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Abstract. Eye fixations are periods of relative stability derived from continuous 
eye position (or eye movement) data. In order to define eye fixations, research-
ers often assume that the eye(s) will not move beyond a particular spatiotem-
poral window (i.e., a spatial area towards which the eye is directed within a par-
ticular period of time). However, exact specifications of this window vary from 
field to field and even from one experiment to another. Efforts to standardize 
these specifications have assumed (either implicitly or explicitly) that there is 
one appropriate window size for describing eye behavior. The present paper ex-
plores an alternative approach. Specifically, we provide a method for determin-
ing the most appropriate spatiotemporal window that can vary from participant 
to participant (or task to task). This approach may also be extended to provide a 
metric for detection algorithm comparison. 
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1 Introduction 

In order to be meaningful, eye tracking data needs to be classified into periods of 
movement (e.g., saccades) and periods of stability (e.g., fixations). During periods of 
movement, visual stimuli are usually considered inaccessible to the human observer. 
This phenomenon is called saccadic suppression [1]. Most of visual perception is 
based on information that is accessible during periods of stability [2]. Fixation detec-
tion algorithms attempt to determine what information is perceptually available by 
inferring which eye tracking data points represent periods of stability [3]. 

All of these algorithms essentially rely on the definition of what we call a “spatio-
temporal window” (i.e., a spatial area towards which the eye is directed within a par-
ticular period of time). Some detection algorithms (e.g., dispersion-based algorithms; 
[4]) emphasize the two spatial dimensions of this window by evaluating possible fixa-
tions in terms of the dispersion of data points around possible foci. However, these 
algorithms also typically incorporate lower and upper bounds for the “reasonable” 
duration of a fixation. Other detection algorithms (e.g., velocity-based algorithms; 
[4]) emphasize the temporal dimension of this window by classifying eye tracking 
data in terms of velocity and/or acceleration. These algorithms also typically include 
lower and upper bounds for the size of a fixation along spatial dimensions. Thus, the 
three-dimensional spatiotemporal window is a critical consideration for the imple-
mentation of both dispersion-based and velocity-based algorithms. 
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One assumption underlying most efforts to standardize specifications of the spatio-
temporal window is that one set of parameters can be used to describe the eye behav-
ior of all healthy adults (e.g., [5]), even though there is a good deal of variability in 
this behavior both within an individual and across individuals [6] [7] [8]. The varia-
bility not described by this set of parameters is typically considered “noise” (e.g., as 
resulting from the imprecision of the eye tracking equipment). Even algorithms that 
can be adapted to different noise profiles (e.g., [4]) assume the same spatiotemporal 
window for defining fixations. In contrast, the current approach allows for variability 
in the size of the spatiotemporal window across individuals and tasks. 

The specification of spatiotemporal windows is especially critical when it is diffi-
cult to define the direction of a stimulus from the observer objectively (i.e., without 
relying on designations by other observers). This scenario is common for investiga-
tions of naturalistic scene perception and navigation because of the lack of clear 
boundaries between objects and/or the dynamic nature of the stimuli [9]. Except for 
sophisticated computational vision algorithms, there are no established methods for 
determining the objective “truth” to which a set of detected fixations (e.g., resulting 
from different detection algorithms) can be compared in these scenarios. The current 
approach extends a common technique for comparing mathematical models without 
needing to presuppose any particular objective truth. 

2 Current approach 

There are two primary applications of the current approach: the specification of the 
spatiotemporal window for different observers/tasks and the comparison of different 
detection algorithms. 

2.1 Specification of the spatiotemporal window 

Our general approach for specifying the most appropriate spatiotemporal window 
is to calculate error in the data points relative to the nearest detected fixation. Error, in 
this case, represents variability in the gaze data that is within the defined spatiotem-
poral window but cannot be explained by the set of fixations detected by a particular 
algorithm. 

At most, six parameters are needed to describe spatiotemporal windows that reflect 
plausible (and interpretable) fixations. Researchers should start by defining the sizes 
of spatial and temporal intervals. The spatial and temporal interval parameters deter-
mine which data points are used for calculating the error term of each detected fixa-
tion. Data points are only included in the following calculations if they fall within 
both spatial and temporal intervals for any detected fixation. The distance function is 
calculated using the following equation: 

𝑑(𝑝1,𝑝2) = [𝑤1(𝑥1 − 𝑥2)𝑚 + 𝑤2(𝑦1 − 𝑦2)𝑚 + (1 −𝑤1 − 𝑤2)(𝑡1 − 𝑡2)𝑚]
1
𝑚 (1a) 
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Here, x1 and x2 represent the locations of two points along the horizontal axis, y1 and 
y2 represent the locations of two points along the vertical axis, t1 and t2 represent the 
locations of two points along the temporal dimension, the two w’s represent the rela-
tive weighing of the two spatial dimensions with respect to the temporal dimension, m 
represents the type of Minkowski distance metric, and d(p1,p2) represents the distance 
between two points. For most applications, m should be constrained to be either 2 
(resulting in a Euclidean distance metric) or 1 (resulting in a city-block distance met-
ric). A city-block distance metric may be appropriate if researchers consider errors 
along x and y dimensions as independent of each other. Other values for m are possi-
ble but difficult to interpret. The parameters w1 and w2 also need to be constrained so 
that each weight is greater than 0 and that their sum is less than 1. Larger values for 
the w’s indicate larger relative contributions for deviations along the corresponding 
spatial dimensions to the fit of the resulting model. Note that this distance function 
may need to accommodate differences in visual angle if, for example, two participants 
are fixed at different distances from the stimulus. 

Equation 1a also assumes that the distribution of data points that represent each fix-
ation is uniform rather than Gaussian (see, e.g., [10]). The utility of the uniformly 
distributed distance function can be compared empirically to the utility of the follow-
ing normally distributed (and Euclidean) distance function: 
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   (1b) 

 
Here, the only additional parameter is s, which represents the “steepness” of the nor-
mally distributed distance function. Note that s does not necessarily correspond to the 
standard deviation of the distribution of resulting distances. The w’s should be con-
strained in the same manner as for the uniformly distributed distance function. 

In order to determine which of several possible specifications is most appropriate 
for a particular detection algorithm, we then need to calculate the error term for each 
fixation: 
 
𝑒(𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛) = ∑𝑑(𝑝𝑖,�̅�)

𝑛𝑝
       (2) 

 
Here, p represents a data point with index i, p͞ represents the centroid for all of the 
data points within the spatiotemporal window, d represents the distance metric from 
Equation 1a or 1b, np represents the number of data points within the spatiotemporal 
window for a detected fixation, and e(fixation) represents the error term for the de-
tected fixation (i.e., the mean of the distances from the centroid to each data point 
within the spatiotemporal window). 
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If researchers are comparing sets of detected fixations with spatiotemporal windows 
of the same size and shape, then sums of e(fixation) across sets of detected fixations 
are sufficient for comparing different detection algorithms. Across any range of spa-
tial and temporal intervals, the smallest sum of e(fixation) will reveal the most appro-
priate spatiotemporal window for any given detection algorithm. 

However, in order to compare spatiotemporal windows with different shapes or siz-
es, the error term needs to be converted into a measure that accounts for the number 
of free parameters or the number of detected fixations, respectively. Towards this end, 
the summed and squared error terms for all of the detected fixations of a given spatio-
temporal window can be converted to Bayes’ information criterion (BIC): 
 

𝐵𝐼𝐶 = �𝑛𝑓 × ln �∑𝑒(𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛)2

𝑛𝑓−1
�� + �𝑘 × ln�𝑛𝑓��    (3) 

 
Here, nf represents the number of detected fixations, k represents the number of free 
parameters, ln represents the natural logarithm function, and e(fixation) represents the 
error term from Equation 3. We consider each interval as only one parameter because 
the location of the fixation along a particular dimension and both boundaries of each 
interval are completely constrained by the determination of the size of the interval and 
the data. 

2.2 Detection algorithm comparison 

The BIC can also be used in order to compare different fixation detection algo-
rithms using Equations 1-3. The primary challenge for comparing different detection 
algorithms thus becomes determining which parameters are free to vary (see [11]). 
The BIC should be used to penalize the fit of any parameter that could have changed 
in order to improve the fit of the model to the data. Notably, this method does not 
require any assumptions regarding the “true” foci in the stimulus. 

3 Future validation studies 

Future investigations can attempt to validate or invalidate our approach in at least 
two ways. First, following [5], researchers can direct participants to focus on individ-
ual stimuli at known coordinates. This procedure is often used by eye tracking soft-
ware for calibrating eye movement data before an experiment [12]. For validation 
purposes, fixations may be considered the periods of time during which a participant 
was asked to focus on a particular stimulus. The veracity with which the BIC metric 
determines the most appropriate spatiotemporal window (or best-performing detection 
algorithm) should then be reflected by similar patterns in other metrics (e.g., number 
of detected fixations; [5]). 

Second, the mean spatiotemporal window specified across individual participants 
may approximately correspond to established recommendations already in the litera-
ture (e.g., [5] [13]). This may occur if the primary advantage of the current approach 
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is to account for additional variability, but this procedure could also be misleading if 
the current approach actually produces more accurate fixation detection than previous 
approaches. 

4 Conclusions 

The present paper provided a novel approach to the specification of spatiotemporal 
windows for fixation detection algorithms. This approach may also be applied to the 
comparison of different detection algorithms. Two future studies for potentially falsi-
fying this approach are also briefly described. 
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