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Abstract 

Data intensive sciences (DIS) are being 
developed in frame of the new paradigm of 
scientific study known as the Fourth paradigm, 
emphasizing an increasing role of 
observational, experimental and computer 
simulated data practically in all fields of 
scientific study. The principal goal of data 
intensive research (DIR) is an extraction 
(inference) of knowledge from data. 

The intention of this work is to make an 
overview of the existing approaches, methods 
and infrastructures of the data analysis in DIR 
accentuating the role of hypotheses in such 
research process and efficient support of 
hypothesis formation, evaluation and selection 
in course of the natural phenomena modeling 
and experiments carrying out. An introduction 
into various concepts, methods and tools 
intended for effective organization of 
hypothesis driven experiments in DIR is 
presented in the paper. 

1 Hypotheses, theories, models and laws in 
data intensive science 

Data intensive science (DIS) is being developed in 
accordance with the 4th Paradigm [29] of scientific 
study (following three previous historical paradigms of 
the science development (empirical science, theoretical 
science, computational science)) emphasizing that 
science as a whole is becoming increasingly dependent 
on data as the core source for discovery. Emerging of 
the 4th Paradigm is motivated by the huge amounts of 
data coming from scientific instruments, sensors, 
simulations, as well as from people accumulating data 
in Web or social nets. The basic objective of DIS is to 
infer knowledge from the integrated data organized in 
networked infrastructures (such as warehouses, grids, 
clouds). At the same time, “Big Data” movement has 
emerged as a recognition of the increased significance 
of massive data in various domains. Open access to 
large volumes of data therefore becomes a key 

prerequisite for discoveries in the 21st century. Data 
Intensive Research (DIR) denotes a crosscut of DIS/IT 
areas aimed at the creation of effective data analysis 
technologies for DIS and other data intensive domains. 

Science endeavors to give a meaningful description 
of the world of natural phenomena using what are 
known as laws, hypotheses and theories. Hypotheses, 
theories and laws in their essence have the same 
fundamental character (Fig. 1) [48].  

LAW THEORY

An Explanatory 
Hypothesis

An Generalizing 
Hypothesis

A Prediction

The Word 
“Hypothesis” 
Could Mean

Which might 
become a

Which might 
become a

Fig. 1. Multiple incarnations of hypotheses 

A scientific hypothesis is a proposed explanation of 
a phenomenon which still has to be rigorously tested. In 
contrast, a scientific theory has undergone extensive 
testing and is generally accepted to be the accurate 
explanation behind an observation. A scientific law is a 
proposition, which points out any such orderliness or 
regularity in nature, the prevalence of an invariable 
association between a particular set of conditions and 
particular phenomena. In the exact sciences laws can 
often be expressed in the form of mathematical 
relationships. Hypotheses explain laws, and well-tested, 
corroborated hypotheses become theories (Fig. 1). At 
the same time the laws do not cease to be laws, just 
because they did not appear first as hypotheses and pass 
through the stage of theories. 

Though theories and laws are different kinds of 
knowledge, actually they represent different forms of 
the same knowledge construct. Laws are 
generalizations, principles or patterns in nature, and 
theories are the explanations of those generalizations. 
However, classification expressed at the Fig. 1 is 
subjective. [40] provides examples showing that the 
differences between laws, hypotheses and theories 
consist only in that they stand at different levels in their 
claim for acceptance depending on how much empirical 
evidence is amassed. Therefore there is no essential 
difference between constructs used for expressing 
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hypotheses, theories and laws. Important role of 
hypotheses in scientific research can scarcely be 
overestimated. In the edition of M. Poincaré's book [52] 
it is stressed that without hypotheses there is no science. 
Thus it is not surprising that so much attention in the 
scientific research and the respective publications is 
devoted to the methods for hypothesis manipulation in 
experimenting and modeling of various phenomena 
applying the means of informatics. The idea that the 
new approaches are needed that can address both data 
driven and hypothesis driven sciences runs all through 
this paper.  Such symbiosis alongside with the 
hypothesis-driven tradition of science (‘‘first 
hypothesize-then-experiment’’) might cause wide 
application of another one that is typified by ‘‘first 
experiment-then-hypothesize’’ mode of research. Often 
the “first experiment” ordering in DIS is motivated by 
the necessity of analysis of the existing massive data to 
generate a hypothesis. 

Generalization 
(Law)

Abduction

Induction

Evidence (Facts)

Deduction

 
Fig. 2 Enhanced knowledge production diagram 

In the course of our study paying attention to the 
issue of inductive and deductive reasoning in hypothesis 
driven sciences will be emphasized.  On Fig. 2 such 
ways of knowledge production are shown [48]. 
“Generalization” here means any subset of hypotheses, 
theories and laws and “Evidence” is any subset of all 
facts accumulated in a specific DIS. 

All researchers collect and interpret empirical 
evidence through the process called induction. This is a 
technique by which individual pieces of evidence are 
collected and examined until a law is discovered or a 
theory is invented. Frances Bacon first formalized 
induction [4]. The method of (naïve) induction (Fig. 2) 
he suggested is in part the principal way by which 
humans traditionally have produced generalizations that 
permit predictions. The problem with induction is that it 
is both impossible to collect all observations pertaining 
to a given situation in all time – past, present and future. 

The formulation of a new law begins through 
induction as facts are heaped upon other relevant facts. 
Deduction is useful in checking the validity of a law. 
The Fig. 2 shows that a valid law would permit the 
accurate prediction of facts not yet known. Also an 
abduction [49] is the process of validating a given 
hypothesis through reasoning by successive 
approximation. Under this principle, an explanation is 
valid if it is the best possible explanation of a set of 
known data. Abductive validation is common practice 
in hypothesis formation in science. Hypothesis related 
logic reasoning issues are considered in more details in 
section 3. 

In [52] the useful hypotheses of science are 
considered to be of two kinds:  

1. The hypotheses which are 
valuable precisely because they are either verifiable or 
else refutable through a definite appeal to the tests 
furnished by experience;  

2. The hypotheses which, despite the fact that 
experience suggests them, are valuable despite, or 
even because, of the fact that experience 
can neither confirm nor refute them. 

Aspects of science which are determined by the use 
of the hypotheses of the second kind are considered in 
the M. Poincaré's book [52] as “constituting an essential 
human way of viewing nature, an interpretation rather 
than a portrayal or a prediction of the objective facts of 
nature, an adjustment of our conceptions of things to the 
internal needs of our intelligence”. According to M. 
Poincaré's discussion, the central problem of the logic 
of science becomes the problem of the relation between 
the two fundamentally distinct kinds of hypotheses, i.e., 
between those which cannot be verified or refuted 
through experience, and those which can be empirically 
tested. 

The analysis in this paper will be focused mostly on 
the modeling of hypotheses of the first kind, leaving 
issues of analysis the relations between such two kinds 
of hypotheses to further study. 

The rest of the paper is organized as follows.  
Section 2 discusses the basic concepts defining the role 
of hypotheses in the formation of scientific knowledge 
and the respective organization of the scientific 
experiments. Approaches for hypothesis formulation, 
logical reasoning, hypothesis modeling and testing are 
briefly introduced in Section 3. In Section 4 a general 
overview of the basic facilities provided by informatics 
for the hypothesis driven experimentation scenarios, 
including conceptual modeling, simulations, statistics 
and machine learning methods is given. Into Section 5 
several examples of organization of hypothesis driven 
scientific experiments are included. Conclusion 
summarizes the discussion. 

2 Role of hypotheses in scientific 
experiments: basic principles 

Normally, scientific hypotheses have the form of a 
mathematical model. Sometimes one can also formulate 
them as existential statements, stating that some 
particular instance of the phenomenon under 
examination has some characteristic and causal 
explanations, which have the general form of universal 
statements, stating that every instance of the 
phenomenon has a particular characteristic (e.g., for 
all x, if x is a swan, then x is white). Scientific 
hypothesis considered as a declarative statement 
identifies the predicted relationship (associative or 
causal) between two or more variables (independent and 
dependent). In causal relationship a change caused by 
the independent variable is predicted in the dependent 
variable. Variables are more commonly related in non-
causal (associative) way [25]. 
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In experimental studies the researcher manipulates 
the independent variable. The dependent variable is 
often referred to as consequence or the presumed effect 
that varies with a change of the independent variable. 
The dependent variable is not manipulated. It is 
observed and assumed to vary with changes in the 
independent variable. Predictions are made from the 
independent variable to the dependent variable. It is the 
dependent variable that the researcher is interested in 
understanding, explaining or predicting [25]. 

In case when a possible correlation or similar 
relation between variables is investigated (such as, e.g., 
whether a proposed medication is effective in treating a 
disease, that is, at least to some extent and for some 
patients), a few cases in which the tested remedy shows 
no effect do not falsify the hypothesis. Instead, 
statistical tests are used to determine how likely it is that 
the overall effect would be observed if no real relation 
as hypothesized exists. If that likelihood is sufficiently 
small, the existence of a relation may be assumed. In 
statistical hypothesis testing two hypotheses are 
compared, which are called the null hypothesis and the 
alternative hypothesis. The null hypothesis states that 
there is no relationship between the phenomena 
(variables) whose relation is under investigation, or at 
least not of the form given by the alternative hypothesis. 
The alternative hypothesis, as the name suggests, is the 
alternative to the null hypothesis: it states that there is 
some kind of relation.  

Alternative hypotheses are generally used more 
often than null hypotheses because they are more 
desirable to state the researcher’s expectations. But in 
any study that involves statistical analysis the 
underlying null hypothesis is usually assumed [25]. It is 
important, that the conclusion “do not reject the null 
hypothesis” does not necessarily mean that the null 
hypothesis is true. It suggests that there is not sufficient 
evidence against the null hypothesis in favor of the 
alternative hypothesis. Rejecting the null hypothesis 
suggests that the alternative hypothesis may be true. 

Any useful hypothesis will enable predictions by 
reasoning (including deductive reasoning). It might 
predict the outcome of an experiment in a laboratory 
setting or the observation of a phenomenon in nature. 
The prediction may also invoke statistics assuming that 
a hypothesis must be falsifiable [53], and that one 
cannot regard a proposition or theory as scientific if it 
does not admit the possibility of being shown false. The 
way to demarcate between hypotheses is to call 
scientific those for which we can specify (beforehand) 
one or more potential falsifiers as the respective 
experiments. Falsification was supposed to proceed 
deductively instead of inductively. 

Other philosophers of science have rejected the 
criterion of falsifiability or supplemented it with other 
criteria, such as verifiability (only statements about the 
world that are empirically confirmable or logically 
necessary are cognitively meaningful). They claim that 
science proceeds by "induction"— that is, by finding 
confirming instances of a conjecture. Popper treated 
confirmation as never certain [53]. However, a 

falsification can be sudden and definitive. Einstein said: 
“No amount of experimentation can ever prove me 
right; a single experiment can prove me wrong”. To 
scientists and philosophers outside the Popperian belief 
[53], science operates mainly by induction 
(confirmation), and also and less often by 
disconfirmation (falsification). Its language is almost 
always one of induction. For this survey both 
philosophical treatment of hypotheses are acceptable. 
Sometimes such way of reasoning is called the 
hypothetico-deductive method. According to it, 
scientific inquiry proceeds by formulating a hypothesis 
in a form that could conceivably be falsified by a test on 
observable data. A test that could and does run contrary 
to predictions of the hypothesis is taken as a 
falsification of the hypothesis. A test that could but does 
not run contrary to the hypothesis corroborates the 
theory. 

A scientific method involves experiment, to test the 
ability of some hypothesis to adequately answer the 
question under investigation. A prediction enabled by 
hypothesis suggests a test (observation or experiment) 
for the hypothesis thus becoming testable. If a 
hypothesis does not generate any observational tests, 
there is nothing that a scientist can do with it. 

For example, not testable hypothesis: "Our universe 
is surrounded by another, larger universe, with which 
we can have absolutely no contact"; not verifiable 
(though testable) hypothesis: "There are other inhabited 
planets in the universe"; scientific hypothesis (both 
testable and verifiable):  "Any two objects dropped from 
the same height above the surface of the earth will hit 
the  ground  at  the  same  time,  as long as air resistance 
is not a factor" (http://www.batesville.k12.in.us/physics/ 
phynet/aboutscience/hypotheses.html). 

A problem (research question) should be formulated 
as an issue of what relation exists between two or more 
variables. The problem statement should be such as to 
imply possibilities of empirical testing otherwise this 
will not be a scientific problem. Problems and 
hypotheses being generalized relational statements 
enable to deduce specific empirical manifestations 
implied by the problem and hypotheses. In this process 
hypotheses can be deduced from theory and from other 
hypotheses. A problem cannot be scientifically solved 
unless it is reduced to hypothesis form, because a 
problem is not directly testable [37]. 

Most formal hypotheses connect concepts by 
specifying the expected relationships between 
propositions. When a set of hypotheses are grouped 
together they become a type of conceptual framework. 
When a conceptual framework is complex and 
incorporates causality or explanation it is generally 
referred to as a theory [28]. In general, hypotheses have 
to reflect the multivariate complexity of the reality. A 
scientific theory summarizes a hypothesis or a group of 
hypotheses that have been supported with repeated 
testing. A theory is valid as long as there is no evidence 
to dispute it. Scientific paradigm explains the working 
set of theories under which science operates. 
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Elements of hypothesis-driven research and their 
relationships are shown on Fig. 3 [23, 57]. The 
hypothesis triangle relations, explains, formulates, 
represents are functional in the scientist's final decision in 
adopting a particular model m1 to formulate a hypothesis 
h1, which is meant to explain phenomenon p1. 

Weak 
lensing

Galaxy 
clustering

Dark Energy

Earth special location

Non uniform universe

Fig. 4. A lattice theoretic representation for hypothesis 
relationship 

 

The hypothesis lattice is unfolded into model and 
phenomena isomorphic lattices according to the 
hypothesis triangle (Fig. 3) [23]. The lattices are 
isomorphic if one takes subsets of M (Model), H 
(Hypotheses) and P (Phenomenon) such that formulates, 
explains and represents are both one-to-one and onto 
mappings (i.e., bijections), seen as structure-preserving 
mappings (morphisms). Example of the isomorphic 
lattice is shown on the Fig. 5 [23]. This particular lattice 
corresponds to the case in Computational 
Hemodynamics considered in [23]. Here model m1 
formulates hypothesis h1, which explains phenomenon 
p1. Similarly, m2 formulates h2, which explains p2, and 
so on. Properties of the hypothesis lattices and 
operations over them are considered in [24]. 

Fig. 3. Elements of hypothesis-driven research 

In [23] the lattice structure for hypothesis 
interconnection is proposed as shown on Fig. 4. A 
hypothesis lattice is formed by considering a set of 
hypotheses equipped with wasDerivedFrom as a strict 
order < (from the bottom to the top). Hypotheses 
directly derived from exactly one hypothesis are atomic, 
while those directly derived from at least two 
hypotheses are complex. 

 

p1. Mass 
net flux

p2. Fluid 
compression

p3. Momentum 
net flux

p4. Fluid 
friction

p5. Body 
force effects

p6. Fluid 
divergence

p7. Fluid 
dynamics

p8. Fluid 
behavior

h1. Mass 
conversation

h2. Incompressible 
fluid

h3. Momentum 
conservation

h4. Viscous 
fluid

h5. No 
body forces

h6. blend(h1,h2) h7. blend(h3,h4,h5)

h8. blend(h6,h7)

explains

m1. m2. m3. m4. m5.

m6. m7.

m8.

 

Fig. 5. Hypothesis lattice unfolded into model and phenomenon isomorphic lattice 
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Models are one of the principal instruments of 
modern science. Models can perform two fundamentally 
different representational functions: a model can be a 
representation of a selected part of the world, or a model 
can represent a theory in the sense that it interprets the 
laws and hypotheses of that theory. 

Here we consider scientific models to be 
representations in both senses at the same time. One of 
the most perplexing questions in connection with 
models is how they relate to theories. In this respect 
models can be considered as a complement to theories, 
as preliminary theories, can be used as substitutions of 
theories when the latter are too complicated to handle. 
Learning about the model is done through experiments, 
thought experiments and simulation. Given a set of 
parameters, a model can generate expectations about 
how the system will behave in a particular situation. A 
model and the hypotheses it is based upon are supported 
when the model generates expectations that match the 
behavior of its real-world counterpart.  

 
A law generalizes a body of observations. Generally, 

a law represents a group of related undisputable 
hypotheses using a handful of fundamental concepts and 
equations to define the rules governing a set of 
phenomena. A law does not attempt to explain why 
something happens – it simply states that it does. 

Facilities for support of the hypothesis-driven 
experimentation will be discussed in the remaining 
sections. 

3 Hypothesis manipulation in scientific 
experiments 

3.1 Hypothesis generation 

Researchers that support rationality of scientific 
discovery presented several methods for hypothesis 
generation, including discovery as abduction, induction, 
anomaly detection, heuristics programming and use of 
analogies [73]. 

Discovery as abduction characterizes reasoning 
processes that take place before a new hypothesis is 
justified. The abductive model of reasoning that leads to 
plausible hypotheses formulation is conceptualized as 
an inference beginning with data. According to [50] an 
abduction happens as follows: 1) Some phenomena p1, 
p2, p3, … are encountered for which there is no or little 
explanation; 2) However, p1, p2, p3, … would not be 
surprising if a hypothesis H were added. They would 
certainly follow from something like H and would be 
explained by it; 3) Therefore there is good reason for 
elaborating an hypothesis H – for proposing it as a 
possible hypothesis from which the assumption p1, p2, 
p3, … might follow. The abductive model of reasoning 
is primarily a process of explaining anomalies or 
surprising phenomena [63]. The scientists' reasoning 
proceeds abductively from an anomaly to an 
explanatory hypothesis in light of which the phenomena 
would no longer be surprising. There can be several 
different hypotheses that can serve as the explanations 

for phenomena, so additionally some criteria for 
choosing among different hypotheses are required.  

One way to implement abductive model of reasoning 
is the abductive logic programming [36]. Hypothesis 
generation in abduction logical framework is organized 
as follows. During the experiment, some new 
observations are encountered. Let B represents the 
background knowledge; O is the set of facts that 
represents observations. Both B and O are logic 
programs (set of rules in some rule language). In 
addition, Γ stands for a set of literals representing the set 
of abducibles, which are candidate assumptions to be 
added to B for explaining O. Given B, O and Γ, the 
hypothesis-generation problem is to find a set H of 
literals (called a hypothesis) such that: 1) B and H entail 
O, 2) B and H is consistent, and 3) H is some subset of 
Г.  If all conditions are met then H is an explanation of 
O (with respect to B and Γ).  Examples of abductive 
logic programming systems include ACLP [35], A-
system [71], ABDUAL [2] and ProLogICA [59]. 
Abductive logic programming can also be implemented 
by means of Answer Set Programming systems, e.g. by 
the DLV system [14].  

The example abductive logic program in ProLogICA 
describes a simple model of the lactose metabolism of 
the bacterium E.Coli [59]. The background knowledge 
B describes that E. coli can feed on the sugar lactose if it 
makes two enzymes permease and galactosidase. Like 
all enzymes (E), these are made if they are coded by a 
gene (G) that is expressed. These enzymes are coded by 
two genes (lac(y) and lac(z)) in cluster of genes (lac(X)) 
called an operon that is expressed when the amounts 
(amt) of glucose are low and lactose are high or when 
they are both at medium level. The abducibles, Г, 
declare all ground instances of the predicates "amount" 
as assumable. This reflects the fact that in the model it is 
not known what are the amounts at any time of the 
various substances. This is incomplete information that 
we want to find out in each problem case that we are 
examining. The integrity constraints state that the 
amount of a substance (S) can only take one value. 
##  Background Knowledge (B)  
feed(lactose):- 
make(permease),make(galactosidase). 
make(Enzyme):- code(Gene,Enzyme),express(Gene). 
express(lac(X)):-
amount(glucose,low),amount(lactose,hi). 
express(lac(X)):-
amount(glucose,medium),amount(lactose,medium). 
code(lac(y),permease). 
code(lac(z),galactosidase). 
temperature(low):-amount(glucose,low). 
false :- amount(S,V1), amount(S,V2), V1 != V2. 
 
##  Abducibles (Г) 
abducible_predicate(amount). 
 
## Observation (O) 
feed(lactose). 
 
This goal generates two possible hypotheses: 
{amount(lactose,hi), amount(glucose,low)} 
{amount(lactose,medium),amount(glucose,medium)} 

Just a couple of another examples of real rule-based 
systems, where abductive logic programming is used. 
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Robot Scientist (see 4.4) abductively hypothesizes new 
facts about the yeast functional biology by inferring 
what is missing from a model [38]. In [68], both 
abduction and induction are used to formulate 
hypotheses about inhibition in metabolic pathways. 
Augmenting background knowledge is done with 
abduction, after that induction is used for learning 
general rules. In [33] authors use SOLAR reasoning 
system to abductively generate hypotheses about the 
inhibitory effects of toxins on the rat metabolisms. 

The process of discovery is deeply connected also 
with the search of anomalies. There are a lot of methods 
and algorithms to discover anomalies. Anomaly 
detection is an important research problem in data 
mining that aims to find objects that are considerably 
dissimilar, exceptional and inconsistent with respect to 
the majority data in an input database [6]. 

Analogies play several roles in science. Not only do 
they contribute to discovery but they also play a role in 
the development and evaluation of scientific theories 
(new hypotheses) by analogical reasoning.  

3.2 Hypothesis evaluation 

Being testable and falsifiable, a scientific hypothesis 
provides a solid basis to its further modeling and testing. 
There are several ways to do it, including the use of 
statistics, machine learning and logic reasoning 
techniques. 

3.2.1 Statistical testing of hypotheses  

The classical (frequentist) and Bayesian statistic 
approaches are applicable for hypothesis testing and 
selection. Brief summary of the basic differences 
between these approaches are as follows [34]. 

Classical (frequentist) statistics is based on the 
following beliefs: 

− Probabilities refer to relative frequencies of 
events. They are objective properties of the real world; 

− Parameters of hypotheses (models) are fixed, 
unknown constants. Because they are not fluctuating, 
probability statements about parameters are 
meaningless; 

− Statistical procedures should have well-defined 
long-run frequency properties. 

In contrast, Bayesian approach takes the following 
assumptions: 

− Probability describes the degree of subjective 
belief, not the limiting frequency. Probability statements 
can be made about things other than data, including 
hypotheses (models) themselves as well as their 
parameters; 

− Inferences about a parameter are made by 
producing its probability distribution — this distribution 
quantifies the uncertainty of our knowledge about that 
parameter. Various point estimates, such as expectation 
value, may then be readily extracted from this 
distribution. 

The Bayesian interpretation of probability can be 
seen as an extension of propositional logic that enables 

reasoning with hypotheses, i.e., the propositions whose 
truth or falsity is uncertain. 

Bayesian probability belongs to the category of 
evidential probabilities; to evaluate the probability of a 
hypothesis, the Bayesian probabilist specifies some 
prior probability, which is then updated in the light of 
new, relevant data (evidence) [64]. The Bayesian 
interpretation provides a standard set of procedures and 
formulae to perform this calculation. 

Hypothesis testing in classical statistic style. After 
null and alternative hypotheses are stated, some 
statistical assumptions about data samples should be 
done, e.g. assumptions about statistical independence or 
distributions of observations. Failing to provide correct 
assumptions leads to the invalid test results. 

A common problem in classical statistics is to ask 
whether a given sample is consistent with some 
hypothesis. For example, we might be interested in 
whether a measured value xi, or the whole set {xi}, is 
consistent with being drawn from a Gaussian 
distribution N(μ,σ). Here N(μ,σ) is our null hypothesis. 

It is always assumed that we know how to compute 
the probability of a given outcome from the null 
hypothesis: for example, given the cumulative 
distribution function, 0 ≤ H0(x) ≤ 1, the probability that 
we would get a value at least as large as xi is 
p(x > xi ) = 1 – H0(xi), and is called the p-value. 
Typically, a threshold p value is adopted, called the 
significance level α, and the null hypothesis is rejected 
when p ≤  (e.g., if  = 0.05 and p < 0.05, the null 
hypothesis is rejected at a 0.05 significance level). If we 
fail to reject a hypothesis, it does not mean that we 
proved its correctness because it may be that our sample 
is simply not large enough to detect an effect. 

When performing these tests, we can meet with two 
types of errors, which statisticians call Type I and Type 
II errors. Type I errors are cases when the null 
hypothesis is true but incorrectly rejected. In the context 
of source detection, these errors represent spurious 
sources, or more generally, false positives (with respect 
to the alternative hypothesis). The false-positive 
probability when testing a single datum is limited by the 
adopted significance level . Cases when the null 
hypothesis is false, but it is not rejected are called 
Type II errors (missed sources, or false negatives (again, 
with respect to the alternative hypothesis)). The false-
negative probability when testing a single datum is 
usually called , and is related to the power of  test as 
(1 – ). Hypothesis testing is intimately related to 
comparisons of distributions.  

As the significance level  is decreased (the 
criterion for rejecting the null hypothesis becomes more 
conservative), the number of false positives decreases 
and the number of false negatives increases. Therefore, 
there is a trade-off to be made to find an optimal value 
of , which depends on the relative importance of false 
negatives and positives in a particular problem. Both the 
acceptance of false hypotheses and the rejection of true 
ones are errors that scientists should try to avoid. There 
is discussion as to what states of affairs is less desirable; 
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many people think that the acceptance of a false 
hypothesis is always worse than failure to accept a true 
one and that science should in the first place try to avoid 
the former kind of error. 

When many instances of hypothesis testing are 
performed, a process called multiple hypothesis testing, the 
fraction of false positives can significantly exceed the 
value of . The fraction of false positives depends not only 
on  and the number of data points, but also on the number 
of true positives (the latter is proportional to the number of 
instances when an alternative hypothesis is true).  

Depending on data type (discrete vs. continuous 
random variables) and what we can assume (or not) 
about the underlying distributions, and the specific 
question we ask, we can use different statistical tests. 
The underlying idea of statistical tests is to use data to 
compute an appropriate statistic, and then compare the 
resulting data-based value to its expected distribution. 
The expected distribution is evaluated by assuming that 
the null hypothesis is true. When this expected 
distribution implies that the data-based value is unlikely 
to have arisen from it by chance (i.e., the corresponding 
p value is small), the null hypothesis is rejected with 
some threshold probability , typically 0.05 or 0.01 
(p < ). Note again that p >  does not mean that the 
hypothesis is proven to be correct. 

The number of various statistical tests in the 
literature is overwhelming and their applicability is 
often hard to decide (see [19, 31] for variety of 
statistical methods in SPSS). When the distributions are 
not known, tests are called nonparametric, or 
distribution-free tests. The most popular nonparametric 
test is the Kolmogorov–Smirnov (K-S) test, which 
compares the cumulative distribution function, F (x), for 
two samples, {x1i }, i = 1, ..., N1 and {x2i }, i = 1, ..., N2. 
The K-S test is not the only option for nonparametric 
comparison of distributions. The Cramér-von Mises 
criterion, the Watson test, and the Anderson–Darling 
test are similar in spirit to the K-S test, but consider 
somewhat different statistics. The Mann–Whitney–
Wilcoxon test (or the Wilcoxon rank-sum test) is a 
nonparametric test for testing whether two data sets are 
drawn from distributions with different location 
parameters (if these distributions are known to be 
Gaussian, the standard classical test is called the t test). 
A few standard statistical tests can be used when we 
know, or can assume, that both h(x) and f(x) are 
Gaussian distributions (e.g., the Anderson–Darling test, 
the Shapiro–Wilk test) [34]. More on statistical tests can 
be found in [19, 31, 32, 34]. 

Hypothesis (model) selection and testing in 
Bayesian style. The Bayesian approach can be thought 
of as formalizing the process of continually refining our 
state of knowledge about the world, beginning with no 
data (as encoded by the prior), then updating that by 
multiplying in the likelihood once the data  are observed 
to obtain the posterior. When more data are taken, then 
the posterior based on the first data set can be used as 
the prior for the second analysis. Indeed, the data sets 
can be different. 

The question often arises as to which is the ‘best’ 
model (hypothesis) to use; ‘model selection’ is a 
technique that can be used when we wish to 
discriminate between competing models (hypotheses) 
and identify the best model (hypothesis) in a set, {M1, 
..., Mn}, given the data. 

We need to remind the basic notation. The Bayes 
theorem can be applied to calculate the posterior 
probability p(Mj|d) for each model (or hypothesis) Mj 
representing our state of knowledge about  the truth of 
the model (hypothesis) in the light of the data d as 
follows: 

p(Mj|d) = p(d|Mj) p(Mj) / p(d), 

where p(Mj) is the prior belief in the model (hypothesis) 
that represents our state of knowledge (or ignorance) 
about the truth of the model (hypothesis) before we 
have analyzed the current data, p(d|Mj) is the model 
(hypothesis) likelihood (represents the probability that 
some data are produced under the assumption of this 
model) and p(d) is a normalization constant given by: 

p(d) = i ii MpMdp )()( . 

The relative ‘goodness’ of models is given by a 
comparison of their posterior probabilities, so to 
compare two models Ma and Mb, we look at the ratio of 
the model posterior probabilities: 

p(Ma|d) / p(Mb|d) = p(d|Ma) p(Ma) / p(d|Mb) p(Mb). 

The Bayes factor, Bab can be computed as the ratio 
of the model likelihoods: 

Bab = p(d|Ma) / p(d|Mb). 

Empirical scale for evaluating the strength of 
evidence from the Bayes factor Bij between two models 
is shown in Tabl. 1 [45]. 

Tabl. 1. Strength of evidence for Bayes factor Bij  

for two models 

|ln Bij| Odds Strength of evidence 
< 1.0 < 3 : 1 Inconclusive 
1.0 ~ 3 : 1 Weak evidence 
2.5 ~ 12 : 1 Moderate evidence 
5.0 ~ 150 : 1 Strong evidence 

 

The Bayes factor gives a measure of the ‘goodness’ 
of a model, regardless of the prior belief about the 
model; the higher the Bayes factor, the better the model 
is. In many cases, the prior belief in each model in the 
set of proposed models will be equal, so the Bayes 
factor will be equivalent to the ratio of the posterior 
probabilities of the models. The ‘best’ model in the 
Bayesian sense is the one which gives the best fit to the 
data with the smallest parameter space. 

A special case of model (hypothesis) selection is 
Bayesian hypothesis testing [34, 62]. Taking M1 to be 
the “null” hypothesis, we can ask whether the data 
supports the alternative hypothesis M2, i.e., whether we 
can reject the null hypothesis. Taking equal priors 
p(M1) = p(M2), the odds ratio is 

B21 = p(d|M1) / p(d|M2). 
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The inability to reject M1 in the absence of an 
alternative hypothesis is very different from the 
hypothesis testing procedure in classical statistics. The 
latter procedure rejects the null hypothesis if it does not 
provide a good description of the data, that is, when it is 
very unlikely that the given data could have been 
generated as prescribed by the null hypothesis. In 
contrast, the Bayesian approach is based on the 
posterior rather than on the data likelihood, and cannot 
reject a hypothesis if there are no alternative 
explanations for observed data [34]. 

Comparing classical and Bayesian approaches [34], 
it is rare for a mission-critical analysis be done in the 
“fully Bayesian” manner, i.e., without the use of the 
frequentist tools at the various stages. Philosophy and 
beauty aside, the reliability and efficiency of the 
underlying computations required by the Bayesian 
framework are the main practical issues. A central 
technical issue at the heart of this is that it is much 
easier to do optimization (reliably and efficiently) in 
high dimensions than it is to do integration in high 
dimensions. Thus the usable machine learning methods, 
while there are ongoing efforts to adapt them to 
Bayesian framework, are almost all rooted in frequentist 
methods.  

Most users of Bayesian estimation methods, in 
practice, are likely to use a mix of Bayesian and 
frequentist tools. The reverse is also true—frequentist 
data analysts, even if they stay formally within the 
frequentist framework, are often influenced by 
“Bayesian thinking,” referring to “priors” and 
“posteriors.” The most advisable position is probably to 
know both paradigms well, in order to make informed 
judgments about which tools to apply in which 
situations [34]. More details on Bayesian style of 
hypothesis testing can be found in [34, 62, 64]. 

3.2.2 Logic-based hypothesis testing 

According to the hypothetico-deductive approach 
the hypotheses are tested by deducing predictions or 
other empirical consequences from general theories. If 
these predictions are verified by experiments, this 
supports the hypothesis. It should be noted that not 
anything that is logically entailed by a hypothesis can be 
confirmed by a proper test for it. The relation between 
hypothesis and evidence is often empirica l rather than 
logical. A clean deduction of empirical consequences 
from a hypothesis, as it may sometimes exist in physics, 
is practically inapplicable in biology. Thus, entailment 
of the evidence by hypotheses under test is neither 
sufficient nor necessary for a good test. Inference to the 
best explanation is usually construed as a form of 
inductive inference (see abduction in 3.1) where a 
hypothesis’ explanatory credentials are taken to indicate 
its truth [72].  

An inductive logic is a system of evidential support 
that extends deductive logic to less-than-certain 
inferences.  For valid deductive arguments the 
premises logically entail the conclusion, where the 
entailment means that the truth of the premises provides 
a guarantee of the truth of the conclusion. Similarly, in 

a good inductive argument the premises should provide 
some degree of support for the conclusion, where such 
support means that the truth of the premises indicates 
with some degree of strength that the conclusion is true. 
If the logic of good inductive arguments is to be of any 
real value, the measure of support it articulates should 
meet the Criterion of Adequacy (CoA): as evidence 
accumulates, the degree to which the collection of true 
evidence statements comes to support a hypothesis, as 
measured by the logic, should tend to indicate that the 
hypotheses are probably false or probably true. In [27] 
the extent to which a kind of logic based on the Bayes 
theorem can estimate how the implications of 
hypotheses about evidence claims influences the degree 
to which hypotheses are supported is discussed in detail. 
In particular, it is shown how such a logic may be 
applied to satisfy the CoA: as evidence accumulates, 
false hypotheses will very probably come to have 
evidential support values (as measured by their 
posterior probabilities) that approach 0; and as this 
happens, a true hypothesis will very probably acquire 
evidential support values (measured by their posterior 
probabilities) that approach 1. 

3.2.3 Parameter estimation  

Models (hypotheses) are typically described by 
parameters  θ  whose values are to be estimated from 
data. We describe this process according to [34]. For a 
particular model M and prior information I we get: 

p(M, θ|d, I) = p(d|M, θ, I) p(M, θ|I) / p(d|I) 

The result p(M, θ|d, I) is called the posterior 
probability density function (pdf) for model M and 
parameters θ, given data d and other prior information I. 
This term is a (k + 1)-dimensional pdf in the space 
spanned by k model parameters and the model M. The 
term p(d|M, θ, I) is the likelihood of data given some 
model M and some fixed values of parameters θ 
describing it, and all other prior information  I. The term 
p(M, θ|I) is the a priori joint probability for model M 
and its parameters θ in the absence of any of the data 
used to compute likelihood, and is often simply called 
the prior. 

In the Bayesian formalism, p(M, θ|d, I) corresponds 
to the state of our knowledge (i.e., belief) about a model 
and its parameters, given data d. To simplify the 
notation, M(θ) will be substituted by M whenever the 
absence of explicit dependence on θ is not confusing. A 
completely Bayesian data analysis has the following 
conceptual steps: 

1. Formulation of the data likelihood p(d|M, I).  

2. Choice of the prior p(θ|M,I), which incorporates 
all other knowledge that might exist, but is not used 
when computing the likelihood (e.g., prior 
measurements of the same type, different 
measurements, or simply an uninformative prior). 
Several methods for constructing "objective" priors 
have been proposed. One of them is the principle of 
maximum entropy for assigning uninformative priors by 
maximizing the entropy over a suitable set of pdfs, 
finding the distribution that is least informative (given 
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the constraints). Entropy maximization with no testable 
information takes place under a single constraint: the 
sum of the probabilities must be one. Under this 
constraint, the maximum entropy for a discrete 
probability distribution is given by the uniform 
distribution. 

3. Determination of the posterior p(M|d, I), using 
Bayes theorem above. In practice, this step can be 
computationally intensive for complex 
multidimensional problems.  

4. The search for the best model M parameters, 
which maximizes p(M|d, I), yielding the maximum a 
posteriori (MAP) estimate. This point estimate is the 
natural analog to the maximum likelihood estimate 
(MLE) from classical statistics. 

5. Quantification of uncertainty in parameter 
estimates, via credible regions. As in MLE, such an 
estimate can be obtained analytically by doing 
mathematical derivations specific to the chosen model. 
Also as in MLE, various numerical techniques can be 
used to simulate samples from the posterior. This can be 
viewed as an analogy to the frequentist approach, which 
can simulate draws of samples from the true underlying 
distribution of the data. In both cases, various 
descriptive statistics can then be computed on such 
samples to examine the uncertainties surrounding the 
data and estimators of model parameters based on that 
data. 

6. Hypothesis testing as needed to make other 
conclusions about the model (hypothesis) or parameter 
estimates. 

3.3 Algorithmic generation and evaluation  
of hypotheses 

Two cultures of data analysis (formulaic modeling1 
and algorithmic modeling) distinguished here in 
accordance with [10] can be applied to the hypothesis 
extraction and generation based on data.  

Formulaic modeling is a process for estimating the 
relationships among variables. It includes many 
techniques for modeling and analyzing several 
variables, when the focus is on the formulae y = f(x) 
that give a relation specifying a vector of dependent 
variables y in terms of a vector of independent variables 
x. In a statistics experiment (based on various regression 
techniques) the dependent variable defines the event 
studied and is expected to change whenever the 
independent variable (predictor variables, extraneous 
variables) is altered. Such methods as linear regression, 
logistic regression, multiple regression are well-known 
examples of the representatives of this modeling 
approach. 

In the algorithmic modeling culture the approach is 
to find an algorithm that operates on x to predict the 
responses y. What is observed is a set of x’s that go in 
and a subsequent set of y’s that come out. Predictive 

                                                           
1 In [10] instead of “formulaic modeling” the term “data 
modeling” is used that looks misleading in the computer 
science context. 

accuracy and properties of the algorithms (such as, e.g., 
their convergence if they are iterative) are the issues to 
be investigated. Machine learning algorithms focus on 
prediction, based on known properties learned from the 
training data. Such machine learning algorithms as 
decision tree, association rule, neural networks, support 
vector machines as well as other techniques of learning 
in Bayesian and probabilistic models [5, 26] are 
examples of the methods that belong to this second 
culture.  

The models that best emulate the nature in terms of 
predictive accuracy are also the most complex and 
inscrutable. Nature forms the outputs y from the inputs x 
by means of a black box with complex and unknown 
interior. Current accurate prediction methods are also 
complex black boxes (such as neural nets, forests, 
support vectors). So we are facing two black boxes, 
where ours seems only slightly less inscrutable than 
nature’s [10]. In a choice between accuracy and 
interpretability, in applications people sometimes prefer 
interpretability.  

However, the goal of a model is not interpretability 
(a way of getting information), but getting useful, 
accurate information about the relation between the 
response and predictor variables. It is stated in [10] that 
algorithmic models can give better predictive accuracy 
than formulaic models, providing also better 
information about the underlying mechanism. And 
actually this is what the goal of statistical analysis is. 
The researchers should be focused on solving the 
problems instead of asking what regression model they 
can create.  

An objection to this idea (expressed by Cox) is that 
prediction without some understanding of underlying 
process and linking with other sources of information 
becomes more and more tentative. Due to that it is 
suggested to construct the stochastic calculation models 
that summarize the understanding of the phenomena 
under study. One of the objectives of such approach 
might be an understanding and test of hypotheses about 
underlying process. Given the relatively small sample 
size following such direction could be productive. But 
data characteristics are rapidly changing. In many of the 
most interesting current problems, the idea of starting 
with a formal model is not tenable. The methods used in 
statistics for small sample sizes and a small number of 
variables are not applicable. Data analytics need to be 
more pragmatic. Given a statistical problem, find a good 
solution, whether it is a formulaic model, an algorithmic 
model or a Bayesian model or a completely different 
approach.  

In the context of the hypothesis driven analysis we 
should pay attention to the question how far can we go 
applying the algorithmic modeling for hypothesis 
generation and testing. Various approaches to machine 
learning use related to hypothesis formation and 
selection can be found in [5, 10, 34]. 

Besides machine learning, an interesting example of 
algorithmic generation of hypotheses can be found in 
the IBM Watson project [18] where the symbiosis of the  
general-purpose reusable natural language processing 
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(NLP) and knowledge representation and reasoning 
(KRR) technologies (under the name DeepQA) is 
exploited for answering arbitrary questions over the 
existing natural language documents as well as 
structured data resources. Hypothesis generation takes 
the results of question analysis and produces candidate 
answers by searching the available data sources and 
extracting answer-sized snippets from the search results. 
Each candidate answer plugged back into the question is 
considered a hypothesis, which the system has to prove 
correct with some degree of confidence. After merging, 
the system must rank the hypotheses and estimate 
confidence based on their merged scores. A machine-
learning approach adopted is based on running the 
system over a set of training questions with known 
answers and training a model based on the scores. An 
important consideration in dealing with NLP-based 
scorers is that the features they produce may be quite 
sparse, and so accurate confidence estimation requires 
the application of confidence-weighted learning 
techniques [18] – a new class of online learning 
methods that maintain a probabilistic measure of 
confidence in each parameter. It is important to note that 
instead of statistics based hypothesis testing, contextual 
evaluation of a wide range of loosely coupled 
probabilistic question and semantic based content 
analytics is applied for scoring different questions 
(hypotheses) and content interpretations. Training 
different models on different portions of the data in 
parallel and combining the learned classifiers into a 
single classifier allows to make the process applicable to 
the large collections of data. More details on that can be 
found in [17, 18] as well as in other Watson project 
related publications.  

3.4 Bayesian motivation for discovery  

One way for discriminating between competing 
models of some phenomenon is to use Bayesian model 
selection approach (3.2.1), the Bayesian evidences for 
each of the proposed models (hypotheses) can be 
computed and the models can then be ranked by their 
Bayesian evidence. This is a good method for 
identifying which is the best model in a given set of 
models, but it gives no indication of the absolute 
goodness of the model. Bayesian model selection says 
nothing about the overall quality of the set of models 
(hypotheses) as a whole —the best model in the set may 
merely be the best of in a set of poor models. Knowing 
that the best model in the current set of models is not 
particularly good model would provide motivation to 
search for a better model, and hence may lead to model 
discovery. 

One way of assigning some measure of the absolute 
goodness of a model is to use the concept of Bayesian 
doubt, first introduced by [67]. Bayesian doubt works 
by comparing all the known models in a set with an 
idealized model, which acts as a benchmark model. 

An application of the Bayesian doubt method for the 
cosmological model building is given in [44, 45]. One 
of the most important questions in cosmology is to 
identify the fundamental model underpinning the vast 

amount of observations nowadays available. The so-
called ‘cosmological concordance model’ is based on 
the cosmological principle (i.e. the Universe is isotropic 
and homogeneous, at least on large enough scales) and 
on the hot big bang scenario, complemented by an 
inflationary epoch. This remarkably simple model is 
able to explain with only half a dozen free parameter 
observations spanning a huge range of time and length-
scales. Since both a cold dark matter (CDM) and a 
cosmological constant (Λ) component are required to fit 
the data, the concordance model is often referred to as 
‘the ΛCDM model’.  

Several different types of explanation are possible 
for the apparent late time acceleration of the Universe, 
including different classes of dark energy model such as 
ΛCDM, wCDM; theories of modified gravity; void 
models or the back reaction [45]. The methodology of 
Bayesian doubt which gives an absolute measure of the 
degree of goodness of a model has been applied to the 
issue of whether the ΛCDM model should be doubted. 

The methodology of Bayesian doubt dictates that an 
unknown idealized model X should be introduced 
against which the other models may be compared. 
Following [67], ‘doubt’ may be defined as the posterior 
probability of the unknown model: 

D ≡ p(X|d) = p(d|X) p(X) / p(d). 

Here p(X) is the prior doubt, i.e. the prior on the 
unknown model, which represents the degree of belief 
that the list of known models does not contain the true 
model. The sum of all the model priors must be unity. 

The methodology of Bayesian doubt requires a 
baseline model (the best model in the set of known 
models), for which in this application the ΛCDM has 
been chosen. The average Bayes factor between ΛCDM 
and each of the known models is given by: 

<BiΛ> ≡ 1/N .  
N

i iB
1

The ratio R between the posterior doubt and prior 
doubt, which is called the relative change in doubt, is: 

R ≡ D/p(X). 

For doubt to grow, i.e. the posterior doubt to be 
greater than the prior doubt (R << 1), the Bayes factor 
between the unknown model X and the baseline model 
must be much greater than the average Bayes factor: 

<BiΛ> / BXΛ  << 1. 

To genuinely doubt the baseline model, ΛCDM, it is 
not sufficient that R > 1, but additionally, the probability 
of ΛCDM must also decrease such that its posterior 
probability is greater than its prior probability, i.e. 
p(Λ|d) < p(Λ). We can define: 

RΛ ≡ p(Λ|d) / p(Λ). 

For ΛCDM to be doubted, the following two 
conditions must be fulfilled: 

R > 1,  RΛ < 1. 

If these two conditions are fulfilled, then it suggests 
that the set of known models is incomplete, and gives 
motivation to search for a better model not yet included, 
which may lead to model discovery. 
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In [67] a way of computing an absolute upper bound 
for p(d|X) achievable among the class of known models  
has been proposed. Finally it was found that current 
cosmic microwave background (CMB), matter power 
spectrum (mpk) and Type Ia supernovae (SNIa) 
observations.do not require the introduction of an 
alternative model to the baseline ΛCDM model. The 
upper bound of the Bayesian evidence for a presently 
unknown dark energy model against ΛCDM gives only 
weak evidence in favor of the unknown model. Since 
this is an absolute upper bound, it was concluded that 
ΛCDM remains a sufficient phenomenological 
description of currently available observations. 

4  Facilities for the scientific hypothesis-
driven experiment support 

4.1 Conceptualization of scientific experiments 

DIS increasingly becomes dependent on 
computational resources to aid complex researches. It 
becomes paramount to offer scientists mechanisms to 
manage the variety of knowledge produced during such 
investigations. Specific conceptual modeling facilities 
[54] are investigated to allow scientists to represent 
scientific hypotheses, models and associated 
computational or simulation interpretations which can 
be compared against phenomena observations (Fig. 3). 
The model allows scientists to record the existing 
knowledge about an observable investigated 
phenomenon, including a formal mathematical 
interpretation of it, if any. Model evolution and model 
sharing need also to be supported taking either a 
mathematical or computational view (e.g., expressed by 
scientific workflows). Declarative representation of 
scientific model allows scientists to concentrate on the 
scientific issues to be investigated. Hypotheses can be 
used also to bridge the gap between an ontological 
description of studied phenomena and the simulations. 
Conceptual views on scientific domain entities allow for 
searching for definitions supporting scientific models 
sharing among different scientific groups. 

In [23] the engineering of hypothesis as linked data 
is addressed. A semantic view on scientific hypotheses 
shows their existence apart from a particular statement 
formulation in some mathematical framework. The 
mathematical equation is considered as not enough to 
identify the hypothesis, first because it must be 
physically interpreted, second because there can be 
many ways to formulate the same hypothesis. The link 
to a mathematical expression, however, brings to the 
hypothesis concept higher semantic precision. Another 
link, in addition, to an explicit description of the 
explained phenomenon (emphasizing its “physical 
interpretation") can bring forth the intended meaning. 
By dealing with that hypothesis as a conceptual entity, 
the scientists make it possible to change its statement 
formulation or even to assert a semantic mapping to 
another incarnation of the hypothesis in case someone 
else reformulates it. 

In [54] the following elements related to hypothesis 
driven science are conceptualized: a phenomenon 
observed, a model interpreting this phenomenon, the 
metadata defining the related computation together with 
the simulation definition (for simulation a declarative 
logic-based language is proposed). Specific attention in 
this work is devoted to hypothesis definition. The 
explanation a scientific hypothesis conveys is a 
relationship between the causal phenomena and the 
simulated one, namely, that the simulated phenomenon 
is caused by or produced under the conditions set by the 
causal phenomena. By running the simulations defined 
by the antecedents in the causal relationship, the 
scientist aims at providing hypothetical analysis of the 
studied phenomenon. 

Thus, the scientific hypothesis becomes an element 
of the scientific model that may replace a phenomenon. 
When computing a simulation based on a scientific 
hypothesis, i.e. according to the causal relationship it 
establishes, the output results may be compared against 
phenomenon observations to assess the quality of the 
hypothesis. Such interpretation provides for bridging the 
gap between qualitative description of the phenomenon 
domain (scientific hypotheses may be used in 
qualitative (i.e., ontological) assertions) and the 
corresponding quantitative valuation obtained through 
simulations. According to the approach [54], complex 
scientific models can be expressed as the composition of 
computation models similarly to database views. 

4.2 Hypothesis space browsers 

In the HyBrow (Hypothesis Space Browser) project 
[58] the hypotheses for the biology domain are 
represented as a set of first-order predicate calculus 
sentences. In conjunction with an axiom set specified as 
rules that model known biological facts over the same 
universe, and experimental data, the knowledge base 
may contradict or validate some of the sentences in 
hypotheses, leaving the remaining ones as candidates 
for new discovery. As more experimental data is 
obtained and rules identified, discoveries become 
positive facts or are contradicted. In the case of 
contradictions, the rules that caused the problems must 
be identified and eliminated from the theory formed by 
the hypotheses. In such model-theoretical approach, the 
validation of hypotheses considers the satisfiability of 
the logical implications defined in the model with 
respect to an interpretation. This might be applicable 
also for simulation-based research, in which validation 
is decided based on the quantitative analysis between 
the simulation results and the observations [54]. 
HyBrow is based on an OWL ontology and application-
level rules to contradict or validate hypothetical 
statements. HyBrow provides for designing hypotheses, 
and evaluating them for consistency with existing 
knowledge, uses an ontology of hypotheses to represent 
hypotheses in machine understandable form as relations 
between objects (agents) and processes [65]. 

As an upgrade of HyBrow, the HyQue [12] 
framework adopts linked data technologies and employs 
Bio2RDF linked data to add to HyBrow semantic 
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interoperability capabilities. HyBrow/HyQue's 
hypotheses are domain-specific statements that correlate 
biological processes (seen as events) in the First-Order 
Logic (FOL). Hypotheses are formulated as instances of 
the HyQue Hypothesis Ontology and are evaluated 
through a set of SPARQL queries against biologically-
typed OWL and HyBrow data. The query results are 
scored in terms of how the set of events correspond to 
background expectations. A score indicates the level of 
support the data lends the hypothesis. Each event is 
evaluated independently in order to quantify the degree 
of support it provides for the hypothesis posed. 
Hypothesis scores are linked as properties to the 
respective hypothesis. 

OBI (the Ontology for Biomedical Investigations) 
project (http://obi-ontology.org) aims to model the 
design of an investigation: the protocols, the 
instrumentation, and materials used in experiments and 
the data generated [20]. Ontologies such as EXPO and 
OBI enable the recording of the whole structure of 
scientific investigations: how and why an investigation 
was executed, what conclusions were made, the basis 
for these conclusions, etc. As a result of these generic 
ontology development efforts, the Minimum 
Information about a Genotyping Experiment (MIGen) 
recommends the use of terms defined in OBI. The use 
of a generic or a compliant ontology to supply terms 
will stimulate cross-disciplinary data-sharing and reuse. 
As much detail about an investigation as possible in 
order to make the investigation more reproducible and 
reusable can be collected [39]. 

Hypothesis modeling is embedded into the 
knowledge infrastructures being developed in various 
branches of science. One example of such infrastructure 
is considered under the name SWAN – a SemanticWeb 
Application in Neuromedicine [20]. SWAN is a project 
for developing an integrated knowledge infrastructure 
for the Alzheimer disease (AD) research community. 
SWAN incorporates the full biomedical research 
knowledge lifecycle in its ontological model, including 
support for personal data organization, hypothesis 
generation, experimentation, laboratory data 
organization, and digital pre-publication collaboration. 
The common ontology is specified in an RDF Schema. 
SWAN’s content is intended to cover all stages of the 
“truth discovery” process in biomedical research, from 
formulation of questions and hypotheses, to capture of 
experimental data, sharing data with colleagues, and 
ultimately the full discovery and publication process. 

Several information categories created and managed 
in SWAN are defined as subclasses of Assertion. They 
include Publication, Hypothesis, Claim, Concept, 
Manuscript, DataSet, and Annotation. An Assertion 
may be made upon any other Assertion, or upon any 
object specifiable by URL. For example, a scientist can 
make a Comment upon, or classify, the Hypothesis of 
another scientist. Linking to objects “outside” SWAN  
by URL allows one to use SWAN as metadata to 
organize – for example – all one’s PDFs of publications, 
or the Excel files in which one’s laboratory data is 

stored, or all the websites of tools relevant to 
Neuroscience. Annotation may be structured or 
unstructured. Structured annotation means attaching a 
Concept (tag or term) to an Assertion. Unstructured 
annotation means attaching free text. Concepts are 
nodes in controlled vocabularies, which may also be 
hierarchical (taxonomies).  

4.3 Scientific hypothesis formalization 

An example showing on Fig. 6 the diversity of the 
components of a scientific hypothesis model has been 
borrowed from the applications in Neuroscience 
[54, 55] and in a human cardiovascular system in 
Computational Hemodynamics [23, 56]. The 
formalization of a scientific hypothesis was provided by 
a mathematical model, by a set of differential equations 
for continuous processes, quantifying the variations of 
physical quantities in continuous space-time and by the 
mathematical solver (HEMOLAB) for discrete 
processes. The mathematical equations were represented 
in MathML, enabling models interchange and reuse. 

In [3] the formalism of quantitative process models 
is presented that provides for encoding of scientific 
models formally as a set of equations and informally in 
terms of processes expressing those equations. The 
model revision works as follows. For input it is required 
an initial model; a set of constraints representing 
acceptable changes to the initial model in terms of 
processes; a set of generic processes that may be added 
to the initial model; observations to which the revised 
model should fit. These data provide the approach with 
a heuristic that guides search toward parts of the model 
space that are consistent with the observations. The 
algorithm generates a set of revised models that are 
sorted by their distance from the initial model and 
presented with their mean squared error on the training 
data. The distance between a revised model and the 
initial model is defined as the number of processes that 
are present in one but not in the other. The abilities of 
the approach have been successfully checked in several 
environmental domains. 

Formalisms for hypothesis formation are mostly 
monotonic and are considered to be not quite suitable 
for knowledge representation, especially in dealing with 
incomplete knowledge, which is often the case with 
respect to biochemical networks. In [69] knowledge 
based framework for the general problem of hypothesis 
formation is presented. The framework has been 
implemented by extending BioSigNet-RR – a  
knowledge based system that supports elaboration 
tolerant representation and non-monotonic reasoning. 
The main features of the extended system provide: (1) 
seamless integration of hypothesis formation with 
knowledge representation and reasoning; (2) use of 
various resources of biological data as well as human 
expertise to intelligently generate hypotheses; (3) 
support for ranking hypotheses and for designing 
experiments to verify hypotheses. The extended system 
is positioned as a prototype of an intelligent research 
assistant of molecular biologists. 
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Fig. 6. Elements of the scientific hypothesis model 
 

4.4 Hypothesis-driven robots 

The Robot Scientist [66] oriented on genomic 
applications is a physically implemented system which 
is capable of running cycles of scientific 
experimentation and discovery in a fully automatic 
manner: hypothesis formation, experiment selection to 
test these hypotheses, experiment execution using 
robotic system, results analysis and interpretation, 
repeating the cycle (closed-loop in which the results 
obtained are used for learning from them and feeding 
the resulting knowledge back into the experimental 
models). Deduction, induction and abduction are types 
of logical reasoning used in scientific discovery (section 
3). The full automation of science requires 'closed-loop 
learning', where the computer not only analyses the 
results, but learns from them and feeds the resulting 
knowledge back into the next cycle of the process 
(Fig. 6). 

In the Robot Scientist the automated formation of 
hypotheses is based on the following key components: 

1. Machine–computable representation of the 
domain knowledge. 

2. Abductive or inductive inference of novel 
hypotheses. 

3. An algorithm for the selection of hypotheses. 

4. Deduction of the experimental consequences of 
hypotheses. 

Adam, the first Robot Scientist prototype, was 
designed to carry out microbial growth experiments to 

study functional genomics in the yeast Saccharomyces 
cerevisiae, specifically to identify the genes encoding 
'locally orphan enzymes'. Adam uses a comprehensive 
logical model of yeast metabolism, coupled with a 
bioinformatic database (Kyoto Encyclopaedia of Genes 
and Genomes – KEGG) and standard bioinformatics 
homology search techniques (PSI-BLAST and FASTA) 
to hypothesize likely candidate genes that may encode 
the locally orphan enzymes. This hypothesis generation 
process is abductive. 

To formalize Adam’s functional genomics 
experiments, the LABORS ontology (LABoratory 
Ontology for Robot Scientists) has been developed. 
LABORS is a version of the ontology EXPO (as an 
upper layer ontology) customized for Robot scientists to 
describe biological knowledge. LABORS is expressed 
in OWL-DL. LABORS defines various structural 
research units, e.g. trial, study, cycle of study and 
replicate as well as design strategy, plate layout, 
expected actual results. The respective concepts and 
relations in the functional genomics data and metadata 
are also defined. Both LABORS and the corresponding 
database (used for storing the instances of the classes) 
are  translated  into  Datalog  in  order  to  use  the  
SWI-Prolog reasoner for required applications [39]. 

There were two types of hypotheses generated. The 
first level links an orphan enzyme, represented by its 
enzyme class (E.C.) number, to a gene (ORF) that 
potentially encodes it. This relation is expressed as a two 
place predicate where the first argument is the ORF and the 
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second the E.C. number. An example of hypothesis at this 
level is: encodesORFtoEC('YBR166C', '1.1.1.25'). 

The second level of hypothesis involves the association 
between a specific strain, referenced via the name of its 
missing ORF, and a chemical compound which should 
affect the growth of the strain, if added as a nutrient to its 
environment. This level of hypothesis is derived from the 
first by logical inference using a specific model of yeast 
metabolism. An example of such a hypothesis is: affects 
growth('C00108','YBR166C'), where the first argument is 
the compound (names according to KEGG) and the second 
argument is the  strain considered.  

Adam then designs the experimental assays required 
to test these hypotheses for execution on the laboratory 
robotic system. These experiments are based on a two-
factor design that compares multiple replicates of the 
strains with and without metabolites compared against 
wild type strain controls with and without metabolites. 

System model and 
knowledge base

Initial START point:
Hypotheses generation

Experiment generation 
and design

Execution of 
experiments on an 
automated robotic 

system

Collection of experimental 
observations and other 

meta-data

Analysis of results 
by statistics and 

machine learning
New knowledge

Update the 
system model

Cycles of 
automated hypotheses 

generation and 
experimentation

Fig. 6. Hypothesis driven closed-loop learning 

Adam follows a hypothetico-deductive methodology 
(section 2). Adam abductively hypothesizes new facts 
about yeast functional biology, then it deduces the 
experimental consequences of these facts using its 
model of metabolism, which it then experimentally 
tests. To select experiments Adam takes into account 
the variable cost of experiments, and the different 
probabilities of hypotheses. Adam chooses its 
experiments to minimize the expected cost of 
eliminating all but one hypothesis. This is in general a 
NP complete problem and Adam uses heuristics to find 
a solution [65]. 

It is now likely that the majority of hypotheses in 
biology are computer generated. Computers are 
increasingly automating the process of hypothesis 
formation, for example: machine learning programs 
(based on induction) are used in chemistry to help 
design drugs; and in biology, genome annotation is 
essentially a vast process of (abductive) hypothesis 
formation. Such computer-generated hypotheses have 
been necessarily expressed in a computationally 
amenable way, but it is still not common practice to 
deposit them into a public database and make them 
available for processing by other applications [65]. 

The details describing the software and informatics 
decisions in the Robot Scientist project can be found in 
[65, 66] and online at the website  http://www.aber.ac.uk/ 
compsci/Research/bio/robotsci/data/informatics/). The 
details for developing the formalization used for 
Adam’s functional genomics investigations can be 
found in [13, 39]. An ontology-based formalization 

based on graph theory and logical modeling makes it 
possible to keep an accurate track of all the result units 
used for different goals, while preserving the semantics 
of all the experimental entities involved in all the 
investigations. It is shown how experimentation and 
machine learning are used to identify additional 
knowledge to improve the metabolic model [13]. 

4.5 Hypotheses as data in probabilistic databases 

Another view of hypotheses encoding and 
management is presented in [51]. Authors use 
probabilistic database techniques for hypotheses 
systematic construction and management. MayBMS 
[30], a probabilistic database management system, is 
used as a core for hypothesis management. This 
methodology (called γ-DB) enables researchers to 
maintain several hypotheses explaining some 
phenomena and provides evaluation mechanism based 
on Bayesian approach to rank them. 

The construction of γ-DB database comprises 
several steps. In the first step, phenomenon and 
hypothesis entities are provided as input to the system. 
Hypothesis is a set of mathematical equations expressed 
as functions in W3C MathML-based format and is 
associated with one or more simulation trial dataset, 
consisting of tuples with input variables of equation and 
its corresponding output as functionally dependent (FD) 
variables (the predictions). Phenomenon is represented 
by at least one empirical dataset similar to simulation 
trials. In the next step, the system deals with hypotheses  
and phenomena in the following way: 1) researcher has 
to provide some meta data about hypotheses and 
phenomena; e.g., hypotheses need to be associated with 
the respective phenomena and assigned a prior 
confidence distribution (uniform by default according to 
the principle of maximum entropy (3.2.3)); 2) functional 
dependencies (FD) are extracted from equations in order 
to obtain database schema to store simulations and 
experimental data; it should be mentioned that to 
precisely identify hypothesis formulation the special 
attributes for phenomena and hypothesis references are 
introduced into FD; 3) tuples are synthesized from 
simulation trials and observational data by uncertain 
pseudo-transitive closure and  reasoning; 4) finally, the 
probabilistic γ-DB database is formed. Once 
phenomenon and hypothesis (with empirical datasets 
and simulation trials) are produced it becomes possible 
to manipulate them with database tools. 

MayBMS provides tools to evaluate competing 
hypotheses for the explanation of a single phenomenon. 
With prior probabilities already provided the system 
allows to make one or more (if new observational data 
appears) Bayesian inference steps. In each step the prior 
probability is updated to posterior according to Bayes’ 
theorem. As a result, hypotheses which better explain 
phenomenon get higher probabilities enabling 
researchers to make more confident decisions (see also 
3.2.1). The γ-DB approach provides a promising way to 
analyse hypotheses in large scale DIR as uncertain 
predictive database in face of empirical data. 
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5 Examples of hypothesis-driven scientific 
research 

5.1 Besançon Galaxy model 

Various models in astronomy heavily rely on 
hypotheses. One of the most impressive is the Besançon 
galaxy model (BGM) [16, 60, 61] evolving for many 
years and representing the population and structure 
synthesis model for the Milky Way. It allows 
astronomers to test hypotheses on the star formation 
history, star evolution, and chemical and dynamical 
evolution of the Galaxy. From the beginning, the aim of 
the BGM was not only to be able to simulate reasonable 
star counts but further to test scenarios of Galactic 
evolution from assumptions on the rate of star formation 
(SFR), initial mass function (IMF), and stellar 
evolution. 

We will further focus on the renewed BGM [16], in 
which authors draw their attention to the Galaxy thin 
disk treatment and use of Tycho-2 as a testing dataset. 
The parameters of BGM (such as IMF, SFR and 
evolutionary track sets) explicitly and model ingredients 
implicitly can be treated as hypotheses. Model 
ingredients include the treatment of binarity, the local 
stellar mass densities of thin disk, extinction model,  
age-metallicity and age-velocity relations, radial scale 
length,  the age of the Galaxy thin disc, different sets of 
the star atmosphere models, etc. 

Tycho-2 dataset and χ2-type statistics test is used to 
test various versions of these hypotheses in order to 
choose the most appropriate ones and update model to 
better fit the provided data. The tests were made by 
comparing star counts and (B−V)T colour distributions 
between data and simulations. Two different tests were 
used to evaluate the adequacy of the stellar densities 
globally and to test the shape of the colour distribution.  

Due to the fact, that some ingredients of the model 
are highly correlated (such as the IMF, SFR and the 
local mass density) the authors defined default models 
as a combination of a new set of ingredients that 
significantly improve the fit to Tycho data.  So, 11 IMF 
functions, 2 SFR functions, 2 evolutionary track sets, 3 
sets of atmosphere models, 3 values for the age of the 
formation of the thin disk, 3 sets of values of the thin 
disk local stellar volume mass density were tested. As a 
result of testing, the two most appropriate IMS and SFR 
hypotheses were chosen. Based on this experience, an 
investigation of the thick disc is underway using SDSS 
and 2MASS surveys. 

5.2 Connectome analysis based on network data  

In the neuroscience community the development of 
common paradigms for interrogating the myriad 
functional systems in the brain remains to be the core 
challenge. Building on the term “connectome,” coined 
to describe the comprehensive map of neural 
connections in the human brain, the “functional 
connectome” denotes the collective set of functional 
connections in the human brain (its “wiring diagram”) 
[7]. More broadly, a connectome would include the 

mapping of all neural connections within 
an organism's nervous system. The production and study 
of connectomes, known as connectomics, may range in 
scale from a detailed map of the full set of neurons and 
synapses within part or all of the nervous system of an 
organism to a macro scale description [15] of the 
functional and structural connectivity between all 
cortical areas and subcortical structures. The ultimate 
goal of connectomics is to map the human brain. In 
functional magnetic resonance imaging (fMRI), 
associations are thought to represent functional 
connectivity, in the sense that the two regions of the 
brain participate together in the achievement of some 
higher-order function, often in the context of performing 
some task. fMRI has emerged as a powerful tool used to 
interrogate a multitude of functional circuits 
simultaneously. This has elicited the interest of 
statisticians working in that area. At the level of basic 
measurements, neuroimaging data can be considered to 
consist typically of a set of signals (usually time series) 
at each of a collection of pixels (in two dimensions) or 
voxels (in three dimensions). Building from such data, 
various forms of higher-level data representations are 
employed in neuroimaging. In recent years a substantial 
interest in network-based representations has emerged 
in neuroimaging to use networks to summarize 
relational information in a set of measurements, 
typically assumed to be reflective of either functional or 
structural relationships between regions of interest in 
the brain. With neuroimaging now a standard tool in 
clinical neuroscience, quickly moving towards a time in 
which we will have available databases composed of 
large collections of secondary data in the form of 
network-based data objects is predictable.  

One of the most basic tasks of interest in the analysis 
of such data is the testing of hypotheses, in answer to 
questions such as “Is there a difference between the 
networks of these two groups of subjects?" Networks 
are not Euclidean objects, and hence classical methods 
of statistics do not directly apply. Network-based 
analogues of classical tools for statistical estimation and 
hypothesis testing are investigated [21, 22]. Such 
research is motivated by the 1000 Functional 
Connectomes Project (FCP) launched in 2010 [7].The 
1000 FCP [74] constitutes the largest data set of its kind 
similarly to large data sets in genetics. Other projects 
(such as the Human Connectome Project (HCP)) are 
aimed to build a network map of the human brain in 
healthy, living adults. The total volume of data 
produced by the HCP will likely be multiple 
petabytes [46]. HCP informatics platform includes data 
management system ConnectomeDB that is based on 
the XNAT imaging informatics platform [47], a widely 
used open source system for managing and sharing 
imaging and related data. 

Visualization, processing and analysis of high-
dimensional data such as images often requires some 
kind of preprocessing to reduce the dimensionality of 
the data and find a mapping from the original 
representation to a low-dimensional vector space. The 
assumption is that the original data resides in a low-
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dimensional subspace or manifold [11], embedded in 
the original space. This topic of research is called 
dimensionality reduction, non-linear dimensionality 
reduction, including methods for parameterization of 
data using low-dimensional manifolds as models. 
Within the neural information processing community 
this has become known as manifold learning. Methods 
for manifold learning are able to find non-linear 
manifold parameterizations of datapoints residing in 
high-dimensional spaces, very much like Principal 
Component Analysis (PCA) is able to learn or identify 
the most important linear subspace of a set of data 
points (projecting data on a n-dimensional linear 
subspace which maximizes the variance of the data in 
the new space). 

In [21] necessary mathematical properties associated 
with a certain notion of a ‘space’ of networks used to 
interpret functional neuroimaging connectome-oriented 
data are established. Extension of the classical statistics 
tools to network-based datasets, however, appeared to 
be highly non-trivial. The main challenge in such an 
extension is due to the fact that networks are not 
Euclidean objects (for which classical methods were 
developed) – rather, they are combinatorial objects, 
defined through their sets of vertices and edges. In [21] 
it was shown that networks can be associated with 
certain natural subsets of Euclidean space, and 
demonstrated that through a combination of tools from 
geometry, probability on manifolds, and high-
dimensional statistical analysis it is possible to develop 
a principled and practical framework in analogy to 
classical tools. In particular, an asymptotic framework 
for one- and two-sample hypothesis testing has been 
developed. Key to this approach is the correspondence 
between an undirected graph and its Laplacian, where 
the latter is defined as a matrix (associating with a 
network). Graph Laplacian appeared to be particularly 
appropriate to be used for such matrices. The space of 
graph Laplacians is used working in certain subsets of 
Euclidian space which are some submanifolds of the 
standard Euclidian space. 

The 1000 FCP describes functional neuroimaging 
data from 1093 subjects, located in 24 community-based 
centers. The mean age of the participants is 29 years, and 
all subjects were 18 years-old or older. It is of interest to 
compare the subject-specific networks of males and 
females in the 1000 FCP data set. In [21] for the 1000 
FCP database comparing of networks with respect to the 
sex of the subjects, over different age group, and over 
various collection sites is considered. It is shown that it is 
necessary to compute the means in each subgroup of 
networks. This was done by constructing the Euclidean 
mean of the Laplacians for each group of subjects in 
different age groups. Such group-specific mean 
Laplacians can then be interpreted as the mean functional 
connectivity in each group. Such approach provides for 
building the hypothesis tests about the average of 
networks or groups of networks to investigate the effect 
of sex differences on entire networks. 

For the 1000 FCP data set it was tested using the 
two-sample test for Laplacians whether sex differences 

were significant to influence patterns of brain 
connectivity. The null hypothesis of no group 
differences was rejected with high probability. Similarly 
for the three different age cohorts the null hypothesis of 
no cohort differences also was rejected with high 
probability. 

On such examples it was shown [21] that the 
proposed global test has sufficient power to reject the 
null hypothesis in cases when mass-univariate approach 
(considered to be the gold standard in fMRI research 
[43]) fails to detect the differences at the local level. 
According to the mass-univariate approach statistical 
analysis is performed iteratively on all voxels to identify 
brain regions whose fMRI detected responses display 
significant statistical effects.  Thus it was shown that a 
framework for network-based statistical testing is more 
statistically powerful, than a mass-univariate approach. 

It is expected that in the near future there will be a 
plethora of databases of network-based objects in 
neuroscience motivating the development and extension 
of various tools from classical statistics to global 
network data. 

In the [70] paper discussion the relationship between 
neuroimaging and Big Data areas it is analyzed how 
modern neuroimaging research represents a 
multifactorial and broad ranging data challenge, 
involving the growing size of the data being acquired; 
sociological and logistical sharing issues; infrastructural 
challenges for multi-site, multi-datatype archiving; and 
the means by which to explore and mine these data. As 
neuroimaging advances further, e.g. aging, genetics, and 
age-related disease, new vision is needed to manage and 
process this information while marshalling of these 
resources into novel results. It is predicted that on this 
way “big data” can become “big” brain science. 

5.3 Climate in Australia 

Another view on hypothesis representation and 
evaluation is presented in [41]. Authors argue, that as 
long as in DIS data relevant to some hypotheses gets 
continuously aggregated as time passes, hypotheses 
should be represented as programs that are executed 
repeatedly, as new relevant amounts of data gets 
aggregated. Their method and techniques are illustrated 
by examining hypotheses about temperature trends in 
Australia during the 20th century. The hypothesis being 
tested comes from [42], stated that the temperature 
series is not stationary and is integrated of order 1 (I(1)). 
Non-stationarity means that the level of the time series 
is not stable in time and can show increasing and 
decreasing trends. I(1) means that by differentiating the 
stochastic process a stationary process (main statistical 
properties of the series remain unchanged) is obtained. 
Phillips-Perron test and the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test are used and both of them 
are executed in R. Several data sources are crawled: 1) 
The National Oceanographic and Atmospheric 
Administration marine and weather information, 2) 
Australian Bureau of Meteorology dataset. The 
framework consists of R interpreter and R SPARQL, 
tseries packages. Authors also used agINFRA for 
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computation and rich semantics to support traditional 
scientific workflows for natural sciences. Authors 
received further evidence on different independent 
dataset that time series is integrated of order 1. 

5.4 Financial market 

Efficient-market hypothesis (EMH) is one of the 
most prominent in finance and “asserts that financial 
markets are "informationally efficient"”. In [8] authors 
test the weak form of EMH, stating that prices on traded 
assets (e.g., stocks, bonds, or property) already reflect 
all past publicly available information. The null 
hypothesis states that successive prices changes are 
independent (random walk). The alternative hypothesis 
states that they are dependent. To check if the 
successive closing prices are dependent of each other 
the following statistical tests were used: a serial 
correlation test, a runs test, an augmented Dickey-Fuller 
test and the multiple variance ratio test. Tests were 
performed on daily closing prices from the six European 
stock markets (France, Germany and UK, Greece, 
Portugal and Spain) during the period between 1993 and 
2007. The result of each test states whether successive 
closing prices are dependent of each other. 

Test provides evidence that for monthly prices and 
returns the null hypothesis should not be rejected for all 
six markets. If daily prices are concerned the null 
hypothesis is not rejected for France, Germany, UK and 
Spain, but this hypothesis is rejected for Greece and 
Portugal. However, on the 2003-2007 dataset the null 
hypothesis for these two countries is not rejected as 
well. 

In [8] Bollen et al. use different approach to test 
EMH. Authors investigate whether public sentiment, as 
expressed in large-scale collections of daily Twitter 
posts, can be used to predict the stock market. They 
build public mood time series by sentiment analysis of 
tweets from February 28, 2008 to December 19, 2008 
and try to show that it can predict Dow Jones Index 
corresponding values. The null hypothesis states that the 
mood time series do not predict DJIA values. Granger 
causality analysis in which Dow Jones values and mood 
time series are correlated is used to test the null 
hypothesis. Granger causality analysis is used to 
determine if one time series can predict another time-
series. Its results reject the null hypothesis and claim 
that public opinion is predictive of changes in DJIA 
closing values. 

6 Conclusion  

The objective of this study is to analyze, collect and 
systematize information on the role of hypotheses in the 
data intensive research process as well as on support of 
hypothesis formation, evaluation, selection and 
refinement in course of the natural phenomena 
modeling and scientific experiments. The discussion is 
started with the basic concepts defining the role of 
hypotheses in the formation of scientific knowledge and 
organization of the scientific experiments. Based on 
such concepts, the basic approaches for hypothesis 

formulation applying logical reasoning, various methods 
for hypothesis modeling and testing (including classical 
statistics, Bayesian hypothesis and parameter estimation 
methods, hypothetico-deductive approaches)   are 
briefly introduced. Special attention is given to 
discussion of the data mining and machine learning 
methods role in process of generation, selection and 
evaluation of hypotheses as well as the methods for 
motivation of new hypothesis formulation. Facilties of 
informatics for support of hypothesis-driven 
experiments, considered in the paper, are aimed at the 
conceptualization of scientific experiments, hypothesis 
formulation and browsing in various domains (including 
biology, biomedical investigations, neuromedicine, 
astronomy), automatic organization of hypothesis-
driven   experiments. Examples of scientific researches 
applying hypotheses  considered in the paper include 
modeling of population and structure synthesis of the 
Galaxy, connectome-related hypothesis testing,  
studying of temperature trends in Australia, analysis of 
stock markets applying the EMN (Efficient market 
hypothesis), as well as algorithmic generation of 
hypotheses in the IBM Watson project  applying the 
NLP and knowledge representation and reasoning 
technologies. An introduction into the state of the art of 
the hypothesis-driven research presented in the paper 
opens a way for investigation of the generalized 
approaches for efficient organization of hypothesis-
driven experiments applicable for various branches 
of DIS. 
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