
Empirical Study of Planning and Execution for
Large Teams of Robots

Daniel Saur, Tareq Razaul Haque, and Kurt Geihs

Distributed Systems Group, University of Kassel 34121, Germany
{saur,haque,geihs}@vs.uni-kassel.de

Abstract. Large teams of robots can substantially increase the effec-
tiveness of planning by acting as coordinated team. Our focus is on the
planning of activities of a team of autonomous, mobile robots by dis-
tributed planning coordinated by one robot. With arising number of
agents the communication increases rapidly. Our goal is to minimize
communication much as possible. Modeling needs to be combined with
planning to describe complex activities in intuitive way. The main con-
tribution of the paper is the optimization of the planning process while
using every agent as a planning resource and aiming at low communica-
tion needs. We evaluated our distributed planning for teams of up to 75
agents in the transport domain of the International Planning Competi-
tion1 (IPC). We optimized the planning process compared to state-of-
the-art approaches (last winners of IPC in the transportation domain)
by up to 23%.

Keywords: Autonomous robots, Mobile robots, Distributed planning

1 Introduction

Recent advances in autonomous robot technology have opened up great oppor-
tunities in an exciting new application potential. Autonomous mobile robots can
act individually while using an intuitive goal description for the team. This cre-
ates an enormous potential for innovative applications that intelligently support
environmental monitoring, disaster management, logistics operations, and many
other practices.

However, several challenging research questions have to be solved before we
can harvest the benefits of such kinds of multi-agent systems. Increasing the num-
ber of agents also enourmously increases the overhead for maintenance, modeling,
and testing. In our work we concentrate on planning for large teams with a high
number of agents. The planning process calculates a plan, which describes the
activities of all agents from a global perspective. This plan is divided into tasks,
which denote the activity of a specific agent within the plan. The plan format is
defined with ALICA (A language for interactive cooperative Agents)[15], which
offers support for task allocation and coordination. Finally, we use every agent

1 http://ipc.icaps-conference.org/



as a planning resource. The goal is to optimize the search time in distributing
different seeds for the search tree, where we expect an acceleration of the search.
We report on the results of an ongoing research project where we are developing
a framework which supports distributed planning for a team of robots. We accel-
erated the search time by as much as 23% for autonomous mobile robot teams,
consisting of as many as 75 agents, using a linearly scalable communication of
agents.

The reminder of this paper is organized as follows. In the next section we
outline the requirements of multi-agent planning for teams of up to 75 agents.
In section 3, we start to discuss related works. In section 4, we introduce the
basics of ALICA, which is used to describe team activities/plans. Furthermore,
we sketch the basics of the planning framework pRoPhEt MAS [13]. Finally, in
section 5 we evaluate the planning framework on relevant scenarios from the
International Planning Competition.

2 Requirements

The requirements for multi-agent teams with a high number of agents in a team
are:

– Modeling the global and local activities
– Automatic plan creation
– Low communication overhead

The description of team activities for autonomous mobile robots requires a
suitable and intuitive description, instead of providing only single agent programs
[15]. Furthermore, we would like to support task allocation and coordination
instead of using predefined task-specific mapping to certain robots. With an
increasing number of agents, manual modeling and task mapping takes a lot of
time, and is hard to maintain. Hence, multi-agent systems require an intuitive
method to control robot activities, and one that offers easy integration.

The communication bandwidth is limited. Hence, the planning process must
also aim at keeping the number and size of messages low, particularly for large
agent teams.

Finally, describing activities of autonomous mobile robot teams with an in-
creasing number of agents requires a combination of modeling and planning.

3 Related Work

Heuristic search has become the predominant feature of problem solving for
several years. The Fast Downward Planner [7] is a classical planning system based
on heuristic search. Fast Downward is a best-first search planner that utilizes the
information from domain transition graph as the heuristic to guide the search.
Thus, it can deal with general deterministic planning problems encoded in the
propositional fragment of PDDL2.2. The basic idea for the development of PDDL



[6] was to define a common interface to describe this problem class. PDDL defines
a language to describe the existing world, actions to execute by agents and the
goal state. The International Planning Competition (IPC) takes place every year,
where newly developed planners evaluate difficult planning problems.

Helmert et al. [8] have proposed a concrete strategy for abstraction to derive
better heuristics, and have empirically demonstrated the power of the merge-
and-shrink abstraction heuristics. In particular, the empirical evaluation of the
merge-and-shrink abstractions by Helmert et al. [8] suggests that, for many tasks,
using a set of abstractions improves the overall heuristic guidance.

Brenner and Ivana [3] presented a new algorithmic framework in which sit-
uated dialogue is modeled as Continual Collaborative Planning (CCP). They
showed how mixed-initiative dialogue that interleaves physical actions, sensing,
and communication between agents occurs naturally during CCP. Thus, they
introduced the language MAPL [4]. Their article describes a continual planning
algorithm realized with MAPL. For the proof-of-concept, Brenner and Nebel
evaluated MAPL in the grid world domain, where a team of four robots must
find their position in the grid.

HPLAN-P [1] performs forward search using heuristics designed for proposi-
tional preferences. These are based on the relaxed planning graph (RPG) struc-
ture and use techniques such as summing the layers in which goals/preference
facts appear (rather than relaxed plans) to estimate goal distance and preference
satisfaction potential.

LAMA [11] is a classical planning system based on heuristic forward search.
The system uses two heuristic functions in a multi-heuristic state-space search:
a cost-sensitive version of the FF heuristic, and a landmark heuristic guiding the
search towards states where many subgoals have already been achieved. Action
costs are employed by the heuristic functions to guide the search to cheap goals
rather than close goals, and iterative search improves solution quality while there
is time remaining.

Burns et al. [5] developed parallel versions of best-first search to harness
modern multicore machines. They showed that a set of previously proposed
algorithms for parallel best-first search can be much slower than running A* se-
quentially. They presented a hashing function for parallel retractin A* (PRA*)
that takes advantage of the locality of a search space and gives superior perfor-
mance. They also presented another algorithm, PBNF, which approximates a
best-first search ordering while trying to keep all threads busy.

Nissim et al. [9] developed a distributed planning system which uses a heuris-
tic forward search. This system is evaluated for different IPC problems. The main
disadvantage to this system is that communication effort increases rapidly as the
number of agents increases.

The main contribution of most of state-of-the-art planning systems is to op-
timize the search heuristic. However, the quality of the search heuristic depends
on the test domain. Our focus is to optimize planning independent of the search
heuristic. Distributed planning often relies on high communication as in [9]. In



real world applications like RoboCup2 low communication approaches are re-
quired [14].

4 Planning Framework

In this section, we briefly introduce the planning framework. We will first intro-
duce the basics of ALICA [15], and then we will sketch the basics of pRoPhEt
MAS [13].

4.1 ALICA

ALICA is a language for describing team activities of interactive mobile agents
from a global perspective. Originally, it was developed for the RoboCup Middle
Size League. However, it has also been shown to be a viable and effective solution
for other application domains, such as exploration robots [12] and autonomous
vehicles in traffic [10].

The core elements of the language [14] are shown in Table 1.

(A,L) the domain signature The domain signature consists of the set of possi-
bly interacting agents and the logic with which the
world is represented.

R a set of roles This set contains all availables roles any agent can
be assigned to.

B a set of behaviours Behaviours are atomic action programs that form
the means to interact with the environment.

P a set of plans Each plan describes a specific cooperative activity.
P∨ a set of plantypes A plantype is a set of alternative plans.
O a set of planning problems Defines a goal condition and a set of P, to achieve

the goal condition.
T a set of tasks Each task intuitively describes a function or duty

within plans, meant to be fulfilled by one or more
agents.

Z a set of states A state occurs within a plan as a step during an
activity. It can contain plantypes and behaviours.

W a set of transitions Each transition (z1, z2, φ) relates a predecessor
state z1 with a successor state z2 and a condition
φ ∈ L(Pred, Func).

Table 1. Elements of a ALICA Program

The individual logic elements L defined by L(Pred, Func) are structured
using the functions listed in Table 2.

2 http://www.robocup.org



States : P 7→ 2Z States maps plans to the set of contained states.

Tasks : P 7→ 2T Tasks maps plans to the set of related tasks.

ξ : P × T 7→ N0 × (N0 ∪ {∞}) ξ defines the upper and lower bound of agents
assignable to a task τ in plan p.

Pre : P ∪ B 7→ LS Pre(p) denotes the precondition of plan or behaviour p.

Run: P ∪ B 7→ LS Run(p) denotes the runtime condition of plan or be-
haviour p.

PlanTypes : Z 7→ 2P∨ PlanTypes(z) denotes the set of plantypes to be exe-
cuted in state z.

Behaviours : Z 7→ 2B Behaviours(z) denotes the set of behaviours to be exe-
cuted in state z.

Post : Z 7→ LS Post(z) is a partial function, that maps terminal states
of a plan to postconditions.

U : P 7→ 2LS 7→ R U(p) is the utility function of p, evaluating p with re-
spect to a set of formula.

Table 2. Structure Definitions of a ALICA Program

DeliverPackages

z1 z2 z3 z4
at(city-7) in(t-x,p-3) at(city-9)

Drive(city-7) Pickup(p-3) Drive(city-9) Drop(p-3)

Task1

1..1

z5

Pickup(p-1)

z6

Drive(city-11)

z7

Drive(city-17)

z8

Drop(p-1)

in(t-x,p-1) at(city-11) at(city-17)

Task2

1..1

z9

Pickup(p-2)

z10

Drive(city-2)

z11

Drop(p-2)

in(t-x,p-2) at(city-2)

Task3

1..1

Fig. 1. Example ALICA plan for delivering packages by multiple agents



Figure 1 shows an example ALICA plan using the core elements of the lan-
guage. This figure shows an example from the transport domain3. We defined
roles R that are suitable for the task T dependent on the robot capabilities. Ev-
ery agent in the team can assign to one of the tasks with respect to the minimum
and maximum cardinalities (ξ) 1..1. The “DeliverPackages” plan P contains a
state machine for every agent in team with several states Z. Every state ma-
chine contains a plan, which in turn contains a state machine of basic behaviours
B. These plans represent the basic skills from the transportation domain. The
basic skills of the agents are “Pickup”, “Putdown” and “Drive”. The agents can
switch states with conditional transitions. The plan realizes the delivery of three
packages.

In order to model plans ALICA offers a “PlanDesigner” which is a graphical
tool based on the Eclipse Development Platform [2]. It supports modelling of all
parts of an ALICA program, i.e., roles, tasks, plans, plantypes, utility functions,
and conditions, as well as generating code from the models in a model-driven
development fashion. The Ecore model is shown in figure 2. Modelled plans are
stored in the XMI format and loaded afterwards by the runtime engine. However,
for efficiency reasons, the tool provides mechanisms for generating platform-
specific code for the evaluation of conditions and utilities. Since these evalua-
tions happen very frequently during runtime, the generation of platform-specific
code, which can be executed directly, results in enormous efficiency benefits. In
order to facilitate an intuitive understanding, language elements are represented
graphically.

4.2 pRoPhEt MAS

The planning framework pRoPhEt MAS (Reactive Planning Engine for Multi
Agent Systems) is divided into two major parts (see Figure 3). The first part
consists of “World” and “ALICA-Engine” and represents the basic ALICA com-
ponents. The “ALICA-Engine” is the implementation of the language elements
for section 4.1. In addition ALICA offers further algorithms for task alloca-
tion, role-task-mapping, supports coordinated execution in dynamic environ-
ments [14]. The “PlanBase” contains all modeled ALICA-plans that the team
can access. Dependent on the actual world situation, ALICA will then select a
suitable plan while reacting quickly to world changes. The second part consists
of “ISharing” and “IPlanner”. These components are used to expand the basics
ALICA by a planning engine. “ISharing” is used to communicate plans after
creation, and electing a leader, which starts the planning process. The election
criteria can be defined by implementing the ISharing interface. At this time the
robot with lowest id will be leader.

If the “PlanSelector” selects a plan containing a planning problem O (see
language elements of section 4.1), which is briefly defined by basic actions and a
goal description, the leader will start the planning process by the “PlannerBase”.
The resulting plan from the “PlannerRealization” will be communicated to all

3 http://ipc.icaps-conference.org (IPC 2011)



F
ig
.
2
.

E
co

re
m

o
d
el

o
f

A
L

IC
A

’s
b
a
si

c
el

em
en

ts



World

ALICA-Engine

ISharing

IPlanner

WorldModel
Contains sensor

data of team

PlanBase
Contains all defined

plan elements

PlanSelector
Select plan node

from master plan

Share
Distribute

plans/seeds to

team members

CheckLeader
Check/Elect leader

PlannerBase
Contains all

solved problems

PlannerRealization
Find solution for

problem in timeval

Validation
Check if plan

is executable

update

acting

uses

select

plan request

is planning problem

is leader

validate plan

replan

created
plan

share seeds

result

update
plan request

plan

Fig. 3. Planning framework consisting of ALICA for describing team activities ex-
panded by a planning engine



agents, if this plan is validated correctly by the “Validation” component. Hence,
ALICA can react quickly in dynamic environments as evaluated in real world
scenarios [13], though this is not the focus of this paper.

In order to decrease the search time and save memory for the planning pro-
cess, the leader is able to distribute seeds of the search space to teammates using
the “PlannerBase”, which is shown in Figure 4. If an agent receives a seed, it will
start the search, and send the solution back to the leader. If the leader receives
the first result, he will share this solution to all other members, which will stop
the search.

leader r1 r2 rn

send seed 1

send seed 2

send seed n

goal found

goal found

share plan

share plan

share plan

Fig. 4. Share seeds to accelerate search

5 Evaluation

In order to evaluate our framework, we use the defined problem of IPC 2011, as
described in Section 3, and compare our results to state-of-the-art approaches.
We used the planner “seq-sat-fdss-1”, based on a Fast Downward Planning Sys-
tem [7], which we modifed to allow seed sharing with the entire team. The planner
“seq-sat-fdss-1”participated in IPC 2011 and came in 2nd place in the trans-
portion domain. Experiments were run on an Intel i7-2630QM CPU 2.00GHz
processor, where we were allowed to use maximum one core. The results are
shown in Figure 5, which shows calculation time and costs for different prob-
lems. These problems differ in map size, number of agents and packages to de-
liver, and can found on the IPC website. The time shows the total search time.



In the transportation domain the costs are defined by the total traveled distance.
On average our approach decreases the costs by 1.3%. In addition, we were able
to reduce the calculation time on average by 28.3%. For Problem 14, we reduced
the calculation time by 65%.

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20

0

2000

4000

6000

8000

10000

C
a
lc

u
la

ti
o
n

ti
m

e

C
o
st

s

Problem

Calculation time and costs of transport domain (seq-sat IPC2011)

Calculation time single agent
Calculation time four agents

Costs single agent
Costs four agents

Fig. 5. Calculation time and costs for transport (IPC2011)

We later extended the problem and created a random map with 100 loca-
tions as shown in Figure 6. A distributed team with n members has to deliver
n packages. Imagine a mail service group in a city that has around 100 different
locations. This mail service wants to exchange packages between these locations
via mobile, autonomous agents like copters or cars. The problem is how the
agents should be assigned to deliver all packages. The results are shown in Fig-
ure 7. In this Figure the x represents the number of agents and the y shows
calculation time and costs. The costs increased on average by 0.01%, but the
execution time decreases on average by 10.17%.

The distributed planning scales linearly as 3 ∗ (n − 1) with the number of
agents. In a first round, we distribute seeds to all team members, which takes
(n − 1) messages. Next, in the worst case we wait for (n − 1) results. Finally,
we distribute the result to all (n− 1) members. After receiving the result, every
robot will stop the search.



Fig. 6. Example map of transportation scenario

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50 60 70 80

0

2000

4000

6000

8000

10000

C
a
lc

u
la

ti
o
n

ti
m

e

C
o
st

s

Agents

Calculation time and costs of transport domain (seq-sat IPC2011)

Calculation time single agent
Calulation time n Agents

Costs single agent
Costs n agents

Fig. 7. Calculation time and costs of the map in Figure 6



6 Conclusions

The task planning for teams with a large number of mobile autonomous robots
still offers improvements in research. The major problem is that cooperative dis-
tributed planning increases the communication rapidly as the number of agents
increases. On the other side, severe resource limitations apply to the strategy of
central planning, if complex planning problems shall be dealt with. Hence, it cre-
ates an opportunity to optimize planning for scenarios like disaster management,
logistics operations, and many more.

However, planning is an increasingly complex task in multi-agent systems
for an increasing number of robots. The state space grows tremendously with
the number of robots. Moreover, in such domains, automatic plan generation
reduces the overhead for maintenance, modeling, and testing enormously. Thus,
planning is an important part of describing the activities of multi-agent systems.

The strategy of our framework is to divide and conquer to cope planning prob-
lems regarding resources like memory and communication bandwidth. Therefore,
we use all robots as planning resources to reduce the planning time and divide
the memory usage. The found solution of the robots will be shared, interme-
diately. Moreover, the communication burden scales linearly with an increasing
number of agents.

In our evaluation, we took the transport scenario of the IPC2011 to compare
our planning system to the state-of-the-art planner. Furthermore, we created
more complex scenarios for the transport domain with up to 75 agents. We were
able to improve the search time by up to 65% and 19.3% on average in the IPC
problems. The costs in both scenarios were nearly the same (1.3% difference).

Our next steps are to evaluate the framework in the RoboCup domain using
additional computational units to realize a set play in this dynamic environment.

References

1. Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuristic search
approach to planning with temporally extended preferences. Artificial Intelligence,
173(5-6):593–618, 2009.

2. W. Beaton and J. d. Rivieres. Eclipse Platform Technical Overview. Technical
report, The Eclipse Foundation, 2006.

3. M. Brenner and I. Kruijff-Korbayov. A Continual Multiagent Planning Approach
to Situated Dialogue. In Proceedings of the LONDIAL (The 12th SEMDIAL Work-
shop on Semantics and Pragmatics of Dialogue). LONDIAL, 6 2008.

4. Michael Brenner and Bernhard Nebel. Continual planning and acting in dy-
namic multiagent environments. Autonomous Agents and Multi-Agent Systems,
19(3):297–331, June 2009.

5. Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Best-first heuris-
tic search for multicore machines. Journal of Artificial Intelligence Research,
39(1):689–743, 2010.

6. M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, and D. Weld. PDDL - The
Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.



7. M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence
Research 26, 2006.

8. Malte Helmert, Patrik Haslum, and Jrg Hoffmann. Flexible abstraction heuristics
for optimal sequential planning. In ICAPS, pages 176–183, 2007.

9. R. Nissim and R. I. Brafman. Distributed Heuristic Forward Search for Multi-
Agent Systems. Computing Research Repository (CoRR), abs/1306.5858, 2013.

10. Stephan Opfer, Andreas Witsch, and Kurt Geihs. A Formal Multi-Agent Language
for Cooperative Autonomous Driving Scenarios. nov 2014.

11. Silvia Richter and Matthias Westphal. LAMA is a classical planning system based
on heuristic forward search. Journal of Artificial Intelligence Research, (39):127177,
2010.

12. D. Saur, T. R. Haque, R. Herzog, and K. Geihs. MAGiC : Multi-Agent Planning
using Grid Computing concepts. In 12th International Symposium on Artificial
Intelligence, Robotics and Automation in Space - i-SAIRAS 2014, Quebec Canada,
2014.

13. Daniel Saur and Kurt Geihs. pRoPhEt MAS: Reactive Planning Engine For Multi-
agent systems. In 13th International Conference on Intelligent Autonomous Sys-
tems, 2014.

14. H. Skubch. Modelling and Controlling of Behaviour for Autonomous Mobile Robots.
Westdeutscher Verlag GmbH, 2013.

15. H. Skubch, M. Wagner, R. Reichle, and K. Geihs. A modelling language for coop-
erative plans in highly dynamic domains. Mechatronics, 21:423–433, 2011.


