
Towards Open Configuration
Alexander Felfernig1 and Martin Stettinger1 and Gerald Ninaus1 and Michael Jeran1 and

Stefan Reiterer2 and Andreas Falkner3 and Gerhard Leitner 4 and Juha Tiihonen5

Abstract. Configuration technologies are typically applied in
closed settings where one (or a small group of) knowledge engi-
neer(s) is in charge of knowledge base development and mainte-
nance. In such settings it is also assumed that only single users con-
figure the corresponding products and services. Nowadays, a couple
of scenarios exist that require more openness: it should be possible
to cooperatively develop knowledge bases and to jointly configure
products and services, even by adding new features or constraints in
a flexible fashion. We denote this integration of groups of users into
configuration-related tasks as open configuration. In this paper we
introduce features of open configuration environments and potential
approaches to implement these features.

1 Introduction

Configuration [8, 24, 37] is one of the most successful technologies
of Artificial Intelligence (AI). It is applied in many domains such
as telecommunication [17], furniture [19], and financial services [9].
Most configuration-related functionalities are assuming closed set-
tings where knowledge bases are developed by a single (or a small
group of) knowledge engineer(s) and the corresponding configura-
tors are applied by single users. Implementing configurator applica-
tions this way entails drawbacks which become manifest in terms of
scalability problems in knowledge engineering [33] and suboptimal
decisions if a single user decides for the whole group [16].

Scalability Problems. The transformation of domain knowledge
into a configuration knowledge base is an effortful process of-
ten characterized by a knowledge acquisition bottleneck [20] that
is considered as a major obstacle for a sustainable application of
knowledge-based technologies [21, 41]. To tackle this bottleneck,
efficient approaches have been developed that support graphical
knowledge engineering [7, 22] and intelligent debugging [6, 14, 35].

These approaches help to improve the efficiency of knowledge en-
gineering but still do not solve the problem of missing scalability:
the increasing amount and complexity of configuration knowledge
bases exceeds the resources available for performing the correspond-
ing development and maintenance operations [23, 33]. In order to
assure scalability, future configuration technologies have to support
a deeper integration of a wider group of users (e.g., product devel-
opers, marketing experts, sales representatives, and knowledge en-
gineers) into knowledge engineering. Related solutions should go
beyond state-of-the-art approaches that are focusing on experienced
knowledge engineers and programmers [24] by allowing the comple-

1 TU Graz, Austria, email: {firstname.lastname}@ist.tugraz.at
2 SelectionArts, Austria, email: stefan.reiterer@selectionarts.com
3 Siemens, Austria, email: andreas.a.falkner@siemens.com
4 University of Klagenfurt, Austria, email: gerhard.leitner@aau.at
5 Aalto University, Finland, email: juha.tiihonen@aalto.fi

tion of knowledge engineering tasks by the mentioned groups. We
denote this approach as community-based knowledge engineering.

Suboptimal Decisions. A basic assumption of existing configura-
tion systems is that products and services are typically configured by
single users. However, many scenarios exist where not a single user
but a group of users is in charge of configuring a product (see Sec-
tion 3). Existing configuration environments do not take into account
such scenarios which often leads to situations where a single user
has to ”encode” the requirements and preferences of a whole group.
This can lead to suboptimal configurations (decisions) that do not
reflect the group preferences in an optimal fashion. Future configu-
ration technologies should take into account the fact that groups of
users can be engaged in configuration processes and provide group
decision mechanisms that help the group to jointly configure a prod-
uct in a consensual fashion. We denote this type of configuration
as group-based configuration. Especially in scenarios where multi-
ple stakeholders define and configure products, enhanced flexibility
is required: configurator users may request to add or refine product
features and constraints which can be seen, for example, in open in-
novation [4] or postponement scenarios [18, 42]. We subsume such
activities under the term flexible product enhancement.

The concepts of community-based knowledge engineering, group-
based configuration, and flexible product enhancement can be
summed up under the notion of open configuration. In this paper we
sketch functionalities which have to be provided by open configura-
tion environments. In Section 2 we introduce features and potential
technological solutions to tackle the issue of scalability in knowledge
engineering scenarios. In Section 3 we discuss features of group-
based configuration. In Section 4 we discuss aspects of product en-
hancement in open configuration. With Section 5 we provide a dis-
cussion of related work. We conclude the paper with Section 6.

2 Community-based Knowledge Engineering

In the following we will discuss aspects that become relevant if we
want to integrate a larger group of users into configuration knowledge
engineering. For the sake of simplicity and without loss of general-
ity we assume that a configuration knowledge base is represented in
terms of a constraint satisfaction problem (CSP) [27] consisting of
a set of variables V = {v1, ..., vn} with corresponding domain def-
initions (dom(vi)), and a set of constraints C = {c1, ..., cm}. We
base our discussions on the following simplified financial services
configuration knowledge base.

• V = {willingness to take risks (wr), expected return rate (rr), in-
vestment period (ip)}

• dom(wr)= {low, medium, high}, dom(rr)={<6%, 6-9%,>9%},
dom(ip) = {shortterm, mediumterm, longterm}



micro task topic description

variables definition/evaluation of variables included in V

questions definition/evaluation of questions related to vi ∈ V

dialog sequences definition/evaluation of question sequences
constraints definition/evaluation of constraints in C

examples definition/evaluation of test cases in T

diagnoses evaluation of conflict resolution alternatives for C

Table 1. Community-based knowledge engineering: example micro tasks.

• C = {c1 : wr = medium→ ip 6= shortterm,
c2 : wr = high→ ip = longterm,
c3 : ip = longterm→ rr = <6% ∨ rr = 6-9%,
c4 : rr = >9%→ wr = high,
c5 : rr = 6-9%→ wr 6= low ∧ wr 6= medium}

In cases where one or a small group of knowledge engineers is
in charge of developing and maintaining a configuration knowledge
base, attributes (component types), domains, and related constraints
are typically formalized on the basis of examples and textual de-
scriptions provided by domain experts [24]. If the product domain
knowledge has to be adapted, the whole process is restarted, i.e., do-
main experts articulate the change requests in an informal fashion
and knowledge engineers implement the needed adaptations.

The correctness of changes performed on a knowledge base can be
evaluated, for example, on the basis of regression tests where positive
and negative test cases are used to figure out whether the knowledge
base shows the intended behavior [6]. Positive test cases (examples)
are a specification of an intended behavior of the knowledge base
and negative test cases exemplify unintended behavior. Existing ap-
proaches to configuration knowledge base testing and debugging ex-
ploit positive test cases to detect errors/deficiencies by inducing con-
flicts in the incorrect configuration knowledge base. Such conflicts
are minimal sets of constraints that are responsible for the faulty be-
havior of the knowledge base and therefore have to be adapted by
knowledge engineers.

Community-based Knowledge Engineering. Intelligent testing and
debugging [6] is an important contribution to the improvement of
knowledge engineering processes. However, the growing size and
complexity of configuration knowledge bases often makes it hard for
individual knowledge engineers to keep track of new developments
and adaptations. As a consequence, more time is needed to provide
a new production version of the configuration knowledge base and
the probability of including erroneous constraints increases. In or-
der to assure scalability, it is important to integrate end-users more
deeply into knowledge base development and maintenance and thus
to exploit unemployed knowledge engineering potentials.

In the following we discuss issues that have to be taken into ac-
count when integrating groups into community-based knowledge en-
gineering processes. An in-depth integration of a larger group of
users allows knowledge engineers to delegate basic engineering tasks
(so-called micro tasks). Table 1 provides an overview of micro task
topics. For each topic a couple of different concrete micro tasks can
be defined, for example, a variable can be defined but also evaluated
with regard to the appropriateness of it’s domain definition.

In order to figure out variables (component types) relevant for the
configuration knowledge base, users should be allowed to enter pro-
posals for variables and component types (including the correspond-
ing domain definitions) on their own. Variables are often associated

with questions posed to the user of a configurator application – al-
ternative formulations of such questions and also the sequences in
which these questions are posed should be defined and evaluated by
users. In addition to structural properties typically defined in terms
of variables or component types and their relationships, constraints
define additional restrictions on possible combinations of variable
values (components).

Especially in community-based scenarios, where a larger number
of users interacts with the knowledge engineering environment, en-
gineering practices will change in the sense that users are providing
knowledge chunks in a collaborative fashion and the knowledge en-
gineering environment is in charge of aggregating this information.
In this context, it is necessary to have mechanisms that automatically
distribute knowledge acquisition tasks among users in a systematic
fashion (e.g., depending on the workload, knowledge level, and pref-
erences of users). Such tasks can be represented in a more-or-less
traditional form of todo-lists but can also be represented in terms of
so-called games with a purpose [40] which is an upcoming trend also
in the knowledge engineering field [36].

A simple example of such a knowledge acquisition interface is
depicted in Figure 1. In this example game, the users Ann and Paul
have the task to cooperatively figure out combinations of customer
requirements that are incompatible, i.e., induce an inconsistency with
the knowledge base. The players have successfully completed their
task if they, for example, selected the same set of assignments as
candidates for incompatibilities. The underlying assumption of this
game is that Ann does not know the input of Paul and vice-versa.

Further examples of gamification-based interfaces for configura-
tion knowledge acquisition are: cooperative definition of relevant
variables (including their domains), the estimation of intuitive di-
alog sequences (which questions should be asked in which order),
the derivation of further constraint types (e.g., filter constraints that
match user requirements to corresponding technical product prop-
erties), and the estimation of accepted repair rankings in situations
where no solution could be found. Such scenarios can be supported
by input templates that represent micro-tasks (see Figure 1).

Testing and Debugging. The definition and evaluation of (posi-
tive and negative) test cases is a crucial issue since the correctness
of a test suite directly influences the correctness of the results de-
termined by a configurator. In [6] positive and negative examples are
exploited for debugging knowledge bases on the basis of the concepts
of model-based diagnosis [32]. In this context, positive examples are
exploited for inducing conflicts in a configuration knowledge base.
A negative example is assumed to be integrated in negated form into
the knowledge base in the case that it has not been rejected by the
knowledge base. On the basis of the following two test cases (exam-
ples) we can show how positive examples are used to find errors in
the knowledge base. Both test cases are in conflict with constraints



Figure 1. Sketch of a user interface for game-based knowledge acquisition. The overall goal of the game is that both players agree on the set of incompatible
value combinations of a given set of variables. This user interface can be regarded as a micro task template for the acquisition of incompatibility constraints.

Figure 2. Group-based diagnosis of a faulty configuration knowledge base. Diagnoses are selected by taking into account the expertise of users/knowledge
engineers: the higher the personal score (value derived from his/her personal contributions), the higher the weight given to his/her opinion.

in the configuration knowledge base introduced in Section 2.

• t1 : wr = high ∧ rr = >9%
• t2 : rr = 6-9% ∧ wr = medium

A conflict between a test case t and a set of constraints in the con-
figuration knowledge base can be defined as a conflict set CS ⊆ C:
CS ∪ t inconsistent. Such a conflict set CS is minimal if there does
not exist another conflict set CS′ with CS′ ⊂ CS. To resolve a
minimal conflict, only one element has to be deleted from CS. In
our example, the test case t1 is in conflict with the constraints c2 and
c3 and test case t2 is in conflict with the constraint c5. Consequently
we have two different (and minimal) conflict sets which are CS1:
{c2, c3} and CS2: {c5}. Resolving these conflicts results in two dif-
ferent diagnoses, namely D1 = {c2, c5} and D2 = {c3, c5}, i.e., a
diagnosis is a hitting set [32] which includes at least one constraint
from each of the given conflict sets.

Typically, there are many alternative diagnoses and the question
has to be answered which of these is acceptable for the users en-
gaged in testing and debugging. Figure 2 depicts a basic approach
of integrating knowledge about the users expertise in the determina-
tion of a diagnosis. For the conflict CS1 = {c2, c3}, the majority of
users prefers to keep c2 as-is and to delete or change c3 to resolve
the conflict. Since CS2 is a singleton, no alternatives exist for re-

solving the conflict, i.e., c5 must be selected. Overall, the elements
in the diagnosis D2 = {c3, c5} have a lower community support and
therefore will be changed or deleted by the users in order to restore
the consistency with the test-suite {t1, t2}.

3 Group-based Configuration

An assumption of existing configuration environments is that there
is no need for additional configuration support in scenarios where
groups of users are jointly configuring their preferred product or ser-
vice. A major consequence of this assumption is that single users are
forced to encode the preferences of a group which is often done in a
suboptimal fashion.

Within the scope of an industry study with representatives of N=25
companies applying configurators we figured out that none of the ex-
isting configuration environments provides technologies that support
groups of users in jointly configuring a solution. However, there is
a strong agreement on the fact that such technologies have to be in-
cluded in future configurators. The study participants reported dif-
ferent scenarios for the application of group-based (socially aware)
configuration technologies. Social awareness in this context denotes
the fact that specific properties of group decision processes are ex-
plicitly taken into account by the configuration environment (e.g.,



ID domain for group-based configuration components and constraints decision makers

1 software release plans
requirements, releases,
dependencies, preferences

stakeholders in software project

2 product line scoping and open innovation
(new) features, constraints between
features, preferences

representatives from different
departments, customers

3
bundle configuration (e.g., hotel, flight,
tour, etc.)

(new) destinations, hotels,
sightseeing tours, (resource)
constraints, preferences

travel group

4
stakeholder selection for a new software
project

(new) persons, constraints
regarding competences and
resources, preferences

(initial) team members

5
architectural design in software
development

components, interfaces,
technologies, constraints between
components, preferences

(distributed) software project
members

6 financial service configuration
financial services, resource
constraints, preferences

family members

7
building configuration (e.g. smart home,
office block)

rooms, furniture, light control
equipment, constraints between
components, preferences

family members, suppliers,
company representatives

8 funding decisions
project proposals, resource
constraints, preferences

evaluators, consultants, decision
makers

Table 2. Application scenarios for group-based configuration identified within the scope of a study with N=25 companies applying configuration systems.

the need to achieve consensus among group members). Examples of
such scenarios are depicted in Table 2.

In these scenarios a group of users is in charge of jointly config-
uring a product or service, for example, when configuring a holiday
trip (bundle configuration) for a group of friends [25], the require-
ments and preferences of all group members should be taken into
account. When configuring a software release plan, the preferences
of individual stakeholders regarding the assignment of requirements
to releases have to be taken into account [31].

Taking into account requirements and preferences of group mem-
bers requires decisions regarding trade-offs. In the context of holiday
trips such a trade-off could be the acceptance of a lower-quality ho-
tel which is much nearer to the sightseeing destination preferred by
a specific user. When configuring software release plans, a trade-off
could concern the postponement of a specific requirement to a later
release while increasing the importance level of this requirement (to
avoid further postponements).

The determination of trade-offs must be based on preference ag-
gregation mechanisms [29] that take into account the preferences of
all group members as far as possible. For example, the least misery
strategy avoids massive discriminations of individual group members
by minimizing the maximum number of trade-offs to be accepted by
an individual. In contrast, majority voting follows the opinions of the
majority of the group members which can lead to discriminations
against individuals.

An example of the application of the least misery strategy in the
context of deciding about a common sightseeing trip is depicted in
Table 3. In this simplified example, each person is allowed to select
at most two destinations and the corresponding trip must include two
destinations. Since Ben and John have similar preferences, majority
voting would discriminate Kate. In contrast, least misery tries to find
a trade-off that has the potential to create group consensus. For a
detailed discussion of preference aggregation mechanisms we refer
the reader to [29].

A major issue for future research is the consideration of longer
time periods. For example, if a group of friends jointly configures
a holiday trip every year, the aggregation mechanisms used by the
group-based configuration environment should take into account (as
far as possible) the degree to which individuals had to accept trade-
offs in the past and use this information for the recommendation of
fair trade-offs in future configuration sessions.

On the technical level the above mentioned properties require ba-
sic research in the following areas.

First, constraint-based search methods have to be extended with
mechanisms that help to predict (partial) configurations which are of
relevance for the group. This requires learning methods for search
heuristics [34] that help to predict relevant configurations in an ef-
ficient fashion. Furthermore, it is important that configurators are
able to determine similar and diverse configurations efficiently which
could also be achieved on the basis of the mentioned heuristics.

Second, the determination of trade-offs for inconsistent require-
ments and preferences has to be based on efficient diagnosis meth-
ods integrated with intelligent preference aggregation mechanisms
[29] that can help to better predict trade-offs acceptable for all group
members. These aggregations must take into account the histories
stored in interaction logs in order to guarantee decision fairness in
the long run.

Third, negotiation and argumentation mechanisms have to be de-
veloped which support individuals to express acceptable trade-offs.
In our holiday configuration scenario an example of such a statement
is ”I accept to visit Greece this year if we agree to organize a trip to
Italy next year”. Such arguments cannot be expressed on the basis of
existing preference representations.

4 Flexible Product Enhancement
The ability to include additional variables (component types), values
(components), and constraints in a flexible fashion is important for
the implementation of open configuration.



destination Lindwurm Großglockner Pyramidenkogel Isonzo Valley

Ben 1 1 0 0
John 1 1 0 0
Kate 0 0 1 1

least misery 1 0 1 0
majority voting 1 1 0 0

Table 3. Example set of tourist destinations (in the Alps-Adriatic area). The assumption in this example is that each person is allowed to articulate at most
two preferences and the trip must include at least two destinations.

Product line scoping [26] (in the context of software product line
engineering) is in the need of such a flexibility since the features and
constraints element of the product line are not completely predefined
at the beginning of the engineering process. A larger group of users
has to jointly decide which components (features) and constraints
should be part of the product line. Thus, product line scoping can
be interpreted as open configuration where new alternatives and con-
straints (and preferences) can be integrated within the scope of the
configuration (product line scoping) process.

Open innovation [4] reflects the idea of integrating customer com-
munities into new product development processes of a company. In
this context, variability modeling for product lines also requires the
support of an easy integration of new component types, components,
and constraints which reflect features to be supported by future prod-
ucts. In both scenarios, the integration of new items has to be sup-
ported by corresponding group decision processes (see Section 3),
for example, before a new feature is integrated into the model, the
group has to perform the needed validation steps and decide about
the inclusion of the feature. This also holds for the afore mentioned
scenarios of release planning and holiday trip configuration.

A further example of the need for flexible enhancements are post-
ponement strategies [18, 42]. An example is the automotive indus-
try, where basic car configurations are delivered to dealers who can
then integrate additional components such as MP3 players and tow-
bars, i.e., are enabled to integrate their own products and services
into the basic configuration delivered by car producers. Conform to
the definition given in [18], the mentioned scenario is of type-III
where customers are allowed to specify additional equipment when
they already have a more precise idea of the interior of the car. The
corresponding configuration model has to provide flexible interfaces
that allow an easy integration of new component types, components,
and constraints. A knowledge representation concept that can be ex-
ploited in this context are contextual models [10] which allow a sys-
tematic extension of existing base diagrams with additional items
relevant in a specific context (e.g., the car dealer context). In such
scenarios, developers of configurator solutions also have to take into
account that – depending on the additional items introduced – search
heuristics [34] have to be adapted in order to assure efficient search.

5 Related and Future Work

Intelligent testing and debugging methods for configuration knowl-
edge bases have been introduced in [6] where positive test cases
can detect errors by inducing conflicts in a configuration knowledge
base. Conflicts are then resolved on the basis of model-based diag-
nosis [32]. In open configuration scenarios, testing and debugging
approaches have to be adapted to group-based settings where diag-
nosis discrimination has to take into account group preferences.

Bessiere et al. [2] introduced basic mechanisms to the learning

of constraint sets. In this context, knowledge bases are learned on the
basis of positive and negative examples. Generated examples are pre-
sented to users who have to decide whether the examples are positive
or negative. Learning is based on a so-called bias that is a knowledge
base generated from a vocabulary (variables, domains, and opera-
tors). The bias is systematically reduced on the basis of the infor-
mation included in the examples, for instance, all conflicts induced
in the bias by a positive example have to be resolved. In the case
of a negative example, at least one conflict must be preserved which
guarantees the rejection of the negative example. Approaches to the
application of association rule mining for configuration knowledge
discovery are discussed in [23]. An important research issue in this
context is to assure the understandability and manageability of the
derived configuration knowledge [12].

Human Computation is based on the idea of passing those tasks to
humans which are easy to solve for them but are not solvable by com-
puters [39]. Related research has already been conducted in the areas
of ontology construction (concept learning) [36] and sentiment anal-
ysis in text documents [30]. A major idea of the work presented in
this paper is to exploit the concepts of Human Computation as a cen-
tral mechanism for configuration knowledge base construction and
maintenance. These mechanisms go beyond concept learning [36]
and include tasks such as diagnosis discrimination, test case classifi-
cation and evaluation, and configuration dialog design.

Preferences are not known beforehand but are constructed within
the scope of a decision process [3, 38]. As a result, biases occur
which often lead to suboptimal decisions. Concepts to deal with
(group) decision problems in recommender systems are discussed in
[11, 15, 25, 28, 31]. A major issue for future research in this context
is an in-depth investigation of decision biases in group decision mak-
ing. An important question is to which extent biases are compensated
or become more intense when groups decide.

6 Conclusions

In this paper we introduced central ideas and research questions re-
lated to open configuration. Openness in this context is related to the
idea of a closer integration of end-users into configuration knowledge
base development and maintenance operations and of supporting de-
cision processes in scenarios where groups of users are in charge of
configuring a product or service. Furthermore, open configuration is
often characterized by the need of being able to integrate new items
(e.g., component types, components, and constraints) ”on the fly”.
On the basis of the results of a first industry study we reported exam-
ple application domains and discussed related research challenges.
The concepts presented in this paper can be applied in a broad range
of scenarios which go beyond open configuration. Further example
application domains are (constraint-based) scheduling [1], recom-
mender systems [5], and utility evaluation where user groups are in



charge of evaluating alternatives [13].

ACKNOWLEDGEMENTS

The work presented in this paper has been conducted in the research
project PEOPLEVIEWS funded by the Austrian Research Promotion
Agency (843492).

REFERENCES
[1] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based Scheduling,

Kluwer, 2001.
[2] C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin, ‘Query-driven

constraint acquisition’, in 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI’07), pp. 50–55, Hyderabad, India, (2007).

[3] J. Bettman, M. Luce, and J. Payne, ‘Constructive consumer choice pro-
cesses’, Journal of Consumer Research, 25(3), 187–217, (1998).

[4] H.W. Chesbrough, Open Innovation. The New Imperative for Creating
and Profiting from Technology, Harvard Business School Press, Boston,
2003.

[5] A. Felfernig D. Jannach, M. Zanker and G. Friedrich, Recommender
Systems – An Introduction, Cambridge University Press, 2010.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[7] A. Felfernig, G. E. Friedrich, and D. Jannach, ‘UML as Domain Spe-
cific Language for the Construction of Knowledge-based Configuration
Systems’, International Journal of Software Engineering and Knowl-
edge Engineering, 10(4), 449–469, (2000).

[8] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration – From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 2014.

[9] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The VITA Financial
Services Sales Support Environment’, in AAAI/IAAI 2007, pp. 1692–
1699, Vancouver, Canada, (2007).

[10] A. Felfernig, D. Jannach, and M. Zanker, ‘Contextual Diagrams as
structuring mechanisms for designing configuration knowledge bases in
UML’, in 3rd International Conference on the Unified Modeling Lan-
guage (UML2000), number 1939 in LNCS, pp. 240–254, (2000).

[11] A. Felfernig, W. Maalej, M. Mandl, F. Ricci, and M. Schubert, ‘Recom-
mendation and decision technologies for requirements engineering’, in
ICSE 2010 Workshop on Recommender Systems in Software Engineer-
ing, pp. 1–5, Cape Town, South Africa, (2010).

[12] A. Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, and
G. Ninaus, ‘Recommender Systems for Configuration Knowledge En-
gineering’, in Workshop on Configuration, pp. 51–54, Vienna, Austria,
(2013).

[13] A. Felfernig, S. Schippel, G. Leitner, F. Reinfrank, K. Isak, M. Mandl,
P. Blazek, and G. Ninaus, ‘Automated Repair of Scoring Rules in
Constraint-based Recommender Systems’, AI Communications, 26(2),
15–27, (2013).

[14] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing (AI EDAM), 26(1), 53–
62, (2012).

[15] A. Felfernig, E. Teppan, and B. Gula, ‘Knowledge-based recommender
technologies for marketing and sales’, International Journal of Pat-
tern Recognition and Artificial Intelligence (IJPRAI), 21(2), 333–354,
(2006). Special issue of Personalization Techniques for Recommender
Systems and Intelligent User Interfaces.

[16] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maaleij,
D. Pagano, L. Weninger, and F. Reinfrank, ‘Group Decision Support for
Requirements Negotiation’, in Advances in User Modeling, Springer
Verlag, volume 7138 of Lecture Notes in Computer Science, pp. 105–
116, (2012).

[17] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[18] C. Forza, F. Salvador, and A. Trentin, ‘Form postponement effects on
operational performance: a typological theory’, International Journal
of Operations and Production Management, 28, 1067–1094, (2008).

[19] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, 13(4), 78–85, (1998).

[20] F. Hayes-Roth, D. Waterman, and D. Lenat, Building Expert Systems,
Addison-Wesley, 1983.

[21] S. Hoppenbrouwers, P. Lucas, D. Romano, and D. Moffat, ‘Attacking
the knowledge acquisition bottleneck trough Games-For-Modelling’, in
AISB Symposium, pp. 81–86, (2009).

[22] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation & Reasoning’, in
Knowledge-based Configuration – From Research to Business Cases,
eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 6, 59–
96, Morgan Kaufmann Publishers, (2013).

[23] Y. Huang, H. Liu, W. Ng, W. Lu, B. Song, and X. Li, ‘Automat-
ing knowledge acquisition for constraint-based product configuration’,
Journal of Manufacturing Technology Management, 19(6), 744–754,
(2008).

[24] L. Hvam, N. Mortensen, and J. Riis, Product Customization, Springer,
2007.

[25] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhancing
mutual awareness in a group recommender system’, in International
Working Conference on Advanced Visual Interfaces, pp. 447–449, Gal-
lipoli, Italy, (2004).

[26] I. John, J. Knodel, T. Lehner, and D. Muthig, ‘A practical guide
to product line scoping’, in Software Product Line Conference 2006
(SPLC2006), pp. 3–12, (2006).

[27] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[28] M. Mandl, A. Felfernig, E. Teppan, and M. Schubert, ‘Consumer Deci-
sion Making in Knowledge-based Recommendation’, Journal of Intel-
ligent Information Systems (JIIS), 37(1), 1–22, (2010).

[29] J. Masthoff, ‘Group Recommender Systems: Combining Individual
Models’, Recommender Systems Handbook, 677–702, (2011).

[30] C. Musat, A. Ghasemi, A., and B. Faltings, ‘Sentiment Analysis Using
a Novel Human Computation Game’, in 3rd Workshop on the People’s
Web Meets NLP, pp. 1–9, (2012).

[31] G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner,
L. Weninger, and W. Schanil, ‘IntelliReq: Intelligent Techniques for
Software Requirements Engineering’, in 21st European Conference on
Artificial Intelligence / Prestigious Applications of Intelligent Systems
(PAIS 2014), p. to appear, Prague, Czech Republic, (2014).

[32] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[33] M. Richardson and P. Domingos, ‘Building Large Knowledge Bases by
Mass Collaboration’, in 2nd Intl. Conference on Knowledge Capture
(K-CAP03), pp. 129–137, (2003).

[34] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. Stuckey,
‘Search combinators’, Constraint Journal, 18(2), 269–305, (2013).

[35] M. Schubert, A. Felfernig, and M. Mandl, ‘FastXPlain: Conflict De-
tection for Constraint-Based Recommendation Problems’, in Trends in
Applied Intelligent Systems (proc. of 23rd International Conference on
Industrial Engineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2010), eds., Nicolás Garcı́a-Pedrajas, Francisco Her-
rera, Colin Fyfe, JoséManuel Benı́tez, and Moonis Ali, volume 6096
of Lecture Notes in Computer Science, 621–630, Springer, Cordoba,
Spain, (2010).

[36] K. Siorpaes and M. Hepp, ‘Games with a Purpose for the Semantic
Web’, IEEE Intelligent Systems, 23(3), 50–60, (2008).

[37] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[38] E. Teppan and A. Felfernig, ‘Asymmetric Dominance- and Com-
promise Effects in the Financial Services Domain’, in IEEE In-
ternational Conference on E-Commerce and Enterprise Computing
(CEC/EEE2009), pp. 57–64, Vienna. Austria, (2009).

[39] L. von Ahn, ‘Human Computation’, in Technical Report CMU-CS-05-
193, Carnegie Mellon University, School of Computer Science, (2005).

[40] L. von Ahn, ‘Games with a Purpose’, IEEE Computer, 39(6), 92–94,
(2006).

[41] C. Wagner, ‘Breaking the Knowledge Acquisition Bottleneck through
Conversational Knowledge Management’, Information Resources
Management Journal, 19(1), 70–83, (2006).

[42] B. Yang and N. D. Burns, ‘Implications of postponement for the sup-
ply chain’, International Journal of Production Research, 41(9), 2075–
2090, (2003).


