
Modeling Shared-Memory Multiprocessor
Systems with AADL

Stéphane Rubini1, Pierre Dissaux2, and Frank Singhoff1

1 Université de Bretagne Occidentale, UMR 6285, Lab-STICC, Brest, France
2 Ellidiss Technlogies, Brest, France

{stephane.rubini,frank.singhoff}@univ-brest.fr

pierre.dissaux@ellidiss.com

Abstract. Multiprocessor chips are now commonly supplied by IC man-
ufacturers. Real-time applications based on this kind of execution plat-
forms are difficult to develop for many reasons: complexity, design space,
unpredictability, ... The allocation of the multiple hardware resources to
the software entities could have a great impact on the final result.
Then, if the interest to represent the set of hardware computing resources
inside an architectural model is obvious, we argue that other hardware
elements like shared buses or memory hierarchies must be included in the
models if analyze of the timing behavior is expected to be performed.
This article gives guidelines to represent, with AADL, shared-memory
multiprocessing systems and their memory hierarchies while keeping a
high-level model of the hardware architecture.

Keywords: Multiprocessor, Architecture Description Language, Mem-
ory Hierarchy

Introduction

The growth potential for computing power supplied by general purpose mono-
processor (GPU) systems, is quite decreasing. New gains are related to complex
hardware structures and to very advanced fabrication technologies. Especially
in the embedded system context, the additional power consumption to paid for
increasing the instruction rate is high.

Today, the main answer to that problem is to multiply the number of process-
ing units in VLSI chips. Less aggressive internal core designs allow for increasing
the hardware efficiency and reducing the thermal problems (hot spots).

Moreover, as the execution units are multiple, it becomes possible to special-
ize some of them for dedicated usages. As an example, System-On-Chips like TI
OMAPs include multiples GPUs, a DSP and an image processing unit.

These Programmable Heterogeneous Multiprocessors (PHMs) are now exe-
cution platforms that the designers must consider when they develop new prod-
ucts. The focus should not be only on the individual processing units, but on
the whole hardware system. An early knowledge of some non-functional details
of the execution target might be a condition to lead a project to completion.

A meaningful performance analysis cannot be conducted without considering a
realistic model of the platform, and the data flow. The challenge is to eliminate
low-level complexity, while the functional or non-functional behaviors remain
close to the reality of the execution environment. The complexity of both the
hardware execution platform and the software application requires that designers
develop high-level models of their systems.

At the same time, system design space exploration requires to apply separation-
of-concerns principles and to distinguish the application model from the architec-
ture platform one. This approach requires that a deployment step maps software
entities onto the hardware resources, statically or dynamically like for instance
in the case of multi-processor scheduling decisions.

The aim of the paper is to propose a level of abstraction of the hardware
for complex shared-memory multi-processor platforms. The section 1 focuses on
the modeling of the processing resources based only on the functional point of
view. The usefulness of such models are tested for the allocation of software
entities on processors through deployment processes. The section 2 develops
these descriptions to include memory hierarchy models, as a major structuring
entities by considering the information flow into the system. In the next section,
we apply those modeling guidelines to a real board. Hence, examples of tools
that work or could work from the modeling level that we propose are given.
Finally, after the description of related works, we conclude on some uncovered
features of the hardware platform that could enrich our modeling guidelines.

1 Resource allocations

When a hardware platform provides multiple execution units, the design process
must include an allocation or a placement strategy. The system model defines
what software entities are assigned to hardware resources. Such assignments may
be done by the mean of a component-containment hierarchy[1]. However AADL
addresses the placement of software on a hardware resources through property
values. Such binding properties form a deployment or an allocation layer in the
model (Fig. 1).

Fig. 1. Layered model

The next two paragraphs illustrate the usage of binding properties for allo-
cating tasks and logical partitions to processors.

Processing unit modeling and allocation In multi-processing systems, the pro-
cessing units may be implemented as a separated chip (a processor), or grouped
into a single chip (a core). Finally, the data path of a core or a processor may be
shared to execute concurrently several execution threads (physical threads)[2].

A way to model the system is to enumerate, at the same level, all the pro-
cessing units without consideration of their actual implementation. The model of
the Fig. 2 represents the available processing units of a PHM as arrays of AADL
processors which group together those compatible with the same instruction set.

processor i s a 1 end i s a 1 ;
processor implementation i s a 1 . proc end i s a 1 . proc ;
processor implementation i s a 1 . core end i s a 1 . core ;
processor implementation i s a 1 . phys thread end i s a 1 . phys thread ;
processor i s a 2 end i s a 2 ;
system mpHardSystem end mpHardSystem ;
system implementation mpHardSystem . impl
subcomponents

PU isa1 : processor i s a 1 [N] ;
PU isa2 : processor i s a 2 [M] ;

end mpHardSystem . impl ;

Fig. 2. Hardware layer (layer C of Fig. 1): set of processing units. N and M parameters
are constant fixed in the model. isa2 processing unit implementations are not exposed.

The ability of this model to express the allocation of the hardware execution
resources to the software tasks is shown Fig. 3.

Al lowed Processor Bind ing => (r e f e r e n c e (exec . PU isa1))
applies to app . th r s ;

Al lowed Processor Bind ing => (r e f e r e n c e (exec . PU isa2))
applies to app . dedicatedThr ;

Actua l Proce s so r B ind ing => (r e f e r e n c e (exec . PU isa1 [1]) ,
r e f e r e n c e (exec . PU isa1 [4]))

applies to app . th r s [2] ;

Fig. 3. Software placement (deployment layer B). exec is a component of type
mpHardSystem. app, thrs and dedicatedThr are respectively a process, an array of
threads and a singular thread. thrs[2] may be scheduled on processor units 1 and 4.

As the processing units of an array are homogeneous, all tasks, which are
abstraction of executable codes for an ISA, can be allocated on all of them.
The Allowed Processor Binding property expresses this in the model. Then,

thee Actual Processor Binding properties allocate threads onto one or a set
of processors.

Process and partition allocations The same basic principle of allocation schemes
can be applied to processes to define the visibility space of data in the context
of partitioned systems. On the model of the Fig. 4, a process part may be used
by two processing units following the operational mode: in normal mode, only
PU isa1[0] has the right to access it, whereas PU isa1[1] is activated in an
escape state.

system implementation main . redundant
subcomponents

part : process p a r t i t i o n . impl ;
exec : system mpHardSystem . impl ;

modes
normal : i n i t i a l mode ;
redundant : mode ;

properties
Al lowed Processor Bind ing => (

r e f e r e n c e (exec . procUnits [0]) , r e f e r e n c e (exec . PU isa [1])
) applies to part ;

Actua l Proce s so r B ind ing => (r e f e r e n c e (exec . PU isa1 [0]))
in modes (normal) applies to part ;

Actua l Proce s so r B ind ing => (r e f e r e n c e (exec . PU isa1 [1]))
in modes (redundant) applies to part ;

end main . redundant ;

Fig. 4. Partition allocations (adapted from the OSATE github examples/core-
examples/multi-core/simple.aadl)
.

In [3], similar allocation scheme is used to model that an AADL virtual pro-
cessor can be hosted by several processing units. An implementation requirement
is that the context can migrate from one processing unit to the other one.

Discussion These examples, i.e. thread allocations in the scheduling field and
partition allocations in the Time-Space Partitioned field, are nearly similar, and
the modeling approach is homogeneous. The deployment layer represents spatial
allocations of the software entities. Temporal intervals where the resources are
actually used are not directly specified; property values assigned to hardware
resources may reference what are the rules to determine the dynamic sharing of
the resource.

At the hardware layer level, the architecture models enumerate the processing
units as a ”flat” structure; they abstract multi-processing architectures as a set
of available implementation-agnostic computing resources.

But a major problem with tightly coupled systems like shared-memory multi-
processors comes from the unexpressed sharing of resources at the level of mem-
ory hierarchy. Private cache memories locally separate the information flows near
the processing units, but some parts of the memory hierarchy remain shared be-
tween processors.

The programming model of shared memory multiprocessor platforms allows
communications of data or synchronizations between tasks through memory loca-
tions accesses. However, such a functional explicit sharing is generally secondary
with respect to the sharing of the main memory banks and buses which provides
all the memory words that the program execution requires.

For instance, [4] reports the effect of this resource sharing on a quad core
system (Intel Xeon) for programs of the SPEC2006 benchmark: when a core
executes a synthetic workload, another program running on the other core may
experience an impressive slowdown (up to a slowdown of 200%).

So, an AADL model of shared memory multiprocessor systems must rep-
resent the resources shared by the processing units, especially if the software
specification does not express this sharing as own.

2 Modeling of the memory hierarchy

The memory hierarchies can be complex subsystems, but they mostly expose, to
the software, the interface of a simple memory3. Hence, designers must take at-
tention to memory hierarchy as its non-functional characteristics are significant.

The guidelines we propose are based on the modeling of the memory hierarchy
as a tree. The terminal nodes represent the processing units and the nodes
abstract the different sub-parts of the memory system. A node of the memory
hierarchy is characterized by the visibility of the memory words it contains; a
node is shared by the same set of processing entities. Data exchanges within the
memory hierarchy follow the paths of the tree.

The following rules may be applied to build the model:

– The memory entities used by a same set of processing units are declared in
a system component, as sub-components. If the memory entity is unique, a
single memory component may be substituted to the system component.

– A system component groups, as sub-components, a memory system, and the
processors and upper level memory systems which share the access to this
memory system.

– For the sake of simplicity, levels of memory hierarchy connected to only one
processor, i.e. processor’s private caches, may be modeled as sub-components
of this processor component.

– The memory system associated to the root node contains at least a memory
component representing the main memory.

3 We consider that the program or the operating system are aware of memory co-
herency problems.

When required for analyzing purposes, processors and composite memory
components may detail their internal structure. AADL bus connection features
can be used for that purpose. Information about the behavior of the each memory
entities are given by AADL properties or AADL memory classifiers, for instance
for distinguishing the main memory and the cache levels.

The Fig. 5 shows the modeling of the tree with a hierarchy of AADL compo-
nents. The memories associated to the My sub-system are used or shared by Pj

and Pk processors. Mx is the root memory system, including all the data that
could be addressed in the physical address space. The Mx memory is shared by
the Pi processor and My memory sub-system.

Fig. 5. ”Sharing” tree and its AADL representation.

3 Example

As an example, we apply the guidelines that we propose on the processor of a
VPX board from the company InterfaceConcept. The board VPX3a includes an
Intel core i7, a FPGA Xilinx Kintex7 and an IO Bridge. The core i7 2566LE
processor contains two cores, with an optional activation of multi-threading ca-
pabilities. Three levels of caches constitute the memory hierarchy; level 1 is
composed of two separated caches for instructions and data, level 2 and 3 are
unified ones. Only the level 3 of cache is shared between cores.

The Fig. 6 shows an high level model of the hardware architecture for the
VPX3a board, with emphasis on the processing units and the memory hierarchy.
We assume that the hyper-threading is enabled on the core number two.

The Fig. 7 and 8 show the structure of the memory hierarchy nodes. AADL
bus connections have been used to model the internal hierarchy of the implemen-
tation L1I L1D L2 of mem system. A similar modeling method can be applied to
the other memory systems.

Notice that the cache sharing may change during the design process, even on
a given execution platform. The activation of the multi-threading on a core or

system implementation exec . IC INT VPX3a
subcomponents

core1 : processor I n t e l 6 4 . c o r e s i n g l e t h r e a d ;
core2 : system I n t e l 6 4 . c o r e d u a l t h r e a d ;
mem : memory mem system . L3 main ;

end exec . IC INT VPx3a ;
system implementation I n t e l 6 4 . c o r e d u a l t h r e a d ;
subcomponents

pth1 : processor I n t e l 6 4 . p h y s i c a l t h r e a d ;
pth2 : processor I n t e l 6 4 . p h y s i c a l t h r e a d ;
mem : memory mem system . L1I L1D L2 ;

end I n t e l 6 4 . c o r e d u a l t h r e a d ;

Fig. 6. Model of the processor core i7 2566LE. The root subsystem mem is used directly
by the processor core1 and communicates with the subsystem core2. core2 contains
two physical threads which share the caches L1 and L2.

memory implementation mem system . L3 main
subcomponents

L3cache : memory cache system . L3 ;
main : memory shared memory . main ;

end mem system . l3 main ;
processor implementation I n t e l 6 4 . c o r e s i n g l e t h r e a d
subcomponents

L1Icache : memory cache system . L1I ;
L1Dcache : memory cache system . L1D ;
L2cache : memory cache system . L2 ;

end I n t e l 6 4 . c o r e s i n g l e t h r e a d ;

Fig. 7. Structured memory subsystems and processor’s private memory resources. The
L2 cache is private to a core when hyper-threading is not activated. The L3 cache and
the main memory are shared by all the cores, and then are grouped into a unique node.

Fig. 8. Internal structure of the L1I L1D L2 composite memory system.

the operating system enabling of a level of cache are examples of modifications
that a designer could do to explore their impact on the system performance.
If such situations may exist, the component hierarchy can contain ”potentially
shared” nodes in the tree, currently used by only one processing unit.

4 Exploitation of the models

As shared-memory multiprocessor platforms become more complex and widely
used, designers of real-time systems need to have access to analysis tools in order
to assess their choices or dimension their systems. Such tools must work from
an architectural model of the execution platform; we think that the modeling
guidelines presented in this article set up a right level of abstraction for this
purpose. These AADL models may be used directly as a tool entry or as a
source for a model transform whether the tool uses a DSL language.

In the sequel, we give examples of tools which are or could able to handle
models compliant with the guidelines proposed in this article.

Scheduling analysis AADL Inspector from Ellidiss Technologies is a lightweight
framework allowing to apply different analysis on AADL models. One of the
analysis tools available with AADL Inspector is Cheddar[5], a scheduling anal-
ysis tool which deals with global multiprocessor scheduling [6]. AADL inspec-
tor transforms the significant AADL entities (components and properties) into
Cheddar-ADL components, in order to control the scheduling analysis [7]. Today,
the model transform does not deal with caches, but Cheddar includes some al-
gorithms to evaluate the cache related preemption cost when instruction caches
are defined in an architecture model [8].

Resource allocations The placement of software entities on hardware resources
may be complex if the number of tasks or virtual processors is high. The use of
optimization methods are sometimes necessary to perform these allocations. For
instance, Cheddar implements basic partitioning algorithms such as RM-Best-
Fit [9] to automatically allocate tasks to processors.

From an AADL model, Allowed Processor Binding can be used to supply
the set of candidate resources and allocation targets (e.g. processors). The results
of partitioning algorithms can then be expressed on the analyzed AADL model
by updating its Actual Processor Binding properties. AADL Inspector will
integrate such a function in its future releases.

Timing analysis In [10], the timing analysis begins by considering the processor
individually and isolated from the other ones. The tool conducts a first compu-
tation of WCET, completed by a cache analysis. A multilevel hierarchy of caches
is considered at this stage; the hierarchy ends with the first level of shared cache.

Then, the analysis assumes that all the possible conflicts happen with the
other processors for the shared cache usage. From this pessimistic analysis, the
worst case response times of all the tasks are computed, and the interferences

previously considered are kept if the task’s running times intersect. This process
is recurrently performed upto a fix point is reached.

These examples of tools and analysis show the interest of modeling multi-
processing platform and their memory hierarchy, as many analysis can be con-
ducted from that kind of models.

5 Related works

We describe in this section other modeling approaches used to guide performance
analysis on shared-memory multiprocessor systems.

In [1], Paul proposes a software-on-hardware performance modeling environ-
ment called MESH that founds the modeling and the simulation of single-chip
multiprocessors on a layered approach. A software and a hardware layer respec-
tively include the application threads and the hardware resources. An inter-
mediate layer represents the dynamic mapping of logical threads onto physical
resources through the scheduler decisions and associates thread’s logical events
to physical times. MESH models can include shared resources other than exe-
cution units; the simulation kernel applies time penalties of application threads
when access contentions are detected.

In the context of shared-memory multiprocessors, [11] abstracts the essential
features of the memory hierarchy in a formal model. A 3-tuple 〈pl, αl, σl〉 char-
acterizes a level l of memory caches, where pl is the number of cores sharing the
level l caches, αl the number of level l caches, and σl the size of one level l cache.
From the rules of a peddle game, the authors establish lower bounds on mem-
ory traffic between different levels of caches for computations represented as a
directed acyclic graph. Next, they base optimizations on this metric to improve
the implementation of some parallel algorithms.

The modeling of multicore execution platforms with Simulink has been pro-
posed by [12] to optimize the partitioning of tasks in soft real-time systems. The
Simulink model represents the cores, the core communication costs, and the task
set. But, the approach does not take into account the memory hierarchy in the
performance analysis; the behavior issued from the sharing of the caches cannot
be inferred from this model.

Conclusion and future works

This article presents an approach for modeling shared-memory multiprocessor
platforms. Basic entities that we have emphasized in this high-level model, are
the processing units, whereas the way they are implemented, and the different
levels of the memory hierarchy. We expect the architecture of the memory sub-
system is a key feature to perform timing analysis on multi-processing platforms.

The memory hierarchy is not the only challenge in the timing analysis on
multiprocessor platforms. Another topic is the multiplication of interconnection
buses, with various characteristics in term of throughput and latency. Multipro-
cessor SoCs use the capabilities of integrated circuit to implement a lot of buses

to connect the different functions available on the chip. One goal devoted to the
architectural models will be to document this structure, and guide tools and
designers to identify potential bottlenecks.

Another problem is to deal with PHMs. SoCs mix different types of proces-
sors, with different speeds or capabilities. How AADL models can represent all
these types of information must be investigated.

Acknowledgments This work is done in the context of the SMART project.
SMART and Cheddar are supported by the Conseil Régional de Bretagne, Bpifrance,
Conseil Général du Finistère and BMO. Cheddar is also supported by Ellidiss
Technologies, EGIDE/PESSOA n. 27380SA and Thales TCS.

References

1. J. M. Paul, D. E. Thomas, and A. S. Cassidy, “High-level modeling and simula-
tion of single-chip programmable heterogeneous multiprocessors,” ACM Trans. on
Design Automation of Electronic Systems, vol. 10, no. 3, pp. 431–461, 2005.

2. S. Rubini, C. Fotsing, P. Dissaux, F. Singhoff, and H. N. Tran, “Scheduling analysis
from architectural models of embedded multi-processor systems,” ACM SIGBED
Review, vol. 11, no. 1, 2014.

3. J. Delange and P. Feiler, “Design and analysis of multi-core architectures for cyber-
physical systems,” in Proceedings of the 7th European Congress Embedded Real
Time Software and Systems (ERTSS), Toulouse, France, Feb. 2014.

4. V. Babka, “Cache sharing sensitivity of SPEC CPU2006,” Distributed Systems
Research Group, Department of Software Engineering, Tech. Rep., 2009.

5. F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a Flexible Real-Time
Scheduling Framework,” ACM SIGAda Ada Letters, vol. 24, no. 4, Dec. 2004.

6. R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011.

7. P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff, and H. N.
Tran, “The SMART project: Multi-agent scheduling simulation of real-time ar-
chitectures,” in Proceedings of the 7th European Congress Embedded Real Time
Software and System (ERTSS), Toulouse, France, Feb. 2014.

8. H. N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza, “Instruction cache in
hard real-time systems: modeling and integration in scheduling analysis tools with
AADL,” in Proceedings of the 12th IEEE/IFIP International Conference on Em-
bedded and Ubiquitous Computing (EUC 14), Milan, Italy, August 2014.

9. Y. Oh and S. H. Son, “Tight performance bounds of heuristics for a real-time
scheduling problem,” Technical Report CS93-24, University of Virginia., 1993.

10. S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared cache and
bus in multi-cores for timing analysis,” in Proceedings of the 13th ACM Interna-
tional Workshop on Software & Compilers for Embedded Systems, 2010, pp. 6–15.

11. J. E. Savage and M. Zubair, “A unified model for multicore architectures,” in
Proceedings of the 1st ACM International Forum on Next-generation multicore/-
manycore technologies, 2008, pp. 9–20.

12. J. Feljan, J. Carlson, and T. Seceleanu, “Towards a model-based approach for
allocating tasks to multicore processors,” in Proceedings of the 38th EUROMICRO
Conference on the Software Engineering and Advanced Applications (SEAA), Sep.
2012, pp. 117–124.

