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Abstract. In this paper I describe my approach to teaching introductory software 

engineering, a three-credit upper-level undergraduate course. What I believe is inno-

vative is not the particular concepts or techniques but the way they are woven togeth-

er, using the unifying concept of dependency management. The specific techniques I 

teach are the use of interfaces and factory design patterns. Interfaces are used to con-

trol call-dependencies, and by using C++ (which has no native interface), students 

learn precisely how an interface differs from a class. Factories are used to control 

creation dependencies, by enabling object creation while hiding the type of object 

being created. I advocate a design focus in this course because that helps ground the 

concepts closer to the code base. UML models and class specifications are used to 

abstract the code. The UML models summarize the relationships found in the code 

and help students reason about dependencies. 

Keywords: software engineering curriculum, interfaces, design patterns, dependency 

management, UML modeling. 

1 Introduction 

This paper describes an approach to teaching introductory software engineering 

with a focus on dependency management. I have evolved this approach over the 

course of 14 years of teaching a senior-level (4th year) undergraduate course of 3 cred-

it hours (3 hours of instruction per week for 14 weeks). 

I have adopted this dependency management focus as a result of my seven years 

working in industry. I saw first-hand how the judicious use of interfaces had a signifi-

cant benefit in a family of software systems, and that students were not learning this as 

part of their undergraduate education. In this same family of systems, my colleagues 

and I used the factory design pattern to solve the problem of needing to instantiate an 

object without knowing at compile-time what the object type would be. While the 

factory pattern will never be needed as frequently as interfaces, it nonetheless solves 

an otherwise intractable dependency problem. My fourteen years of teaching these two 

concepts (interfaces and factory design patterns) in the undergraduate software engi-

neering course have convinced me that they are an excellent vehicle for teaching stu-

dents practical techniques for dependency management. 

Another thing I have observed is that students who have not had any experience in 

large-scale software development do not readily grasp software engineering concepts. 

To these students the concepts come across as platitudes, since they don’t have the 

depth of experience to really understand them. This problem has been observed also 

by others [8]. To address this problem I teach a variety of specific techniques, ground-
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ed where possible at the code level, because undergraduates have the most experience 

at this level. One example is the use of UML diagrams to model C++ code. Another 

example is determining whether a given implementation obeys a class specification 

(given as pre and post conditions on the operations). 

The use of code-level models has the important benefit of precisely revealing vari-

ous kinds of dependencies. Interfaces of course allow us to directly control dependen-

cies, and this property is revealed in a UML Class Diagram. In a UML Sequence Dia-

gram, however, the interfaces dissolve. So the use of UML diagrams at the code level 

nicely supports the teaching of interfaces. The factory design patterns extend depend-

ency management into the realm of object creation. The factory patterns allow us to 

create an object without knowing (exactly) which type of concrete object is being 

created. I use two variants, “Class Factory” and “Factory Method,” which differ in the 

mechanism for supplying the concrete object type. 

The reasons for using C++ in this course are that it remains a prevalent, mainstream 

language, and that it is a rich language with multiple ways of accomplishing things. 

Variables can be allocated statically (at compile-time) or dynamically (using “new”), 

and there is no garbage collection. These are good vehicles for teaching object 

memory allocation. Its lack of native interface support means that in order to write an 

interface in C++, students learn precisely the difference between a class and an inter-

face, and even about constructor and destructor chaining. Its support of both static and 

dynamic method binding is good for understanding polymorphism. Finally, since it 

supports both methods and classes, it can be used to teach libraries and linking, and 

enables us to use the factory method design pattern. 

I would expect a typical introductory-level software engineering course to include 

some UML and to advocate the use of interfaces. The course described in this paper 

differs in that UML and interfaces receive a deeper treatment and are taught as tech-

niques for managing dependencies. The dependency focus also encompasses the 

teaching of the factory design patterns for managing creation dependencies. 

The next three sections of the paper describe these three key aspects of the course: 

modeling and specification, interfaces, and the factory design patterns. These are fol-

lowed by sections on course evaluation, related work, and a concluding summary. 

2 Modeling and Specification  

In addition to being used to model the software at various levels of abstraction, 

UML is often used to model the problem domain. However, I found that most students 

were confused by seeing multiple uses of UML, so now I teach only how to use it to 

model code. This has the added benefit that there is no ambiguity in determining 

whether a diagram is correct of not, which has obvious pedagogical advantages. 

UML Class Diagram. The software engineering students use UML Class Diagrams 

for modeling a set of related classes and interfaces. To translate C++ code into a class 

diagram, the students follow a set of conventions, most of which are the same as those 

used by a typical round-trip engineering UML tool such as Rational Rose. 

The conventions describe when attributes should be shown in the attribute com-

partment or drawn as a composition or aggregation relationship to another class in the 



diagram. The basic dependency relationship is used for local variables, parameters, 

and method invocations. For object creation we use the dependency relationship with 

a <<creates>> stereotype. The standard inheritance (generalization) and implements 

(realization) relationships are used, as is the standard interface notation. We use a 

class symbol with the stereotype <<method>> to show how a static method is related 

to classes, e.g. with the main() method. (Since we use C++, methods need not be en-

capsulated in a class.) We do not typically show library classes such as string. 

In addition to learning the language of the UML Class Diagram, students learn 

what C++’s “virtual,” “pure virtual,” and “static” mean in more general object-

oriented terminology. They are able to see visually how an interface is a barrier for 

dependencies (see Figure 1). 

UML Sequence Diagram. UML sequence diagrams require few additional 

conventions for modeling C++ code, beyond using a <<method>> stereotype for class 

methods (known as static methods in C++). In the sequence diagrams, interfaces 

dissolve and inheritance is flattened. In other words, while the class diagrams show an 

object’s static type (the type seen by the compiler), the sequence diagram shows its 

dynamic type (the type it was created as).  

Another thing the sequence diagrams reveal is the fact that C++ implicitly invokes 

the constructor when variables are declared statically as opposed to dynamically: 

Stack s;  // compile-time allocation 

Stack* sp = new Stack();  // run-time allocation 

This experience of modeling C++ code in a sequence diagram also deepens the stu-

dents’ understanding of object-oriented languages. 

Specification of Class Behavior. To describe class behavior the students are given a 

specification consisting of pre- and post-conditions for each method in the class. From 

this specification I ask them to draw a State Chart Diagram describing the class’s 

interaction protocol, and to determine whether an implementation fulfills the 

specification. The interaction protocol (i.p.) is the allowed sequences of method 

invocations. 

Of the UML modeling we do, our use of the State Chart Diagram is the most chal-

lenging for students, since it involves first extracting the i.p. then modeling it. The i.p. 

is implied by the specification; it is not necessarily explicit in the pre- and post-

conditions. The approach is to use the state chart to model just one class, with the 

possible invocations of this class’s methods as transitions between states. The con-

structor call labels the transition from the start state to the first state, and the destructor 

labels all transitions to the end state. If a caller does not obey the interaction protocol, 

the behavior of the class is unspecified; in those cases the code could do anything or 

nothing.  

The second use of these class specifications is to give the students a description of 

an implementation and ask whether the implementation conforms to the specification. 

One example is an implementation of the FIFO queue not as a linked list but as a cir-

cular buffer. A second example is an underspecified Bank class that allows an imple-

mentation to impose a “service charge” on deposits. 



The purpose of these exercises is to teach the students to think carefully about what 

the specification really says, without giving the specification the benefit of their do-

main knowledge, and without allowing the specification to dictate implementation 

details. These exercises reinforce the work the students do writing Requirements Spec-

ifications, by using the same specification concept but applying it at the class level 

(closer to the code base). 

3 Interfaces 

In general, interfaces present a unified, stable view of a component and eliminate 

call-dependencies on a concrete class. They are used to hide variants, to specify a call-

back (e.g. with GUI components), and to reduce the impact of future changes (below 

the interface).  

In order to prepare the students for using interfaces in C++, we first review poly-

morphism and abstract classes. For polymorphism, a simple example of a parent class 

and two subclasses suffices to show the difference between virtual and non-virtual 

operations. When a method is not virtual, C++ uses static method binding: the compil-

er resolves the method call by using the object’s static type, in this case the parent 

type. This runs faster, since no dynamic lookup is needed for the method call. When a 

method is virtual, C++ uses dynamic method binding (aka dynamic dispatch). The 

method call is not resolved until runtime, when the object’s dynamic type is used to 

decide which method should be called. In this case it could be either of the subclass 

types. This polymorphic behavior is what is commonly found in object-oriented lan-

guages. 

Because C++ does not have native interface support, we use a set of conventions 

for making a C++ class act as an interface. A C++ interface is an abstract class that 

contains only public abstract (“pure virtual”) operations. No attributes are allowed, 

nor are private or protected operations. We also put a virtual destructor with an empty 

body in the interface, in order to preserve destructor chaining. (See Item 7 in [7], and 

see [9].) The destructor is defined inline so that no .cpp file is needed. An example of 

a C++ interface is shown in Table 1. 

Table 1. Example of a C++ Interface (defined in IMessage.h) 

class IMessage { public: 

 virtual void setMessage(std::string) = 0; 

 virtual void showMessage() = 0; 

 virtual std::string readMessage() = 0; 

 virtual ~IMessage() {} 

}; 

Although interfaces are defined in .h files, a typical .h file is not an interface. Un-

fortunately it is common, even in some textbooks, to refer to the class declaration in 

the .h file as the class’s “interface.” For C++ classes, the convention is to declare the 

class in a .h file and define the operations (provide method bodies) in a .cpp file. The 

.h file is a mechanism for giving the class declaration to the compiler (via a #include). 

It can contain attributes, private or protected operations, and even method bodies (in-

line functions). None of these belong in an interface. 



To motivate the use of an interface, I show the students the following very simple 

Hello example. It prompts the user for a first and last name, then, depending on 

whether the executable was built using the PLAINTEXT or SECURE option, displays 

the name in plaintext or encrypted. The main() method creates a Name object, then 

calls Name’s firstName() and lastName() methods and prints the results. The Name 

class creates two Message objects, one for input and one for output. Methods first-

Name() and lastName() use the output object to set and show the prompt, and use the 

input object to capture the user’s input and return it to the caller. 

 
 

The main() method, the classes, and their relationships are shown in the UML Class 

Diagram in Figure 1 (left side). Notice that FlexibleHello1 (the main()) knows about 

all the variants of Message that exist: it creates a Name object either with an Encryptor 

(SECURE option) or not (PLAINTEXT option). Name does not know about the Mes-

sage variants. It simply passes the Encryptor* when it constructs its Message objects. 

Message is capable of providing both plaintext and encrypted messages.  

At this point in the class I ask the students to add a third kind of message, a LOUD 

(all caps) message. They see that this design is clumsy: the Encryptor* does double 

duty as a flag and as access to the Encryptor object, and the design is not easily exten-

sible for other kinds of message objects. 

Next I show the students a new design for the application, one that uses an inter-

face. Instead of making the Message class handle multiple message variants, we create 

a separate class for each variant. These message variants are hidden behind an inter-

face IMessage. This design is shown on the right in Figure 1. 

Each message variant (Message, SecureMessage) is a separate class that imple-

ments interface IMessage. The Encryptor is now encapsulated in SecureMessage. The 

main() (FlexibleHello2) still chooses which variant of message is used, but now it 

creates the message object and passes it as an IMessage to Name. Name depends only 

on interface IMessage, and knows nothing about the variants. When Name invokes 

setMessage(), showMessage(), or readMessage(), the method that executes depends on 

which type of object FlexibleHello2 created.  

However, since Name needs two message objects (two instances), the main() must 

create both and pass both to Name, which is clumsy. The main() could even create two 

different kinds of messages to pass to Name, which is probably not what Name would 

like. A better solution would allow Name to create its own Message objects, but still 

Figure 1. Hello Example: Initially (left) and with an Interface (right) 



keep Name ignorant of the message variants. This is the motivation for the factory 

design patterns. 

After presenting this version, I ask the students to add the LOUD message variant 

to it, and compare the effort to what was needed for the initial version. 

4 Factory Design Patterns 

A factory design pattern helps in managing dependencies that arise due to the crea-

tion of objects. In object-oriented languages, in order to instantiate an object, you 

must use its class name. The only way to create an object without knowing its concrete 

type is to use indirection, which is how factory patterns work. 

Class Factory. There are two factory design patterns I use in the software engineering 

course. The first I call “Class Factory,” since it is a class whose methods do nothing 

other than create objects. This pattern is known as the ‘Abstract Factory’ in [6]. A 

class factory is a class that simply creates objects. The code for Message Factory is 

shown in Table 2. 

Table 2. Code for Class MessageFactory 

In MessageFactory.h: In MessageFactory.cpp: 

class MessageFactory : public 

IMessageFactory { public: 

MessageFactory(); 

virtual IMessage* newMessage(); 

virtual ~MessageFactory(); 

}; 

MessageFactory::MessageFactory(){ } 

MessageFactory::~MessageFactory(){ } 

IMessage* MessageFacto-

ry::newMessage()  

{ return new Message(); } 

Different class factories create different kinds of objects. Figure 2 (left) shows the 

FlexibleHello example revised to use a class factory. The main() decides which kind 

of factory object to create: with MessageFactory, IMessageFactory::newMessage() 

creates a Message. With SecureMessageFactory, IMessageFactory::newMessage() 

creates a SecureMessage. 

 

Figure 2. Hello Example with Class Factory (left) and with Factory Method (right) 



Next main() passes its factory object as an IMessageFactory object to the Name ob-

ject. Name does the creation of the IMessage object by calling IMessageFactory’s 

method newMessage(). Depending on which kind of IMessageFactory object it re-

ceived from main(), newMessage() creates either a Message or a SecureMessage, and 

returns this object to Name as an IMessage. 

In summary, main() chooses (and creates) the Factory. Name uses the IMes-

sageFactory to create an IMessage object (without knowing exactly what type of ob-

ject it is creating). Name uses only the interfaces IMessageFactory and IMessage, 

even though the objects it accesses via these interfaces have concrete types Mes-

sageFactory & Message or SecureMessageFactory & SecureMessage. 

Clearly this design is more complicated; adding a level of indirection for object 

creation comes at a price. However, as the students see when they add a third variant 

(the LoudMessage), Name now has the ability to create its own messages without 

knowing which variant it is creating. 

Factory Method. The second factory pattern is called “Factory Method,” but it is not 

the same as the ‘Factory Method’ pattern in [6], which puts the factory method in a 

class. The names we use are meant to help the students remember the key difference 

between the two patterns. This second factory pattern comes directly from my 

industrial experience. 

The pattern we use is simpler than the class factory because instead of creating a 

factory class for each variant, we provide multiple definitions of a C++ static method 

that is not inside a class. Each variant is compiled and linked into a separate library, 

and at build time or runtime we choose one of the libraries to link in. Table 3 shows 

the method declarations and definitions for the Hello example. 

Table 3. Declaration and Definition of a Factory Method 

Decl. in IMessage.h Definition in Message.lib Def. in SecureMessage.lib 

IMessage*  

NewMessage(); 

IMessage* NewMessage() 

{ return new Message(); } 

IMessage* NewMessage() 

{ return new  

SecureMessage(); } 

If a dynamic link library (aka shared library) is used, then the variant can be select-

ed and linked in at runtime. We use static libraries in the software engineering course 

because libraries are new to most students and static libraries are simpler than dynam-

ic link libraries. 

In this version of the Hello example, shown in Figure 2 (right), the main() is called 

“ConsoleHello” rather than “FlexibleHello” because the main does not contain any 

code to choose variants. With static libraries the application contains no code related 

to selecting variants. With dynamic link libraries all that is needed at runtime is the 

name and path of the library file, which need not be hardcoded into the application. 

The declaration for the NewMessage() method goes in IMessage.h (within the in-

clude guard, but declared after the class, not as part of the class). A definition of 

NewMessage() goes in the same .cpp file as the class it creates. For example, Secure-

Message’s version of NewMessage() goes in SecureMessage.cpp. 

When Name needs to create an IMessage object, it simply calls NewMessage(). For 

an in-class exercise, as before the students add a third variant, a LoudMessage. There 



is little new code needed to accomplish this, but there is additional work needed for 

creating a library and linking it into the executable. 

Combining the Factory Design Patterns. The class factory pattern moves the 

creation dependency to another part of the system. Normally this is used to produce a 

coherent set of objects, where each factory provides a set of methods newX(), newY(), 

etc. appropriate for that variant. See ‘Abstract Factory’ [6] for more discussion of 

where this is useful. The factory method pattern moves the creation dependency to a 

link-time binding. For maximum flexibility these two patterns can be used together: 

the factory method pattern is applied to a factory. The factory classes implement the 

interface IFactory, and the method NewFactory() has multiple definitions, one for 

each concrete factory class. 

5 Evaluation 

This course has evolved in the fourteen years I have taught it, and nearly all of the 

present elements have been in place for the last ten or eleven years. The changes made 

to arrive at the present form were primarily driven by analysis of student performance 

on exams and assignments, and students’ comments and questions. The two course 

elements described in this paper, modeling and design patterns, have been part of the 

course since I started teaching it. What has changed is the role of these topics in the 

course.  

 
Figure 3: Students’ Evaluations of Course Quality 

Students evaluate each course each semester. As can be seen in Figure 3, their rat-

ings have improved as the course has evolved. The graph shows my students’ rating of 

course quality, comparing the Software Engineering (SE) course to all my other 

courses (Non-SE). In addition, students are asked to comment on the strongest and 

weakest aspects of the course, and how the course could be improved. Students find 

the project experience both frustrating and rewarding, as would be expected. For the 

strongest aspect of the course, students have noted the active learning approach, the 

progression of exercises (in-class examples, in-class exercises, homework, project 

work), and the modeling. 

Other important forms of evaluation are student exit interviews (for graduating stu-

dents) and regular surveys of our alumni and of employers of our students. Students 



value the course particularly for the practical techniques they learn. Alumni and em-

ployers regularly cite UML and design patterns as very important topics for computer 

science majors. 

Students also tell me when a job interview touches on one of the topics we covered 

in the course. One of our students was asked about the difference between a class and 

an interface during an interview, and believes that his answer to this question clinched 

the job offer. 

6 Related Work 

A number of authors mention the problem of getting students to appreciate the chal-

lenges of software engineering. Rather than spending most of the course surveying the 

software engineering discipline, Rajlich advocates project development and teaching 

of specific skill training to occupy the bulk of the course [8]. My approach is similar. 

Putting a design focus in the introductory software engineering course, as I do, is 

also advocated in [11] and [10]. In [3] Boehm sees COTS components and model-

driven development as playing an increasing role in software development. This ar-

gues for the kind of focus on dependency management that I advocate. 

In [5] Fox and Patterson describe their experiences teaching software engineering 

using an agile process and cloud computing. They motivate this approach in part by 

interviews with “a half-dozen leading software companies.” They note “the number-

one request from each company: that students learn how to enhance sparsely docu-

mented legacy code.” This is completely consistent with my experience in the soft-

ware industry, and has been the driving force behind my focus on modeling and de-

pendency management. 

Badreddin et. al. provide compelling evidence that UML and Umple (a textual 

modeling language) provide significant benefit over Java when students or software 

professionals are trying to understand a software system [2]. This finding supports the 

importance of teaching a modeling language to students. The models used in their 

experiments were models of source code, which is consistent with how I use UML. 

Just three years after the classic design patterns book [6] was published, Astrachan 

et. al. argued for the inclusion of design patterns in the computer science curriculum 

[1]. They have become an accepted part of teaching object-oriented design, but are not 

always included in an introductory software engineering course, where there is already 

so much other material to be covered. Denzler and Gruntz advocate using design pat-

terns and software design as a bridge between programming language courses and the 

first software engineering course [4].  

7 Conclusion 

While from the start I taught modeling (UML) and design patterns as part of the in-

troductory Software Engineering course, over time my approach has evolved. The 

changes can be summarized as follows: 

 Make design a more prominent aspect of the course, make dependencies the pri-

mary design consideration, and make reuse and managing variants the primary 

design goals. 



 Narrow the focus so that models are taught in one context only (as an abstraction 

of source code), and the design patterns are taught via the factory patterns. 

 Use modeling and design patterns to support the design goals of reuse and manag-

ing variants. 

 Provide a logical progression of design solutions that starts with inheritance and 

polymorphism, then adds interfaces, and ends with the factory design patterns 

(class factory, then factory method, then combined factory patterns). Use model-

ing to expose the dependencies in these design solutions and to see their impact at 

runtime. 

I am convinced these are significant improvements, and this is corroborated by the 

marked improvements in student satisfaction with the course, as evidenced in the 

course evaluation scores. 
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