
Exploring Graph Partitioning for
Shortest Path Queries on Road Networks

Theodoros Chondrogiannis
Free University of Bozen-Bolzano

tchond@inf.unibz.it

Johann Gamper
Free University of Bozen-Bolzano

gamper@inf.unibz.it

ABSTRACT
Computing the shortest path between two locations in a road net-
work is an important problem that has found numerous applica-
tions. The classic solution for the problem is Dijkstra’s algo-
rithm [1]. Although simple and elegant, the algorithm has proven
to be inefficient for very large road networks. To address this defi-
ciency of Dijkstra’s algorithm, a plethora of techniques that intro-
duce some preprocessing to reduce the query time have been pro-
posed. In this paper, we propose Partition-based Shortcuts (PbS), a
technique based on graph-partitioning which offers fast query pro-
cessing and supports efficient edge weight updates. We present a
shortcut computation scheme, which exploits the traits of a graph
partition. We also present a modified version of the bidirectional
search [2], which uses the precomputed shortcuts to efficiently an-
swer shortest path queries. Moreover, we introduce the Corridor
Matrix (CM), a partition-based structure which is exploited to re-
duce the search space during the processing of shortest path queries
when the source and the target point are close. Finally, we evaluate
the performance of our modified algorithm in terms of preprocess-
ing cost and query runtime for various graph partitioning configu-
rations.

Keywords
Shortest path, road networks, graph partitioning

1. INTRODUCTION
Computing the shortest path between two locations in a road

network is a fundamental problem and has found numerous ap-
plications. The problem can be formally defined as follows. Let
G(V,E) be a directed weighted graph with vertices V and edges
E. For each edge e ∈ E, a weight l(e) is assigned, which usually
represents the length of e or the time required to cross e. A path p
between two vertices s, t ∈ V is a sequence of connected edges,
p(s, t) = 〈(s, v1), (v1, v2), . . . , (vk, vt)〉 where (vk, vk+1) ∈ E,
that connects s and t. The shortest path between two vertices s and
t is the path p(s, t) that has the shortest distance among all paths
that connect s and t.

In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26 GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.
Copyright c©by the paper’s authors. Copying permitted only for private
and academic purposes..

The classic solution for the shortest path problem is Dijkstra’s al-
gorithm [1]. Given a source s and a destination t in a road network
G, Dijkstra’s algorithm traverses the vertices in G in ascending or-
der of their distances to s. However, Dijkstra’s algorithm comes
with a major shortcoming. When the distance between the source
and the target vertex is high, the algorithm has to expand a very
large subset of the vertices in the graph. To address this short-
coming, several techniques have been proposed over the last few
decades [3]. Such techniques require a high start-up cost, but in
terms of query processing they outperform Dijkstra’s algorithm by
orders of magnitude.

Although most of the proposed techniques offer fast query pro-
cessing, the preprocessing is always performed under the assump-
tion that the weights of a road network remain unchanged over
time. Moreover, the preprocessing is metric-specific, thus for dif-
ferent metrics the preprocessing needs to be performed for each
metric. The recently proposed Customizable Route Planning [4]
applies preprocessing for various metrics, i.e., distance, time, turn
cost and fuel consumption. Such an approach allows a fast com-
putation of shortest path queries using any metric desired by the
user, at the cost of some extra space. Moreover, the update cost for
the weights is low since the structure is designed such that only a
small part of the preprocessed information has to be recomputed.
In this paper, our aim is to develop an approach which offers even
faster query processing, while keeping the update cost of the pre-
processed information low. This is particularly important in dy-
namic networks, where edge weights might frequently change, e.g.,
due to traffic jams.

The contributions of this paper can be summarized as follows:

• We present Partitioned-based Shortcuts (PbS), a preprocess-
ing method which is based on Customizable Route Planning
(CRP), but computes more shortcuts in order to reduce the
query processing time.

• We propose the Corridor Matrix (CM), a pruning technique
which can be used for shortest path queries when the source
and the target are very close and the precomputed shortcuts
cannot be exploited.

• We run experiments for several different partition configura-
tions and we evaluate our approach in terms of both prepro-
cessing and query processing cost.

The rest of the paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we describe in detail the prepro-
cessing phase of our method. In Section 5, we present a modified
version of the bidirectional search algorithm. In Section 6, we show
preliminary results of an empirical evaluation. Section 7 concludes
the paper and points to future research directions.

2. RELATED WORK
The preprocessing based techniques that have been proposed

in order to reduce the time required for processing shortest path
queries can be classified into different categories [3]. Goal-directed
techniques use either heuristics or precomputed information in or-
der to limit the search space by excluding vertices that are not in
the direction of the target. For example, A∗ [5] search uses the
Euclidean distance as a lower bound. ALT [6] uses precomputed
shortest path distances to a carefully selected set of landmarks and
produces the lower bound using the triangle inequality. Some goal-
directed techniques exploit graph partitioning in order to prune the
search space and speed-up queries. Precomputed Cluster Distances
(PCD) [7] partitions the graph into k components, computes the
distance between all pairs of components and uses the distances be-
tween components to compute lower bounds. Arc Flags [8] main-
tains a vector of k bits for each edge, where the i-th bit is set if the
arc lies on a shortest path to some vertex of component i. Other-
wise, all edges of component i are pruned by the search algorithm.

Path Coherent techniques take advantage of the fact that shortest
paths in road networks are often spatially coherent. To illustrate the
concept of spatial coherence, let us consider four locations s, s′, t
and t′ in a road network. If s is close to s′ and t is close to t′, the
shortest path from s to t is likely to share vertices with the shortest
path from s′ to t′. Spatial coherence methods precompute all short-
est paths and use then some data structures to index the paths and
answer queries efficiently. For example, Spatially Induced Linkage
Cognizance (SILC) [9] use a quad-tree [10] to store the paths. Path-
Coherent Pairs Decomposition (PCPD) [11] computes unique path
coherent pairs and retrieves any shortest path recursively in almost
linear time to the size of the path.

Bounded-hop techniques aim to reduce a shortest path query to
a number of look-ups. Transit Node Routing (TNR) [12] is an in-
dexing method that imposes a grid on the road network and re-
computes the shortest paths from within each grid cell C to a set
of vertices that are deemed important for C (so-called access nodes
of C). More approaches are based on the theory of 2-hop label-
ing [13]. During preprocessing, a label L(u) is computed for each
vertex u of the graph such that for any pair u, v of vertices, the
distance dist(u, v) can be determined by only looking at the labels
L(u) and L(v). A natural special case of this approach is Hub La-
beling (HL) [14], in which the label L(u) associated with vertex
u consists of a set of vertices (the hubs of u), together with their
distances from u.

Finally, Hierarchical techniques aim to impose a total order on
the nodes as they deem nodes that are crossed by many shortest
paths as more important. Highway Hierarchies (HH) [15] and its
direct descendant Contraction Hierarchies (CH) organize the nodes
in the road network into a hierarchy based on their relative im-
portance, and create shortcuts among vertices at the same level
of the hierarchy. Arterial Hierarchies (AH) [16] are inspired by
CH, but produce shortcuts by imposing a grid on the graph. AH
outperform CH in terms of both asymptotic and practical perfor-
mance [17]. Some hierarchical approaches exploit graph partition
to create shortcuts. HEPV [18] and HiTi [19] are techniques that
pre-computes the distance between any two boundary vertices and
create a new overlay graph. By partitioning the overlay graph and
repeating the process several times, a hierarchy of partitions is cre-
ated, which is used to process shortest path queries.

The recent Customizable Route Planning (CRP) [4] is the clos-
est work to our own. CRP is able to handle various arbitrary met-
rics and can also handle dynamic edge weight updates. CRP uses
PUNCH [20], a graph partitioning algorithm tailored to road net-
works. CRP pre-computes distances between boundary vertices

in each component and then CRP applies a modified bidirectional
search algorithm which expands only the shortcuts and the edges in
the source or the target component. The main difference between
our approach and CRP is that, instead of computing only shortcuts
between border nodes in each component, we compute shortcuts
from every node of a component to the border nodes of the same
component. The extra shortcuts enable the bidirectional algorithm
to start directly from the border nodes, while CRP has to scan the
original edges of the source and the target component.

3. PBS PREPROCESSING
The Partition-based Shortcuts (PbS) method we propose ex-

ploits graph partitioning to produce shortcuts in a preprocessing
phase, which during the query phase are used to efficiently com-
pute shortest path queries. The idea is similar to the concept of
transit nodes [12]. Every shortest path between two nodes lo-
cated in different partitions (also termed components) can be ex-
pressed as a combination of three smaller shortest paths. Con-
sider the graph in Figure 1 and a query q(s, t), where s ∈ C1

and t ∈ C5. The shortest path from s to t can be expressed as
p(s, bs) + p(bs, bt) + p(bt, t), where bs ∈ {b1, b2} and bt ∈
{b3, b4, b5}. Before PbS is able to process shortest path queries,
a preprocessing phase is required, which consists of three steps:
graph partitioning, in-component shortcut computation and short-
cut graph construction.

3.1 Graph Partitioning
The first step in the pre-processing phase is the graph partition-

ing. Let G(V,E) be a graph with vertices V and edges E. A
partition of G is a set P (G) = {C1, . . . , Ck} of connected sub-
graphs Ci of G, also referred to as components of G. For the set
P (G), all components must be disjoint, i.e., C1 ∩ . . . ∩ Ck = ∅.
Moreover, let V1, . . . , V|P (G)| be the sets of vertices of each com-
ponent. The vertex sets of all components must cover the vertex set
of the graph, i.e., V1 ∪ . . . ∪ V|P (G)| = V . We assign a tag to each
node of the original graph, which indicates the component the node
is located in. The set of connecting edges, EC ⊆ E, is the set of all
edges in the graph for which the source and target nodes belong to
different components, i.e., (n, n′) ∈ E such that n ∈ Ci, n′ ∈ Cj

and Ci 6= Cj . Finally, we define the border nodes of a component
C. A node n ∈ C is a border node of C if there exists a connecting
edge e = (n, n′) or e = (n′, n), i.e., n′ is not in C. If e = (n, n′),
n is called outgoing border node of C, whereas if e = (n′, n), n
is called incoming border node of C. The set of all border nodes
of a graph is referred to as B. Figure 1 illustrates a graph parti-
tioned into five components. The filled nodes are the border nodes.
Note that for ease of exposition we use only undirected graphs in
the examples.

Figure 1: Partitioned graph into five components.

We characterize a graph partition as good if it minimizes the
number of connecting edges between the components. However,
graph partitioning is an NP -hard problem, thus an optimal solu-
tion is out of the question [21]. A popular approach is multilevel
graph partitioning (MGP), which can be found in many software
libraries, such as METIS [22]. Algorithms such as PUNCH [20]
and Spatial Partition Clustering (SPC) [23] take advantage of road
network characteristics in order to provide a more efficient graph
partitioning. We use METIS for graph partitioning since it is the
most efficient approach out of all available ones [24]. METIS re-
quires only the number of components as an argument in order to
perform the partitioning. The number of components influences
both the number of the in-component shortcuts and the size of the
shortcut graph.

3.2 In-component Shortcuts
The second step of the preprocessing phase is the computation of

the in-component shortcuts. For each node n in the original graph,
we compute the shortest path from the node to every outgoing bor-
der node of the component in which n is located. Then we create
outgoing shortcuts which abstract the shortest path from n to each
outgoing border node. The incoming shortcuts are computed in a
similar fashion. Thus, the total number of in-component shortcuts,
S, is

S =

k∑
i=1

Ni × (|Biinc |+ |Biout |),

where Ni is the number of nodes in component Ci and Biinc ,
Biout are the incoming and outgoing border nodes of Ci, respectiv-
elly. Figure 2 shows the in-component shortcuts for a node located
in component C2.

Figure 2: In-component shortcuts for a given node.

For each border node in a component, b ∈ C, we execute Di-
jkstra’s algorithm with b as source and all other nodes (including
border nodes) in C as targets. Depending on the type of the source
node, the expansion strategy is different. When an incoming bor-
der node is the source, forward edges are expanded; vice versa,
when an outgoing border node is the source, incoming edges are
expanded. This strategy ensures that the maximum number of node
expansions is at most twice the number of border nodes of G.

3.3 Shortcut Graph Construction
The third step of the preprocessing phase of our approach is the

construction of the shortcut graph. Given a graph G, the shortcut
graph of G is a graph Gsc(B,Esc), where B is the set of border
nodes of G and Esc = EC ∪ SG is the union of the connecting
edges, EC , of G and the shortcuts, SG, from every incoming bor-
der node to every outgoing border node of the same component.

Thus, the number of vertices and edges in the shortcut graph is,
respectively,

|B| =
k∑

i=1

|Biinc ∪Biout | and

|Esc| =
k∑

i=1

(|Biinc | × |Biout |) + EC .

Figure 3 shows the shortcut graph of our running example. Notice
that only border nodes are vertices of the shortcut graph. The set of
edges consists of connecting edges and the in-component shortcuts
between the border nodes of the same component. Note that there
is no need for extra computations in order to populate the shortcut
graph.

Figure 3: Shortcut Graph illustrated over the original.

4. CORRIDOR MATRIX
In Section 3 we presented how PbS creates shortcuts in order to

answer queries when the source and the target points are in differ-
ent components. However, when the source and the target points
of a query are located in the same component, the shortest path
may lie entirely inside the component. Therefore, the search algo-
rithm will never reach the border nodes and the shortcuts will not
be expanded. In such a case, the common approach is to use bidi-
rectional search to return the shortest path. However, if the compo-
nents of the partitioned graph are large, the query processing can be
quite slow. In order to improve the processing time of such queries,
we partition each component again into sub-components, and for
each component, we compute its Corridor Matrix (CM). In gen-
eral, given a partition of a graph G in k components, the Corridor
Matrix (CM) of G is a k × k matrix, where each cell C(i, j) of
CM contains a list of components that are crossed by some short-
est path from a node s ∈ Ci to a node t ∈ Cj . We call such a
list the corridor from Ci to Cj . The concept of the CM is similar
to Arc-Flags [8], but the CM requires much less space. The space
complexity of the CM is O(k3), where k is the number of compo-
nents in the partition, while the space complexity of Arc-Flags is
|E| × k2, where |E| is the number of edges in the original graph.

C1

C2

C3

C4

C5

∅
∅

∅
∅

∅

C1C2C3C4C5

{C2, C3}

Figure 4: Corridor Matrix example.

To optimize the look-up time in CM, we implemented each com-
ponent list using a bitmap of length k. Therefore, the space com-
plexity of the CM in the worst case is O(k3). The actual space
occupied by the CM is smaller, since we do not allocate space for
bitmaps when the component list is empty. For the computation of
the Corridor Matrix, we generate the Shortcut Graph in the same
way as described in Section 3.3. To compute the distances between
all pairs of vertices, we use the Floyd-Warshall algorithm [25],
which is specifically designed to compute the all-pair shortest path
distance efficiently. After having computed the distances between
the nodes, instead of retrieving each shortest path, we retrieve only
the components that are crossed by each path, and we update the
CM accordingly.

5. SHORTEST PATH ALGORITHM
In order to process a shortest path query from a source point s

to a target point t, we first determine the components of the graph
the nodes s ∈ Cs and t ∈ Ct are located in. If Cs = Ct, we
execute a modified bidirectional search from s to t. Note that the
shortcuts are not used for processing queries for which the source
and target are located in the same component C. Instead, we re-
trieve the appropriate corridor from the CM of C, which contains
a list of sub-components. Then, we apply bidirectional search and
prune all nodes that belong to sub-components which are not in the
retrieved corridor.

In the case that the points s and t are not located in the same
component, we exploit the pre-computed shortcuts. First, we re-
trieve the lengths of the in-component outgoing shortcuts from s to
all the outgoing borders of Cs and the length of the in-component
incoming shortcuts from all the incoming borders of Ct to t. Then
we apply a many-to-many bidirectional search in the overlay graph
from all the outgoing borders of Cs to all the incoming borders
of Ct. We use the length of the in-component shortcuts (retrieved
in the first step) as initial weights for the source and target nodes
of the bidirectional search in the Shortcut Graph. The list of edges
consisting the path is a set of connecting edges of the original graph
and in-component shortcuts. For each shortcut we retrieve the pre-
computed set of the original edges. The cost to retrieve the original
path is linear to the size of the path. After the retrieval we replace
the shortcuts with the list of edges in the original graph and we re-
turn the new edge list, which is the shortest path from s to t in the
original graph.

6. PRELIMINARY RESULTS
In this section, we compare our PbS method with CRP, the

method our own approach is based on, and CH, a lightweight yet
very efficient state-of-the-art approach for shortest path queries in
road networks [17]. CRP can handle arbitrary metrics and edge
weight updates, while CH is a technique with fast pre-processing
and relatively low query processing time. We implemented in Java
the basic version of CRP and PbS. The CH algorithm in the ex-
periments is from Graphhopper Route Planner [26]. Due to the
different implementations of the graph models between ours and
CH, we do not measure the runtime. Instead, for preprocessing we
count the extra shortcuts created by each algorithm, while for query
processing we count the number of expanded nodes.

For the experiments we follow the same evaluation setting as
in [17]. We use 5 publicly available datasets [27], four of of which
are a part of the US road network, and the smallest one represents
the road network of Rome. We present the characteristics of each
dataset in Table 1. In order to compare our PbS approach and CRP
with CH, we run our experiments over 5 query sets Q1–Q5, which

Name Region # Vertices # Edges
CAL California/Nevada 1,890,815 4,657,742
FLA Florida 1,070,376 2,712,798
BAY SF Bay Area 321,270 800,172
NY New York City 264,346 733,846

ROME Center of Rome 3353 8,859

Table 1: Dataset characteristics.

contain 1000 queries each. We make sure that the distance of ev-
ery query in set Qi is smaller than the distance of every query
in set Qi+1. We also evaluate the CM separately by comparing
our CM implementation against Arc Flags and the original bidi-
rectional search for a set of 1000 random queries in the ROME
dataset. We use a small dataset in order to simulate in-component
query processing.

6.1 Preprocessing and Space Overhead
Figures 5 and 6 show a series of measurements for the prepro-

cessing cost of our approach in comparison to CRP and CH over
the four largest datasets. Figure 5 shows how many shortcuts are
created by each approach. The extra shortcuts can be translated
into the space overhead required in order to speed-up shortest path
queries. CH uses shortcuts which represent only two edges, while
the shortcuts in PbS and CRP are composed of much longer se-
quences. The difference between the shortcuts produced by CRP
and CH is much less. In short, PbS produces about two orders of
magnitude more shortcuts than CRP and CH. Moreover, we can ob-
serve that the number of shortcuts produced by PbS is getting lower
as the number of components is increasing.

128 256 384 512
0

1

2

3
·107 shortcuts

CH CRP PbS

(a) NY

128 256 384 512
0

1

2

3
·107 shortcuts

(b) BAY

256 512 768 1,024
0

0.25

0.5

0.75

1
·108 shortcuts

(c) FLA

512 1,024 1,536 2,048
0

0.5

1

1.5

2
·108 shortcuts

(d) CAL

Figure 5: Preprocessing: # of shortcuts vs. # of components.

The same tendency as observed for the number of shortcuts can
be observed for the preprocessing time. In Figure 6, we can see
that PbS requires much more time than CRP and CH in order to
create shortcuts. However, we should also notice that the update

cost for CRP and PbS is only a small portion of the preprocessing
cost. When an edge weight changes, we need to update only the
shortcuts that contains that particular edge. In contrast, for CH the
the update cost is the same as the preprocesing cost since a change
in a single weight can influence the entire hierarchy.

128 256 384 512
0

100

200

300
preprocessing time(sec)

CH CRP PbS

(a) NY

128 256 384 512
0

100

200

300
preprocessing time(sec)

(b) BAY

256 512 768 1,024
0

500

1,000

1,500
preprocessing time(sec)

(c) FLA

512 1,024 1,536 2,048
0

1,000

2,000

3,000
preprocessing time(sec)

(d) CAL

Figure 6: Preprocessing: time vs. # of components.

6.2 Query Processing
Figure 7 shows a series of measurements of the performance of

CRP and PbS. We evaluate both techniques for different partitions
and various numbers of components. An important observation is
the tendency of the performance for CRP and PbS. The perfor-
mance of CRP gets worse for partitions with many components
while the opposite happens for PbS. The reason is that for parti-
tions with few components, PbS manages to process many queries
with two look-ups (the case where the source and the target are in
adjacent components).

In Figure 8 we compare CH with CRP (we choose the best result)
and two configurations of PbS: PbS-BT, which is the configuration
that leads to the best performance, and PbS-AVG, which is the aver-
age performance of PbS among all configurations. We can see that
PbS outperforms CRP in all datasets from Q1 to Q5. However, CH
is faster in terms of query processing than our PbS approach. CH
is more suitable for static networks as the constructed hierarchy of
shortcuts enables the shortest path algorithm to expand much fewer
nodes.

6.3 In-component Queries
In Figure 9, we compare the performance of our bidirectional

algorithm using the proposed CM, the original bidirectional search
and the bidirectional algorithm using Arc Flags. We observe that
the bidirectional search is the slowest since no pruning is applied.
Between Arc Flags and CM, the Arc Flags provide slightly better
pruning thus fewer expanded nodes by the bidirectional search. On
the other hand, the preprocessing time required to compute the Arc
Flags is significantly higher than the time required to compute the
CM.

128 256 384 512
0

0.25

0.5

0.75

1
·104 expanded nodes

CRP PbS

(a) NY

128 256 384 512
0

0.25

0.5

0.75

1
·104 expanded nodes

(b) BAY

256 512 768 1,024
0

0.5

1

1.5

2
·104 expanded nodes

(c) FLA

512 1,024 1,536 2,048
0

1

2

3
·104 expanded nodes

(d) CAL

Figure 7: Performance of shortest path queries vs. # of components.

7. CONCLUSION
In this paper we presented PbS, an approach which uses graph

partitioning in order to compute shortcuts and speed-up shortest
path queries in road networks. Our aim was a solution which sup-
ports efficient and incremental updates of edge weights, yet is ef-
ficient enough in many real-world applications. In the evaluation,
we showed that our PbS approach outperforms CRP. PbS supports
edge weight updates as any change in the weight of an edge can
influence only shortcuts in a single component. On the other hand,
CH is faster than our PbS approach. However, CH cannot handle
well edge weight updates as almost the entire hierarchy of short-
cuts has to be recomputed every time a single weight changes. For
queries where the source and the target are in the same component,
we introduced the CM. The efficiency of the CM in query process-
ing approaches the efficiency of Arc Flags, while consuming much
less space.

In future work, we plan to extend our approach to support multi-
modal transportation networks, where the computation has to con-
sider a time schedule, and dynamic and traffic aware networks,
where the weights of the edges change over time. We will also
improve the preprocessing phase of our approach both in terms of
time overhead, by using parallel processing, and space overhead,
by using compression techniques or storing some of the precom-
puted information on the disk.

8. REFERENCES
[1] E. W. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, 1(1):269–271, December
1959.

[2] I. S. Pohl. Bi-directional and Heuristic Search in Path
Problems. PhD thesis, Stanford, CA, USA, 1969.
AAI7001588.

[3] H. Bast, D. Delling, A. Goldberg, M. Müller, T. Pajor,
P. Sanders, D. Wagner, and R Werneck. Route planning in
transportation networks. (MSR-TR-2014-4), January 2014.

Q1 Q2 Q3 Q4 Q5
0

2,000

4,000

6,000

8,000

CH CRP PbS-BT PbS-AVG

(a) NY

Q1 Q2 Q3 Q4 Q5
0

2,000

4,000

6,000

8,000

(b) BAY

Q1 Q2 Q3 Q4 Q5
0

0.5

1

1.5

·104

(c) FLA

Q1 Q2 Q3 Q4 Q5
0

1

2

3

·104

(d) CAL

Figure 8: Performance of shortest path queries vs. query sets.

8 16 24 32 40 48
0

3

6

9

12

Bidirectional Arc Flags CM

(a) Preprocessing time (ms)

8 16 24 32 40 48
0

1,000

2,000

3,000

(b) Visited nodes

Figure 9: Evaluation of Arc Flags & CM using ROME dataset.

[4] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck.
Customizable route planning. In Proc. of the 10th Int.
Symposium on Experimental Algorithms (SEA), pages
376–387, 2011.

[5] P. Hart, N. Nilsson, and B. Raphael. Formal Basis for the
Heuristic Determination of Minimum Cost PAths. IEEE
Transactions of Systems Science and Cybernetics,
4(2):100–107, 1968.

[6] A. V. Goldberg and C. Harrelson. Computing the Shortest
Path : A * Search Meets Graph Theory. In Proc. of the 16th
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 156–165, 2005.

[7] J. Maue, P. Sanders, and D. Matijevic. Goal-directed
shortest-path queries using precomputed cluster distances.
Journal on Experimental Algorithms, 14:2:3.2–2:3.27,
January 2010.

[8] E. Köhler, R. H. Möhring, and H. Schilling. Fast
point-to-point shortest path computations with arc-flags. In
Proc. of the 9th DIMACS Implementation Challenge, 2006.

[9] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient
query processing on spatial networks. In Proc. of the 2005

Int. Workshop on Geographic Information Systems (GIS),
page 200, 2005.

[10] R.A. Finkel and J. L. Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Informatica, 4(1):1–9,
1974.

[11] J. Sankaranarayanan and H. Samet, H. andi Alborzi. Path
Oracles for Spatial Networks. In Proc. of the 35th VLDB
Conf., pages 1210–1221, 2009.

[12] H. Bast, S. Funke, D Matijevic, P. Sanders, and D. Schultes.
In Transit to Constant Time Shortest-Path Queries in Road
Networks. In Proc. of the Workshop on Algorithm
Engineering and Experiments, pages 45–59, 2007.

[13] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In Proc.
of the 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 937–946, 2002.

[14] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.
A hub-based labeling algorithm for shortest paths in road
networks. In Proc. of the 10th Int. Symposium on
Experimental Algorithms, pages 230–241, 2011.

[15] P. Sanders and D. Schultes. Highway Hierarchies Hasten
Exact Shortest Path Queries. In Proc. of the 13th European
Conf. on Algorithms (ESA), pages 568–579, 2005.

[16] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou.
Shortest Path and Distance Queries on Road Networks:
Towards Bridging Theory and Practice. In Proc. of the 32nd
SIGMOD Conf., pages 857–868, 2013.

[17] L. Wu, X. Xiao, D. Deng, G. Cong, and A. D. Zhu. Shortest
Path and Distance Queries on Road Networks : An
Experimental Evaluation. In Proc. of the 39th VLDB Conf.,
pages 406–417, 2012.

[18] Y. W. Huang, N. Jing, and E. A. Rundensteiner. Hierarchical
path views : A model based on fragmentation and
transportation road types. In Proc. of the 3rd ACM Workshop
Geographic Information Systems (GIS),, 1995.

[19] S. Jung and S. Pramanik. Hiti graph model of topographical
roadmaps in navigation systems. In Proc. of the 12th ICDE
Conf., pages 76–84, 1996.

[20] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F.
Werneck. Graph Partitioning with Natural Cuts. In Proc. of
the 35th Int. Parallel & Distributed Processing Symposium
(IPDPS), pages 1135–1146, 2011.

[21] A. E. Feldmann and L/ Foschini. Balanced Partitions of
Trees and Applications. In 29th Symp. on Theoretical
Aspects of Computer Science, volume 14, pages 100–111,
Paris, France, 2012.

[22] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM
Journal on Scientific Computing, 20(1):359–392, 1998.

[23] Y. W. Huang, N. Jing, and E. Rundensteiner. Effective Graph
Clustering for Path Queries in Digital Map Databases. In
Proc. of the 5th Int. Conf. on Information and Knowledge
Management, pages 215–222, 1996.

[24] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali. Parallel
graph partitioning on multicore architectures. In Proc. of the
23rd Int. Conf. on Languages and Compilers for Parallel
Computing, pages 246–260, 2011.

[25] R. W. Floyd. Algorithm 97: Shortest path. Communications
of the ACM, 5:345, 1962.

[26] https://graphhopper.com.
[27] http://www.dis.uniroma1.it/challenge9/.

