
Positioning traffic in NoSQL database systems by
the use of particle swarm algorithm

Marcin Woźniak
Institute of Mathematics

Silesian University of Technology
Kaszubska 23, 44-100 Gliwice, Poland

Email: Marcin.Wozniak@polsl.pl

Abstract—In this paper, application of particle swarm al-
gorithm in positioning and optimization of traffic in NoSQL
database is discussed. Sample system is modeled with independent
2-order hyper exponential input stream of packets and exponen-
tial service time distribution. Optimization is solved using particle
swarm algorithm for various scenarios of operation.

I. INTRODUCTION

In modern computer science, artificial intelligence (AI)
as well as evolutionary computing (EC) is one of most
important fields, widely applied in various tasks. There are
many applications of AI in sciences and industry. The power
of such approaches lies within the dedicated mechanisms is
used to simulate sophisticated phenomenon. On the other
hand some techniques of EC were proven very efficient for
searching optimal solutions, easy to implement and precise.
Let us give same examples. AI applied to create learning
sets are discussed in [1], [2]. Some aspects of positioning
computing network models by the use of EC are presented
in [3], [4] and [5]. Moreover, AI is used for the optimization
of industry processes [6], [7], [8]. AI is also applied for
systems which require dedicated solutions [9], [10], [11], as
well as for agents oriented programming and object oriented
refactoring techniques [12], [13], [14], [15]. In NoSQL systems
we use dedicated solutions to increase performance. These
applications are especially designed for given purposes, please
see [16]. We must build applications to serve clients requests,
search in database, maintain service and more. All these
aspects demand special mechanisms like dedicated sorting
and indexing algorithms and queueing systems to administrate
incoming requests. Dedicated sorting algorithms help to or-
ganize large data sets as fast as possible. Some examples of
dedicated sorting algorithms are discussed in [17], [18], [19]
and [20]. While in [18] and [20] is presented dedicated version
of quick sort, where implemented modifications enabled faster
sorting. In [17] is discussed dedicated merge sort, which even
more efficient version is presented in [21]. Moreover extended
research on these situations are discussed in [22] and [23],
where research on efficient methods of indexing and sorting
large NoSQL systems are presented. Here will be discussed
another important aspect of optimal service in large NoSQL
systems - traffic simulation and positioning.

Traffic in the network and therefore efficient service can
increase Quality of Service (QoS) [24]. We can simulate
the network traffic, where NoSQL database server is serving
various clients. Clients send requests and server collects them
to proceed actions. After processing knowledge in database

(using methods like [21] or [20]) server responses to the
requests, but this goes according to the income queue. Earlier
requests must be served first and others according to arrival
time. The problem is to position this system for most efficient
operation (we shall define optimal service, vacation and in-
come parameters). In this paper NoSQL database system will
be positioned for most efficient service and lowest possible cost
of work by the use of particle swarm optimization algorithm
(PSO).

II. APPLIED MASS SERVICE MODEL

For NoSQL database systems various methods of modeling
and simulation can be applied. Mainly we try to analyze
the model, which describes operation. Operation model is
defined for applied queueing system (QS). Service description
of NoSQL database, where dedicated QS is applied to optimize
operation cost defines Tservice, Tincome and Tvacation, which
describe average time of service, average income time and
average vacation time (backup, conservation and etc.), respec-
tively. All these are independent random variables, where the
symbols in time t are:

• τ1 — the first busy period starting at t = 0;
• δ1 — the first idle time (first vacation time and first

standby time);
• h(τ1) — the number of packets served during τ1;
• X(t) — the number of packets in the system at t.

In this paper is discussed simulation and positioning of NoSQL
database traffic modeled with dedicated QS, where we define
only one request arrival and response departure.

A. Analytical results

Modeling traffic in NoSQL systems is non-trivial problem.
Classical cost structure is considered in [25]. While in [26],
[27], [28] are presented most important aspects of positioning
and cost optimization. Various queueing models for applied
type of the server are investigated in [29], [30], [31], [32],
[33], [34], [35]. Please see also [36] and [37] for a review of
important results on modeling and positioning.

In this paper are applied results of the research on similar
objects, see [38] and [39] for joint transform of first busy
period, first idle time and number of packets completely served
during first busy period in GI/G/1-type systems. More on
generally distributed service times and infinite buffers can be
found in [40] and [41]. All these research results are helpful to

model and position QS of different type as discussed in [42]
[43], [4] and [44]. Where in [42] or [43] was given an idea
to apply evolutionary computation (EC) in QS simulation and
positioning. An extension of the research for sophisticated QS
were published in [4]. And finally main analytical model with
detailed description and assessments for traffic in the system
was given in [44]. Let us see the model of QS for NoSQL
database traffic.

To model NoSQL server operation was used a finite-
buffer H2/M/1/N -type QS, similar to server traffic modeling
functions discussed in [45] and [46]. Let it be here presented
only a brief description, just to help in understanding NoSQL
positioning and simulation problem (for details please see
[44]). Incoming requests describes 2-order distribution func-
tion:

F (t) = p1
(
1− e−λ1t

)
+ p2

(
1− e−λ2t

)
, t > 0, (1)

where λi > 0 for i = 1, 2 and p1, p2 ≥ 0. Inter-arrival times
are mixed of two exponential distributions with parameters
λ1 and λ2, which are being “chosen” with probabilities p1
and p2. In the system, there are (N − 1) places in queue
and one for packet in the service. System starts working at
t = 0 with at least one packet present. After busy period the
server begins vacation which is modeled with 2-order hyper
exponential distribution function:

V (t) = q1
(
1− e−α1t

)
+ q2

(
1− e−α2t

)
, t > 0. (2)

Interpretation of parameters αi, i = 1, 2 and q1, q2 is similar
to that for λi, i = 1, 2 and p1 and p2. If at the end of vacation
there is no packet present in the system, the server is on
standby and waits for first arrival to start service process. If
there is at least one packet waiting for service in the buffer
at the end of vacation, the service process starts immediately
and new busy period begins.

Functions F (·) and V (·) help to simulate operation of
the examined NoSQL system, where inter-arrival times and
vacation are defined in (1) and (2). In the research PSO is used
to find optimal set of parameters λi, pi, µ and αi. To describe
minimal amount of resources to perform all operations rn(c1)
is defined:

rn(c1) =
Qn(c1)

En(c1)
=
r(τ1)Enτ1 + r(δ1)Enδ1

Enτ1 +Enδ1
, (3)

where the symbols are: r(τ1)-fixed unit operation costs during
busy period τ1, r(δ1)-fixed unit operation costs during idle
time δ1, Enτ1-means of busy period τ1 and Enδ1-idle time δ1
on condition that system starts with n packets present. In (3)
are used means of busy period and vacation (idle) time. The
explicit formula with detailed information and description for
conditional joint characteristic functions of τ1, δ1 and h(τ1) is
presented in [4] and [44]. Here let us briefly discuss modeling
of applied QS. General equation to calculate this values is:

Bn(s, %, z) = E{e−sτ1−%δ1zh(τ1) |X(0) = n}, 2 ≤ n ≤ N,
(4)

where s ≥ 0, % ≥ 0 and |z| ≤ 1, n ≥ 1. Details on this
equation are discussed in [17], [4] and [44], where using it we
can define, components of (3) total cos of work:

Ene
−sτ1 = E{e−sτ1 |X(0) = n} = Bn(s, 0, 1), (5)

then for model of traffic finally we have:

Enτ1 = − ∂

∂s
Bn(s, 0, 1)

∣∣∣
s=0

, (6)

similarly we have:

Enδ1 = − ∂

∂%
Bn(0, %, 1)

∣∣∣
%=0

. (7)

III. APPLIED PARTICLE SWARM OPTIMIZATION
ALGORITHM

Particle swarm optimization algorithm (PSO) has been
shown in [47]. In the initial form PSO was modeling behaviors
that can be observed in young birds or fish, which in the
cluster behave in a very specific way. Thanks to the ease of
implementation and adaptation to different tasks PSO algo-
rithm has become one of the most commonly used algorithms
in it’s original or modified versions. In [48] is presented
adaptivity of this methods to different initial conditions of
positioned object. While in [49], [50] and [51] many possible
aspects of application of various EC methods in engineering
optimization are discussed. In [52] PSO application in relay
times is presented. Finally discussion on theoretical aspects of
convergence and stability can be found in [53], [54] and [55].
Let us discuss behavior of typical swarm.

In the swarm similar operations are performed by many
individuals of the same species. In action, individuals com-
municate with each other in a manner characteristic for the
species. Communication helps to exchange information and as
a result the whole swarm is moving in a certain direction or
behaves like one big organism. PSO algorithm uses the insights
that emerge from the observation of swarms of fish or insects
that are looking for food or a safe place. This process can
be described in mathematical model. If we accept the goal of
optimizing criterion function of the object, we can talk about
optimizing algorithm.

PSO algorithm searches the space of test solutions by
matching trajectories of individuals (particles) in a quasi-
stochastic way. A particular individual is a vector and it’s
movement is the result of stochastic and deterministic com-
ponents of movement model. Stochastic component corre-
sponds to random walk. In contrast, deterministic component
of the movement model is distance between particles, or
other feature, which is modeled in mathematical equation. In
subsequent periods individual particles move in looking for
the global optimum, where because of stochastic component
this movement also has a random character. This combination
gives ability to efficiently search the test area of the simulated
or positioned object. If during motion the particle is on a
new position, which is characterized by better properties of
the optimum, for this position it updates the knowledge. In
further exploration particle accepts found value as the optimum
and starts searching in relation to this value. In each iteration
of the algorithm, the particles can communicate with each
other and share information about the sought optimum. If we
consider that all particles in the swarm want to reach the sought
optimum criterion function for the positioned object, in the end
we can take as the optimum best of all-values. In this way,
entire swarm is communicating between it’s individuals while
looking for the global optimum of the criterion function.

A. PSO model

Actions taken while searching for the optimum criterion
function of the object are written as mathematical equations.
The model of particle swarm movement keeps the communica-
tion between particles based on a deterministic factor, but also
introduces randomness of the movements. To build the model
of the swarm behavior in the solution space of the object are
used the following assumptions:

• Points in the search space are seen as potential solu-
tions to moving particle swarm.

• Each particle is seeking for optimum, which is deter-
mined by it’s position in the space.

• At the end of PSO iteration, the particles interact with
other particles and change information.

• As a result of communication global optimum is
selected, relative to which all particles are continuing
their search.

• Number of moving particles is determined.

In the model, we mean a particle moving in a virtual way. We
only model the choice of the optimum to which particle has
moved. Selected points in the study area are compared, and
among them is chosen the global optimum, see also [56] for
details on convergence and stability of PSO.

PSO algorithm for each particle takes the form of xti whose
i components correspond to dimensions of the test space. Each
particle is moving at the speed vti appropriate for the swarm
in a particular PSO iteration. These values vary in subsequent
iterations of the algorithm. Speed of movement of the particles
is described by the formula:

vt+1
i = vti + α · ε1 · [gt∗ − f(xti)] + β · ε2 · [xt∗ − xti], (8)

where the symbols are: vti–speed of i particle in t iteration,
α–optimum value memory factor, β–optimum position mem-
ory factor, ε1, ε2 ∈ [0, 1]–random values, gt∗–optimum for t
iteration, xt∗–optimum position for t iteration, f(xti)– fitness
function value for i particle in t iteration, xti–position of i
particle in t iteration.

Equation repositioning particle swarm movement in each
iteration of the PSO algorithm is defined using formula:

xt+1
i = xti + (−1)K · vti , (9)

where the symbols are: xti–position of i particle in t iteration,
vti–speed of i particle in t iteration, K–random factor to change
motion direction. The initial coordinates of the particle swarm
position and their speed we take at random. However, it is
possible also to apply some boundary criteria that will allow
additional control of the swarm.

These two equations allow to change position of each
particle and therefore search entire space for the optimum of
the modeled object. Let us now see possible implementation
of PSO, which is presented in Algorithm 1.

Algorithm 1 Basic PSO applied to position NoSQL database
system traffic

1: Define all coefficients: α–optimum value memory factor,
β–optimum position memory factor, generation– number
of iterations in the algorithm, particles–number of parti-
cles in the swarm,

2: Dedicated criterion function: lowest cost of NoSQL system
operation (3),

3: Create at random initial population,
4: t:=0,
5: while t ≤ generations do
6: Move particles according to (9) and (8),
7: Sort particles according to the value of criterion func-

tion,
8: Evaluate population and take best ratio of them to next

generation,
9: Rest of particles take at random,

10: Next generation: t++,
11: end while
12: Best particles from the last generation are potential

optimum.

IV. RESEARCH RESULTS

Research results help to predict possible response time and
optimize service cost rn(c1) considered in different variants:
under-load, critical load and overload. PSO simulations were
performed for r(τ1) = 0.5 and r(δ1) = 0.5. It means
that modeled NoSQL database system uses 0.5 energy unit
each vacation and work period. For other system types these
values may be changed in (3), what makes presented model
flexible and easily applicable. All presented research results
are averaged values of 100 PSO samplings for 20 particles
in 80 iterations with α = 0.4 and β = 0.4. In each iteration
best ratio = 90%, what means that 72 best particles were
moved to next generation and 8 were taken at random. This
helped to search entire object space for optimum values, where:

• Average service time: Tservice = 1
µ ,

• Average time between packages income into the sys-
tem: Tincome = p1

λ1
+ p2

λ2
,

• Average vacation time: Tvacation = q1
α1

+ q2
α2

,

• Examined system size: N = buffer size +1.

Scenario 1.
PSO was performed to find set of parameters for lowest cost
of work. In Table I are optimum values for all parameters that
affect NoSQL server work. PSO positioned NoSQL system

TABLE I. OPTIMAL PARAMETERS µ, λi , αi , pi , qi FOR i = 1, 2 AND
LOWEST VALUE OF (3).

λ1 λ2 α1 α2 p1 p2 q1 q2
2.9 2.3 1.43 0.32 1.78 1.3 6.1 3.5
µ 0.6 rn(c1) 0.34

Tservice Tincome Tvacation

[sec] 1.67 1.18 15.20

to operate at minimum costs, if the service and vacation are
results from Table I. PSO was also arranged to position the
system in various scenarios.

Scenario 2.
NoSQL Tservice = 2[sec], what means that request service
takes about 2[sec]. Research results are shown in Table II.

TABLE II. OPTIMAL PARAMETERS µ, λi , αi , pi , qi FOR i = 1, 2 AND
LOWEST VALUE OF (3).

λ1 λ2 α1 α2 p1 p2 q1 q2
2.13 3.15 0.94 0.78 79.70 0.89 2.30 12.10
µ 0.5 rn(c1) 0.37

Tservice Tincome Tvacation

[sec] 2.08 37.70 17.96

Scenario 3.
NoSQL Tservice = 0.5[sec]. This situation represents NoSQL
business service with heavy traffic and very efficient server
machine. Research results with system positioning are shown
in Table III.

TABLE III. OPTIMAL PARAMETERS µ, λi , αi , pi , qi FOR i = 1, 2 AND
LOWEST VALUE OF (3).

λ1 λ2 α1 α2 p1 p2 q1 q2
44.3 22.1 112.9 1.4 1.91 1 57.60 14.3
µ 2.00 rn(c1) 0.29

Tservice Tincome Tvacation

[sec] 0.5 0.09 10.72

Using PSO it is also possible to position the system for
Tincome. This will correspond to peculiar incoming traffic.
Scenario 4.
NoSQL Tincome was given as 2[sec], what means that requests
are incoming to the server once in every 2 seconds. Research
results are shown in Table IV.

TABLE IV. OPTIMAL PARAMETERS µ, λi , αi , pi , qi FOR i = 1, 2 AND
LOWEST VALUE OF (3).

λ1 λ2 α1 α2 p1 p2 q1 q2
3.7 4.5 1.3 1.4 6.2 2.5 13.1 7.2
µ 0.4 rn(c1) 0.43

Tservice Tincome Tvacation

[sec] 2.5 2.23 15.22

Scenario 5.
NoSQL Tincome was given as 0.5[sec], what means that
requests are incoming to the server twice in every second.
This situation is describing an extensively used database,
like these of business purpose. Research results are shown in
Table V.

TABLE V. OPTIMAL PARAMETERS µ, λi , αi , pi , qi FOR i = 1, 2 AND
LOWEST VALUE OF (3).

λ1 λ2 α1 α2 p1 p2 q1 q2
27.1 27.2 0.8 0.4 16.1 1.1 5.6 4.3
µ 0.7 rn(c1) 0.33

Tservice Tincome Tvacation

[sec] 1.43 0.63 17.75

V. CONCLUSIONS

Positioned model was simulated in situations with prede-
fined time of service or time of income. Given times reflect
situations when traffic is heavy and system must serve many
requests (like business machines) or common traffic (like

average on-line shop or customer service). Calculated values
of Tservice and Tincome gave positioning for lowest cost of
work. If the system works with calculated parameters QoS
is still very high, but also cost of service is possibly lowest,
what means better profit for the owner. In the article, have
been examined newly proposed methods for QS simulation
and positioning (see also [4] and [44]). EC methods like PSO
are excellent for simulation or positioning of different objects.
PSO method helps to simulate complicated objects and because
of the free design, calculations are easy to perform. The experi-
ments confirmed PSO efficiency in simulation and positioning
the system in various scenarios representing common traffic
situations.

REFERENCES

[1] G. Capizzi, C. Napoli, and L. Paternò, “An innovative hybrid neuro-
wavelet method for reconstruction of missing data in astronomical
photometric surveys,” in Artificial Intelligence and Soft Computing.
Springer Berlin Heidelberg, 2012, pp. 21–29.

[2] C. Napoli, F. Bonanno, and G. Capizzi, “An hybrid neuro-wavelet
approach for long-term prediction of solar wind,” IAU Symposium, no.
274, pp. 247–249, 2010.

[3] C. Napoli, G. Pappalardo, E. Tramontana, Z. Marszałek, D. Połap,
and M. Woźniak, “Simplified firefly algorithm for 2d image key-points
search,” in IEEE Symposium Series on Computational Intelligence.
IEEE, 2014.

[4] M. Woźniak, W. M. Kempa, M. Gabryel, R. K. Nowicki, and Z. Shao,
“On applying evolutionary computation methods to optimization of
vacation cycle costs in finite-buffer queue,” Lecture Notes in Artificial
Intelligence - ICAISC’2014, vol. 8467 (PART I), pp. 480–491, 2014.

[5] C. Napoli, F. Bonanno, and G. Capizzi, “Exploiting solar wind time
series correlation with magnetospheric response by using an hybrid
neuro-wavelet approach,” Proceedings of the International Astronomical
Union, vol. 6, no. S274, pp. 156–158, 2010.

[6] G. Capizzi, F. Bonanno, and C. Napoli, “Hybrid neural networks
architectures for soc and voltage prediction of new generation batter-
ies storage,” in Clean Electrical Power (ICCEP), 2011 International
Conference on. IEEE, 2011, pp. 341–344.

[7] F. Bonanno, G. Capizzi, A. Gagliano, and C. Napoli, “Optimal man-
agement of various renewable energy sources by a new forecasting
method,” in Power Electronics, Electrical Drives, Automation and
Motion (SPEEDAM), 2012 International Symposium on. IEEE, 2012,
pp. 934–940.

[8] F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli, G. Pappalardo, and
E. Tramontana, “A cascade neural network architecture investigating
surface plasmon polaritons propagation for thin metals in openmp,”
Lecture Notes in Artificial Intelligence - ICAISC’2014, vol. 8468, PART
I, pp. 22–33, 2014.

[9] G. Capizzi, F. Bonanno, and C. Napoli, “Recurrent neural network-
based control strategy for battery energy storage in generation systems
with intermittent renewable energy sources,” in Clean Electrical Power
(ICCEP), 2011 International Conference on. IEEE, 2011, pp. 336–340.

[10] F. Bonanno, G. Capizzi, and C. Napoli, “Some remarks on the appli-
cation of rnn and prnn for the charge-discharge simulation of advanced
lithium-ions battery energy storage,” in Power Electronics, Electrical
Drives, Automation and Motion (SPEEDAM), 2012 International Sym-
posium on. IEEE, 2012, pp. 941–945.

[11] G. Capizzi, F. Bonanno, and C. Napoli, “A new approach for lead-acid
batteries modeling by local cosine,” in Power Electronics Electrical
Drives Automation and Motion (SPEEDAM), 2010 International Sym-
posium on. IEEE, 2010, pp. 1074–1079.

[12] C. Napoli, G. Pappalardo, and E. Tramontana, “Using modularity
metrics to assist move method refactoring of large systems,” in Sev-
enth International Conference on Complex, Intelligent, and Software
Intensive Systems - CISIS 2013, July 2013, pp. 529–534.

[13] R. Giunta, G. Pappalardo, and E. Tramontana, “AODP: refactoring code
to provide advanced aspect-oriented modularization of design patterns,”

in Proceedings of Symposium on Applied Computing (SAC). ACM,
2012.

[14] E. Tramontana, “Detecting extra relationships for design patterns roles,”
in Proceedings of AsianPlop, March 2014.

[15] G. Pappalardo and E. Tramontana, “Suggesting extract class refactoring
opportunities by measuring strength of method interactions,” in Pro-
ceedings of Asia Pacific Software Engineering Conference (APSEC).
IEEE, December 2013.

[16] Z. Marszałek and M. Woźniak, “On possible organizing nosql database
systems,” International Journal of Information Science and Intelligent
System, vol. 2, no. 2, pp. 51–59, 2013.

[17] M. Woźniak, Z. Marszałek, M. Gabryel, and R. K. Nowicki, “Modified
merge sort algorithm for large scale data sets,” Lecture Notes in
Artificial Intelligence - ICAISC’2013, vol. 7895 (PART II), pp. 612–
622, 2013.

[18] ——, “On quick sort algorithm performance for large data sets,” in
Looking into the Future of Creativity and Decision Support Systems,
A. M. J. Skulimowski, Ed. Cracow, Poland: Progress & Business
Publishers, 2013, pp. 647–656.

[19] ——, “Triple heap sort algorithm for large data sets,” in Looking
into the Future of Creativity and Decision Support Systems, A. M. J.
Skulimowski, Ed. Cracow, Poland: Progress & Business Publishers,
2013, pp. 657–665.

[20] ——, “Preprocessing large data sets by the use of quick sort algorithm,”
Advances in Intelligent Systems and Computing - KICSS’2013, vol.
accepted–in press, 2014.

[21] Z. Marszałek, D. Połap, and M. Woźniak, “On preprocessing large
data sets by the use of triple merge sort algorithm,” in Proceedings of
International Conference on Advances in Information Processing and
Communication Technologies - IPCT’2014. Santa Barbara, California,
USA: The IRED, Seek Digital Library, 2014, pp. 65–72.

[22] M. Woźniak and Z. Marszałek, Selected Algorithms for Sorting Large
Data Sets. Gliwice, Poland: Silesian University of Technology Press,
2013.

[23] ——, Extended Algorithms for Sorting Large Data Sets. Gliwice,
Poland: Silesian University of Technology Press, 2014.

[24] C. Napoli, G. Pappalardo, and E. Tramontana, “A hybrid neurowavelet
predictor for qos control and stability,” in Proceedings of AI*IA, ser.
LNCS, vol. 8249. Springer, 2013, pp. 527–538.

[25] J. Teghem, “Control of the service process in a queueing system,”
European Journal of Operations Research, vol. 1, no. 23, pp. 141–158,
1986.

[26] O. Kella, “Optimal control of the vacation scheme in an m/g/1 queue,”
Operations Research Journal, vol. 4, no. 38, pp. 724–728, 1990.

[27] R. Lillo, “Optimal operating policy for an m/g/1 exhaustive server-
vacation model,” Methodology and Computing in Applied Probability,
vol. 2, no. 2, pp. 153–167, 2000.

[28] F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli, G. Pappalardo, and
E. Tramontana, “A novel cloud-distributed toolbox for optimal energy
dispatch management from renewables in igss by using wrnn predictors
and gpu parallel solutions,” in Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), 2014 International Symposium
on. IEEE, 2014, pp. 1077–1084.

[29] U. C. Gupta, A. D. Banik, and S. Pathak, “Complete analysis of
map/g/1/n queue with single (multiple) vacation(s) under limited service
discipline,” Journal of Applied Mathematics and Stochastic Analysis,
no. 3, pp. 353–373, 2005.

[30] U. C. Gupta and K. Sikdar, “Computing queue length distributions in
map/g/1/n queue under single and multiple vacation,” Applied Mathe-
matics and Computation, vol. 2, no. 174, pp. 1498–1525, 2006.

[31] C. Napoli, G. Papplardo, and E. Tramontana, “Improving files availabil-
ity for bittorrent using a diffusion model,” in IEEE 23nd International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises - WETICE 2014, June 2014, pp. 191–196.

[32] F. Banno, D. Marletta, G. Pappalardo, and E. Tramontana, “Tack-
ling consistency issues for runtime updating distributed systems,” in
Proceedings of International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW). IEEE, 2010, pp.
1–8.

[33] E. Tramontana, “Automatically characterising components with con-
cerns and reducing tangling,” in Proceedings of QUORS workshop at
Compsac. IEEE, 2013.

[34] Z. Niu and Y. Takahashi, “A finite-capacity queue with exhaus-
tive vacation/close-down/setup times and markovian arrival processes,”
Queueing Systems, vol. 1, no. 31, pp. 1–23, 1999.

[35] Z. Niu, T. Shu, and Y. Takahashi, “A vacation queue with setup and
close-down times and batch markovian arrival processes,” Performance
Evaluation Journal, vol. 3, no. 54, pp. 225–248, 2003.

[36] H. Takagi, Queueing Analysis, vol. 1: Vacation and Priority Systems,
vol. 2. Finite Systems. Amsterdam: North-Holland, 1993.

[37] N. Tian and Z. G. Zhang, Vacation queueing models. Theory and
applications. Berlin, Heidelberg: Springer - Verlag, 2006.

[38] W. M. Kempa, “Gi/g/1/ batch arrival queuing system with a single
exponential vacation,” Mathematical Methods of Operations Research,
vol. 1, no. 69, pp. 81–97, 2009.

[39] ——, “Characteristics of vacation cycle in the batch arrival queuing
system with single vacations and exhaustive service,” International
Journal of Applied Mathematics, vol. 4, no. 23, pp. 747–758, 2010.

[40] ——, “Some new results for departure process in the m/g/1 queuing
system with a single vacation and exhaustive service,” Stochastic
Analysis and Applications, vol. 1, no. 28, pp. 26–43, 2009.

[41] ——, “On departure process in the batch arrival queue with single
vacation and setup time,” Annales UMCS Informatica, vol. 1, no. 10,
pp. 93–102, 2010.

[42] M. Gabryel, R. K. Nowicki, M. Woźniak, and W. M. Kempa, “Genetic
cost optimization of the gi/m/1/n finite-buffer queue with a single
vacation policy,” Lecture Notes in Artificial Intelligence - ICAISC’2013,
vol. 7895 (PART II), pp. 12–23, 2013.

[43] M. Woźniak, “On applying cuckoo search algorithm to positioning
gi/m/1/n finite-buffer queue with a single vacation policy,” in Pro-
ceedings of the 12th Mexican International Conference on Artificial
Intelligence - MICAI’2013. IEEE, 2013, pp. 59–64.

[44] M. Woźniak, W. M. Kempa, M. Gabryel, and R. K. Nowicki, “A
finite-buffer queue with single vacation policy - analytical study with
evolutionary positioning,” International Journal of Applied Mathematics
and Computer Science, vol. 24, no. 4, pp. accepted–in press, 2014.

[45] D. Hongwei, Z. Dongfeng, and Z. Yifan, “Performance analysis of
wireless sensor networks of serial transmission mode with vacation on
fire prevention,” ICCET’10 IEEE CPS, pp. 153–155, 2010.

[46] V. Mancuso and S. Alouf, “Analysis of power saving with continuous
connectivity,” Computer Networks, vol. 56, no. 10, pp. 2481–2493,
2012.

[47] J. Kennedy and R. C. Eberhard, “Particie swarm optimization,” in IEEE
International Conference on Neural Networks. Piscataway, NJ: IEEE,
1995, pp. 1942–1948.

[48] M. Hu, T. Wu, and J. Weir, “An adaptive particle swarm optimization
with multiple adaptive methods,” IEEE Transactions on Evolutionary
Computation, vol. 17, no. 5, pp. 705–720, 2013.

[49] S. Koziel and X. Yang, Computational Optimization, Methods and
Algorithms. Berlin, Heidelberg: Springer, 2011.

[50] M. Gabryel, M. Woźniak, and R. K. Nowicki, “Creating learning sets
for control systems using an evolutionary method,” Lecture Notes in
Computer Science - ICAISC’2012, vol. 7269, pp. 206–213, 2012.

[51] X. Yang, Engineering Optimisation: An Introduction with Metaheuristic
Applications. USA: John Wiley & Sons, 2010.

[52] J. Bansal and K. Deep, “Optimisation of directional overcurrent relay
times by particle swarm optimisation,” in SIS’2008 Proceedings. IEEE,
2008, pp. 1–7.

[53] E. Baonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

[54] V. Gazi and K. Passino, Swarm stability and optimization. Berlin,
Heidelberg: Springer, 2011.

[55] X. Yang, Z. Cui, R. Xiao, A. Gandomi, and M. Karamanoglu, Swarm
Intelligence and Bio-inspired Computation: Theory and Applications.
OXFORD, United Kingdom: Elsevier, 2013.

[56] M. Clerc and J. Kennedy, “The particle swarmexplosion, stability and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

