

resulting ball centre.  

 

 
Fig. 4. Ball centre detection. Black lines are the individual 

scans. Blue dashed lines are the ball boundaries. Red 

dashed line is in the middle between them with the length 

of the shortest ray between the two boundaries. Green line 

is its prolongation by the ball semidiameter and leads to 

the centre of the ball (black cross). 

 
Fig. 5. Hungarian algorithm pairing.Full line circles are 

the predicated (tracked) balls, dashed circles are the balls 

detected in the new scan, red line marks the pairing (the 

picture shows only a subset; the detected ball at bottom 

right does not pair with either of the two tracked balls). 
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to be of normal distribution), the filter is so robust that it is 

still very well useful even when these conditions are not 

fully met in real life. 

For our problem, the Kalman filter can overcome 

problems with short-time ball occlusions caused by balls 

travelling on trajectories which seemingly cross from the 

point of the observer view. In such case, one of the balls 

(the one further away from the observer) will not be visible 

for some time as it is occluded by the closer one. In the 

input data processing, this means that only one ball will be 

detected and the second one will be missing. However, 

thanks to the nature of the pairing algorithm and Kalman 

filter “prediction”, this is usually only a temporary dropout 

during which the occluded ball is in fact represented by that 

added virtual ball. Real tests have shown correct matching 

is maintained or re-established after the occluded ball 

leaves the other ball shadow. 

The Kalman filter can filter the noise if the process 

model is linear in respect to the position and control and if 

the noise is of a normal distribution. The linearity usually 

does not impose problems for simple systems; however, the 

noise distribution is in real life often anything else but 

normal.  

5 Implementation 

As mentioned earlier, this work was motivated by the 

SICK Robot Day 2012 Competition. However, it was 

implemented after the event based on the observations and 

experience gained. It was also tested on the real input data 

logs gathered during the competition. For data acquisition, 

the SICK LMS 100 laser rangefinder was used (mounted 

on the robot during the competition), but other input source 

which provides a distance measuring could be used too. 

The implementation of the main algorithm was done so 

that the solution could be used not only for this particular 

robot but also in other cases where object tracking is 

required. The core of the algorithm is written in C++ with 

the use of Boost library [12] (TCP/IP communication, 

thread management, input/output, data structures for 

mathematical calculations).  

Supportive visualisation and debugging tools were 

written with the use of OpenGL [13] and Qt [14] libraries, 

however that part is not necessary for the main algorithm 

use.  

The selection of libraries and tools makes it easy to port 

the algorithm to other platforms, both general and 

specialized embedded, as well as use the visualization tools 

at different platform than the core algorithm. Originally, the 

system was developed and tested on Microsoft Windows 

running on a mid-range laptop machine but it can be with 

no change compiled and used on Linux systems. Porting for 

ROS as a currently very popular system in robotics is 

straightforward (the algorithm can be nearly directly 

wrapped in a ROS node). It is certainly possible to use it in 

other systems too (e.g. FreeRTOS was considered but 

finally not ported as it was not needed). 

6 Results 

The implemented system was proposed to help solve ball 

tracking in a specific task in real life. Therefore, we judge 

its success by evaluating different situations which may in 

the model conditions occur. In the following text, these 

situations are listed and discussed with showing typical 

figures of the respective cases.  

Fig. 6-9 show the respective cases. A ball is represented 

by its centre as a cross (calculated from the laser scan, see 

paragraph 4.3). Around the ball, the shadow cone typical 

for rangefinders is shown (black cone; adjacent laser scan 

points are connected by a line for better visibility). Grey 

line shows the previous trajectory of the ball (as recorded 

based on the ball matching, see paragraphs 4.4 and 4.5). 

Violet line is a current velocity vector (as tracked by the 

filter).  

Fig. 6-8 show the evolution of the respective situation in 

time (each of the four snapshots depicts one typical phase). 

Fig. 9 shows ball clusters as a typical case when our ball 

detection fails.  

6.1 Single Ball Tracking 

This is the very basic situation. There is only a single 

ball in the scan area. The situation is shown at Fig. 6. The 

ball was travelling right to left on a straight path. Starting 

with speed 0, the Kalman filter first gets adapted to the real 

ball speed and noise. In the central part of the ball move, 

the filter well corresponds to the real ball position. As the 

ball leaves the scan sector, the ball detection algorithm 

starts to have problems, which are well compensated by the 

Kalman filter.  

  
 

  
 

Fig. 6. Single ball tracking. Top left: First detection of the 

ball. Top right: Kalman filter adaptation to the noise, 

speed and position stabilization. Bottom left: Stabilized 

movement. Bottom right: Problems to detect the ball 

which is  too far from the sensor. 
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6.2 Tracking Multiple Objects with Occlusion, without 

Collision 

When two balls move towards each other, two situations 

may happen: either the balls collide and bounce, resulting 

in the balls travelling in directions opposite to their original 

ones. In this paragraph, the first situation is addressed. 

When the two balls do not collide, the ball closer the 

scanner is tracked as if it moves alone (see Fig. 7 showing 

the evolution of this situation in time). The ball at bigger 

distance from the scanner is occluded, but continues to 

move with the same direction and speed as before the 

occlusion started. Here, the Kalman filter bridges the time 

when the ball is occluded and precisely tracks the ball 

meanwhile. That is well seen at the time the second ball 

leaves the first ball shadow.  

6.3 Tracking Multiple Objects with Collision 

When two balls collide, they form a single object on the 

scanned data and they cannot be separated as two balls. 

However, the Kalman filter continues to predict the 

movement individually. Fig. 8 shows this situation in time. 

When the two balls separate (Fig. 8 bottom left), their 

velocity vectors are deformed and do not correspond to 

data maintained by Kalman filter. During a few consecutive 

scans (pictures), it adapts and continues to track. 

In our implementation, the balls move relatively slowly 

in comparison to the frequency of the laser scans (20 per 

second) and to data processing which makes the filtering 

successful. Preliminary tests have shown that even under 

real conditions with full number of balls in game we can 

afford dropping and skipping lot of scans
3
 while still 

maintaining the correct tracking. 

                                                           
3
 This is by intention, not as a result of e.g. slowness of 

the algorithm 

6.4 Object Clusters 

In this paragraph we show an example of a situation 

when our algorithm fails. 

When more balls are close to each other forming 

a cluster, we cannot easily distinguish whether it is a ball 

cluster or an obstacle of totally different nature, for 

example an opponent robot. On Fig. 9, the lower cluster is 

most likely formed by two balls. The upper cluster might 

be a single ball on the right plus two close balls on the left. 

However, it can be another obstacle as well (e.g. an 

opponent robot, room equipment, a person etc.). 

Our algorithm was design to search and track individual 

balls and cannot cope with such situation. It may be 

possible to analyse the object shape – e.g. roundness of the 

obstacle – instead of just checking the edges like described 

in paragraph 4.3. 

  
  

  
 

Fig. 7. Multiple balls, no collision. Ball 1 travels right to 

left, ball 2 bottom to top (top left), ball 2 partially 

occludes ball 1(top right), ball 1 leaves the shadow 

(bottom left), balls continue to move independently 

(bottom right) 

 

  
 

  
 

Fig. 8. Multiple balls, collision. Ball 1 travels right to left, 

ball 2 bottom to top (top left), the balls collide, forming 

one object on the scan (top right), balls separate (bottom 

left), balls continue to move independently (bottom right) 

 

 
Fig. 9. Ball clusters On this scan, the ball detection fails: 

two balls close to each other (bottom / left), several balls 

in one area or completely another obstacle (top / right)  
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7 Conclusion and Future Work 

The presented algorithm detects and tracks moving 

unisized balls on a laser rangefinder scans. It tracks their 

movement in longer time and well copes with the 

occlusions and collisions.  

However, there are also situations this algorithm in 

principle cannot handle well (as shown for example in 

paragraph 5.4). Based on the real behaviour in our model 

situations, several ideas arose. These two are the major 

ones: 

One of the improvements considered is a different 

algorithm for ball centre detection in the raw scan data (for 

example, Fig. 4 shows slight asymmetry which is not taken 

into account). Consecutively, as mentioned in paragraph 

4.3, knowing the expected ball size, we calculate the 

expected cone width at the measured distance from the 

observer and compare that with the measured width, 

discarding objects where these data does not correspond.  

But we could also test the shape of the detected obstacle. 

That might detect multiple balls located close to each other; 

however, that might also compromise simplicity and speed 

of the edge detection. 

Secondly, the pairing might be improved. Currently, only 

the position information is used. Adding speed and 

direction to the pairing algorithm might help better 

distinguish between two balls passing each other and 

bouncing and thus exchanging their positions after they 

separate.  
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