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Processing and Data Collection of Program Structures
in Open Source Repositories
JEAN PETRIĆ, TIHANA GALINAC GRBAC and MARIO DUBRAVAC, University of Rijeka

Software structure analysis with help of network analysis showed promising results in software engineering community. Some

previous studies have presented potential of representing software structure as subgraph frequencies, that are present in software
structure using network graphs, for effective program characterization and differentiation. One of the prerequisites for exploration

of this potential is collecting large dataset with number of different software projects. Nowadays, there are plenty of open source

code repositories which not only they contain source code, but also provide a lot of crucial information useful in guiding
software engineering actions. However, systematical building of such large dataset is highly challenging and time consuming

process. Therefore, our approach is to automate data collection process for open source repositories aiming to provide as large

as possible dataset that could provide us reliable conclusions. In this paper we present software structure tool analyzer based
on subgraph frequencies, discuss its automation opportunities and illustrate preliminary results obtained by its usage. Some

potential research directions are discussed.

Categories and Subject Descriptors: H.3.0 [Information storage and retrieval] General; D.2.8 [Metrics] Product metrics

General Terms: Experimentation

Additional Key Words and Phrases: open-source repositories, automatic tool, software analysis

1. INTRODUCTION

The use of network analysis in software analysis has been widely explored recently. In [Zimmermann
and Nagappan 2008] authors showed that using of network graphs metrics can provide better results
in the SDP (software defect prediction) than with classical software metrics. This fact motivated our
analysis of software as network graphs.

One way to approach the network graphs is to analyze its basic building blocks as subgraphs and
motifs. In our previous work [Petrić and Galinac Grbac 2014] we analyzed three Eclipse systems and
got some interesting preliminary results. We realized that with help of subgraph frequencies we may
differentiate different software. This is an important finding because it may be useful in many software
engineering tasks - from planning software design and system modeling to planning the verification
activities. In fact, variations of k–node subgraph frequencies, that in sum have probability one in
the analyzed graph structure, are bounded. In order to discover these bounds in software projects we
wanted to empirically investigate as much as possible software structures. We are interested what are
the bounds and are they related to some other software metrics. Also we want to explore these bounds
across the software domains, i.e. the software written for different purposes.

Nowadays, there are plenty of open source software repositories. Source code repositories and all
supporting software development repositories contain a lot of potentially useful information. However,
those information are weakly explored and used for guiding and executing software projects although
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posses huge potential for improving the software engineering tools and practices. On the other hand,
there are serious obstacles to this problem. Firstly, data are not usually available in the form that eas-
ily generate useful information, there is a lack of systematically collected data from diverse projects
that could produce sound and general theories, and development of systematic and standard data col-
lection procedures is limited due to huge diversity of repositories data structure. For example, in the
SDP area, there was a huge number of papers which did not satisfy proper collection of datasets, lead-
ing in questionable models for SDP [Hall et al. 2012]. One of the main reason was inadequately defined
data collection procedure. A process of collecting proper datasets for analysis in empirical software en-
gineering is always a tough job to do. Empirical data are occasionally exposed to bias. First problem is
that many studies are done with small datasets and small number of datasets, which may represent
a serious threat to validity and lead to weak generalization of conclusions. Another problem is lack
of freely available data from commercial software. When some research has been done on closed soft-
ware it is impossible to repeat this research on same datasets, so everything remains on trust. Third
problem is a limited number of investigated software domains for same model, e.g. a model for defect
prediction. Fourth problem is in validity of information collected retroactively from the project reposi-
tories. Some useful information are stored by software developers in project repository and that process
may be biased. Collecting the network subgraphs is free of the data collection bias introduced by soft-
ware developers. Software structure is readable directly from the source code files. A huge potential
for future evolution of software engineering discipline is in development of systematic data collection
procedures that would be able to collect data consistently from diverse project repositories [Wnuk and
Runeson 2013]. The challenge is in developing tools and procedures that would automatically collect
and explore this information over different projects and repositories. The process of reading the soft-
ware structure is not dependent on the repository, therefore we think there is a potential to automatize
this data collection.

In this paper we want to explore opportunities to develop a generic tool that would automatically
and continuously collecting live data from huge number of software project repositories just by simple
searching the web. More precisely, we want to investigate opportunities to develop a live software
structure analyzer. Such tool could be of great importance to the software development community
since software structure has huge effect on its reliability and evolution [Galinac Grbac et al. 2013;
Galinac Grbac and Huljenic 2014; Petrić and Galinac Grbac 2014]. An another important thing which
motivated us to start analyze open-source repositories and to think about an automation process is our
previous work [Petrić and Galinac Grbac 2014]. Namely, we did our analysis on limited datasets which
included three different Eclipse plugins with more than 30 releases in total for all three systems.
A process of collecting and processing data was very long and ineffective. Thus, we have started to
think about some improvements. From the above observations, a better understanding of open-source
repositories structure is mandatory in sense of collecting needed knowledge for an automating process,
and also for developing such tool which would be able to process retrieved data.

Two main things will be covered. Firstly, we will discuss about diversity of open-source repositories,
and their properties. Some basic information about few popular repositories will be explored, like their
adequacy for a generic data collection. Secondly, based on findings we will define our new developed
tool for purposes of automatic collecting datasets from different repositories. The tool is modular and
very easy for extending with new functions. We briefly discuss its current main functions. Finally, we
observe some difficulties in this live data collection process. We succeed to collect software structures
for 234 open source software projects and based on simple observations we discuss our future work
and future research directions.

The paper is organized as follows - in Sect. 2 more about open-source repositories will be said, in
Sect. 3 the software structure collection tool will be described in detail, in Sect. 4 we describe our
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experiences of using the tool and provide some preliminary results of the collected data. Finally in
Sect. 5 we will make a conclusion and say something about our future work.

2. OPEN-SOURCE REPOSITORIES

This section will describe how we approached to the open-source repository analysis, and how we de-
termined for which repositories an automatic collecting process of data should be done. Open-source
repositories are collection of data which are related to some project. Most often, such repositories are
used for storing source code files, but this is not their only purpose. Sometimes, open-source repositories
may contain vast number of data, which if they are processed in a proper way, may give crucial infor-
mation about particular project. Today, many open-source repositories are available, and differences
between them are properties they offer. For example, some repositories offer possibility for having a
bug report system, some of them offer an unlimited number of projects, etc. In this research we have
included only few repositories which show best overall properties, in terms of information they offer, a
number of projects they have, etc. Information on many repositories over the Internet can be found in
the comparative table available on Wikipedia 1.

From the objective parameters from that table it is obvious that many repositories share same or
similar properties, so we also employed subjective parameters which should help us in making an
easier decision. Thus, for subjective parameters we have introduced two main categories: number of
prominent projects and how easy is to implement automatic retrieval of data for those repositories. In
easy to implement category we have looked only how well repositories are organized, i.e. how briefly
are links to the source code files provided, and how good search filters are implemented, i.e. is it easy
to separate Java projects from C++ projects. Also, this category contains only poor, average and well
keywords for determine how good organization and search filters are. For each keyword we gave the
grade, thus poor is equal to 0, average is equal to 1 and well is equal to 2.

From the analysis of a number of open source projects we made following conclusions:

—Not all projects contain a link to the source code repository to directly load the project, but have a
link just to the repository web page from where the user should manually search for the project

—Most of the projects store the source code just into the GIT repository, or at some point during devel-
opment switch to GIT repository, without providing direct link to the source code for each version of
the software

—Number of projects are very old and the repository is not maintained more or is not available
—Some repositories does not alow search by project name and have not list of all projects storing the

source code. Project search should be done manually by searching for specific keywords and thus are
hardly to automate

—Some repositories are limited to specific communities, e.g. CodePlex is limited to the Microsoft com-
munity and contains projects that are based on their technology

After we performed analysis on several repositories, we decided that we should include GitHub,
SourceForge and Eclipse repositories in our automation process, because they got best overall grades
according to objective and subjective parameters.

3. SOFTWARE STRUCTURE COLLECTION TOOL

To face some of the problems we discussed in previous sections, we decided to implement a modular
tool which will be able to automate some processes in data retrieval. Because we have found that some

1http://en.wikipedia.org/wiki/Comparison of open-source software hosting facilities
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Fig. 1. Class diagram of the software structure collection tool

repositories have a good structure, i.e. a structure which is easy to be processed by some script tools,
logical move was making a single tool which will be able to collect all needed data by themselves, and
also to perform some additional tasks which will save time for further analysis. In that case, there is
no need for manual collecting datasets from repositories, which is an important thing, because except
that manual collecting data is a very time consuming process, it is also the process in which human
error may have a significant impact. An automatic tool should collect all data in the same manner,
which excludes occurrence of mistakes. Except aforementioned, such automatic tool is able to collect
vast number of projects, so further analysis can be done on bigger datasets. Also, many software from
different domains can be analyzed.

The class diagram of the implemented software structure collection tool is given on Figure 1. The
software structure collection tool was mainly written in Java, but it also contains few external tools,
which are rFind and JHawk. The rFind is a tool for searching relations between classes in a Java code,
which is our previous work for transforming object-oriented software code into its graph representation
described in [Petrić and Galinac Grbac 2014]. The software structure collection tool has few purposes,
which can be divided in next phases:

—Phase 1: automatic retrieval of a Java source code from repositories
—Phase 2: uncompression of source code files
—Phase 3: transformation of source code files in its graph representation with the help of the rFind

tool
—Phase 4: count of subgraphs occurrence from software representation of a graph
—Phase 5: a software metric collection

3.1 Phase 1: automatic data retrieval

Automatic retrieval was at first the main purpose of the software structure collection tool. After the
analysis we had initially chose two repositories which satisfied our criteria. Additionally, we added
and third repository which was the Eclipse. Finally, we also included a built-in option in the tool. The
built-in option of the tool is able to get the list of the links as an input, which leads to different source
code files. After the list is provided, the tool only process those source code files. Because the process
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Fig. 2. An entity-relationship diagram for the software structure collection tool

can be interrupted by some unwanted events, e.g. a loss of power, we provided a recovery. The recovery
enables us to be sure that already processed files will not be retrieved and processed again.

Because the software structure collection tool downloads many different types of software we have
also built database for storing as much as possible information about retrieved software. The entity-
relationship diagram of a database is given on Figure 2. The database contains important information
about every project, such as a URL of the project, a version, etc. After each project is downloaded, the
software structure collection tool continues on the phase 2. The phase 1 is repeated every time after
the last phase is finished, and until there are non-processed projects in the repository.

3.2 Phase 2: uncompression of files

Immediately after the phase 1 is finished, uncompression of files begin. Repositories occasionally com-
press projects to preserve space on their servers, so before we can continue to the next phase, we must
handle this step. Each repository uses different type of compressing files, but in most cases there are
a limited number of used formats. In the software structure collection tool we have implemented sup-
port for uncompressing four different formats, which includes: zip, gz, bz2 and tar. We found that those
formats are most occurring ones. If some different format is used for a compression, than this project
will be discarded for the further analysis.

3.3 Phase 3: getting graph representation

This phase starts an external tool when is appropriate. After the phase 2 is finished, the rFind is called
from the software structure collection tool. As is mentioned before, the rFind transforms a source code
into its graph representation. To do this, it parses a code line by line and seeks for relations between
classes. In that case, Java classes are nodes, and communication links are edges. A communication
link means any relation between two classes. For example, if some class A tries to send a message to
the class B through some method, then the edge is directed from the class A to the class B. For better
understanding, the process is shown on Figure 3. Similar works also if one class tries to instantiate
another class, or if it tries to communicate through parameters or a return value. For the current
version of rFind, the communication in terms of class inheritance is not covered, so we do not record
such relation. The rFind generates two files which are subject for further analysis. Those files are graph
and classlist. Graph files contain information about communication links between classes, presented
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Fig. 3. Example of graph generated by rFind for given code

with IDs of the classes. To map those IDs with the corresponding classes we have a classlist in key-
value format, where the key is an ID and the value is a class name.

3.4 Phase 4: subgraph frequency

The fourth phase of the software structure collection tool is a subgraph frequency counter. Its pur-
pose is to count occurrences of all 3-node subgraphs in the given graph. We did not find any separated
implementation of the subgraph counter, so we decided to use existing libraries, and adjust them to
work in manner we expected. For this purpose we found the S-Space Package, which is a collection
of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new dis-
tributional semantics algorithms 2. The S-Space has already implemented algorithms for processing
subgraphs, but without a subgraph counter. Thus, because the S-Space is an open-source, we used few
its algorithms to implement an expected behavior.

Non-separated versions of the subgraph counter can be found in motif tools. For example, mFinder 3

is a tool which provides getting of all n-node subgraphs for the given graph. The main problem is that
this tool primarily searches for motifs, which is a very time-consuming process. So, our implementation
of the subgraph counter has accelerated this process.

An another important thing is that our implementation of the subgraph counter can process any
subgraph size, and any types of the subgraph, as long as it has correct formatted list of the subgraphs
provided to the input. This means that our implementation is highly flexible. For example, if we want
to find subgraph frequencies of subgraphs 1, 2 and 3 shown on Figure 4 we need to put this list as an
input to the software structure collection tool:

1:1-2,1-3

2:1-2,3-1

3:1-2,1-3,3-1

According to the list above, we can put any type of the subgraph and count them in the given graph.
Many motif tools does not have similar option.

3.5 Phase 5: software metrics collection

Currently, the last phase in the software structure collection tool is a software metric collection. For
this purpose we used the external commercial tool JHawk 4. JHawk is a static code analysis tool, i.e. it
takes the source code of your project and calculates metrics based on numerous aspects of the code, e.g.
volume, complexity, relationships between class and packages and relationships within classes and
packages. After this process is finished all data are stored, and the process continues with the first
phase until all projects are processed.

2https://github.com/fozziethebeat/S-Space/
3http://www.weizmann.ac.il/mcb/UriAlon/NetworkMotifsSW/mfinder/MfinderManual.pdf
4http://www.virtualmachinery.com/jhawkprod.htm
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Fig. 4. All 3-node subgraphs

Table I. Descriptive statistics of the dataset
No of No of No of No of No of No of No of No of No of No of

3-node subgr. subgr. 6 subgr. 12 subgr. 14 subgr. 36 subgr. 38 packages classes methods lines of code

Mean 80318 1593 368 0,02 78449 34 0,02 1703 10979 112511
Stdev 374760 3296 872 0,14 374529 77 0,13 2865 19737 210433
Min 3 3 0 0 0 0 1 4 66 818
Max 3291827 21343 6460 1 3287902 478 1646 16234 121811 1445451

4. EVALUATION OF EXPERIENCES AND PRELIMINARY RESULTS

In this section we discuss benefits and limitations of using the tool for the purpose of automatic data
collection. Furthermore, we present some preliminary results obtained by using the tool.

4.1 Experiences of using the tool

We start data collection with help of the tool described in section 3. The total time needed for collecting
data varied for different phases implemented in tool, but also from the project to project. For example,
the first phase of data collection highly depends on the project and size of the source code that may
vary from several MB to 200 MB. Also, data collection time in the first phase is very much depended on
the Internet link throughput available to server running the data collection tool. Subsequent phases,
from two to four were executed relatively fast (in few minutes) and are not so sensitive on the project
size. The last phase may be very time consuming, from several minutes for smaller projects to few
hours for larger ones.

In the last phase we use JHawk tool for collecting metrics on the source code files. In most cases
JHawk tool performs excellent, but for some projects we experienced some problems that block our
data collection process. This happens for small and large projects and we could not eliminate that
issue because the JHawk is a commercial tool and we do not have insight in it. In such cases we
skipped that project and continue with the next one.

4.2 Descriptive statistics for datasets collected

As a result of data collection process we succeeded to collect data for 233 projects. For each project
we counted subgraph frequencies for all 3–node subgraphs and collected all metrics on the class and
system level (provided by JHawk tool). Descriptive statistics for the collected projects are given in
Table I.

Figure 5 depicts the relative subgraph frequencies of 3–node subgraphs (6, 12, and 36) that are
present in all analyzed projects. We did not provide the figure of relative subgraph frequencies for
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Fig. 5. Relative subgraph frequencies (3–node: 6, 12, 36) per software project. Note that software projects are ordered with
respect to number of classes
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Table II. Distribution of projects with respect to number of classes
No. of 0–200 201–400 401–600 601–800 801-1000 1001–1200 1201–1400
classes

No. of 78 35 19 14 12 13 2
projects

No. of 1401–1600 1601-1800 1801–2000 2001–2200 2201–2400 2401–2600 2601–2800
classes

No. of 3 6 0 5 1 1 0
projects

No. of 2801–3000 3001–4001 4001–5000 5001–6000 6001–7000 7001–8000 8001–9000
classes

No. of 6 6 4 3 4 8 8
projects

No. of 10001–11000 11001–12000 12001–13000 13001-14000 14001–15000 15001–17000
classes

No. of 0 1 1 2 1 0
projects

nodes 14 and 38 because are neglected, like for all other subgraphs because they are not present in
neither of the analyzed projects. In all subfigures on Figure 5 the projects are ordered with respect to
the number of classes present in the project source code. In the analyzed sample we have very well
represented source codes with number of classes ranging from 0 to 8000. We conclude this from the
distribution of projects collected over the categories with amount of classes given in Table II.

As it can be observed from the graph the frequencies of subgraph 6 are increasing with number of
classes present in the project. On the other hand, the frequencies of subgraph 36 are decreasing.

We analyzed the occurrences of each 3–node subgraph (see Figure 4) and presented results in the
separate subfigures for each subgraph that is represented in the analyzed projects. We found that all
projects contain only subgraphs 6, 12, 14, 36, 38, 46, and 74. However, subgraphs 46 and 74 are very
rarely represented in all of the analyzed projects, so we did not provide separate figure here. The most
represented subgraph in all projects is the subgraph 38.

4.3 Limitations and future work

Future work should consider to improve the data collection tool with repositories that contain bigger
projects. Since, the GIT repositories become a norm in the open source community the future work
should consider how to automatically read structure data from all open projects stored in GIT.

Based on the observations while running the tool aiming to collect the dataset, we concluded that
some phases may be computationally demanding. Future work should consider to eliminate execu-
tion stops due to data quality (e.g. problems with JHawk) and how to run the tool within the Cloud
environment and without human intervention.

We aim collecting more datasets in the future that would cover wider spectra of projects than it
is currently covered by the collected dataset. Some conclusions are limited in generalization due to
relatively small projects that are collected. In our initial dataset mean subgraph frequencies of all
analysed projects is 80k and 112 kLOC and for example some Eclipse projects that we collected have
more than million 3-node subgraphs and about million lines of code. From this initial analysis we
observed that the probability of particular subgraph occupancy in software may depend on the amount
of classes, more packages, and more lines of code. We want to further study this observation and we
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are interested how we can define and develop models that would be useful for designing and verifying
software systems.

5. CONCLUSION AND FURTHER WORK

In this paper we have presented a basic analysis of software structure that is collected from the open-
source repositories and we have also introduced our modular software structure data collection tool.

With the software structure collection tool we have remarkably boosted our process of collecting
datasets. Except that, we have also achieved an another important thing, which is avoiding of human
errors in the collection process. Moreover, we identified weaknesses of our tool and discuss its future
extensions.

From the collected datasets we performed a preliminary analysis and discuss future research direc-
tions in data collection. Such automation process will help us in future to collect a significant number
of projects, that could truly represent a software from different domains on which we are going to per-
form additional analysis in terms of the subgraph frequencies and software metrics as continuation of
our previous work [Petrić and Galinac Grbac 2014].
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