
Introductory Software Engineering with

a Focus on Dependency Management

Christine Hofmeister

East Stroudsburg University, East Stroudsburg, PA, USA

chofmeister@esu.edu

Abstract. In this paper I describe my approach to teaching introductory software

engineering, a three-credit upper-level undergraduate course. What I believe is inno-

vative is not the particular concepts or techniques but the way they are woven togeth-

er, using the unifying concept of dependency management. The specific techniques I

teach are the use of interfaces and factory design patterns. Interfaces are used to con-

trol call-dependencies, and by using C++ (which has no native interface), students

learn precisely how an interface differs from a class. Factories are used to control

creation dependencies, by enabling object creation while hiding the type of object

being created. I advocate a design focus in this course because that helps ground the

concepts closer to the code base. UML models and class specifications are used to

abstract the code. The UML models summarize the relationships found in the code

and help students reason about dependencies.

Keywords: software engineering curriculum, interfaces, design patterns, dependency

management, UML modeling.

1 Introduction

This paper describes an approach to teaching introductory software engineering

with a focus on dependency management. I have evolved this approach over the

course of 14 years of teaching a senior-level (4th year) undergraduate course of 3 cred-

it hours (3 hours of instruction per week for 14 weeks).

I have adopted this dependency management focus as a result of my seven years

working in industry. I saw first-hand how the judicious use of interfaces had a signifi-

cant benefit in a family of software systems, and that students were not learning this as

part of their undergraduate education. In this same family of systems, my colleagues

and I used the factory design pattern to solve the problem of needing to instantiate an

object without knowing at compile-time what the object type would be. While the

factory pattern will never be needed as frequently as interfaces, it nonetheless solves

an otherwise intractable dependency problem. My fourteen years of teaching these two

concepts (interfaces and factory design patterns) in the undergraduate software engi-

neering course have convinced me that they are an excellent vehicle for teaching stu-

dents practical techniques for dependency management.

Another thing I have observed is that students who have not had any experience in

large-scale software development do not readily grasp software engineering concepts.

To these students the concepts come across as platitudes, since they don’t have the

depth of experience to really understand them. This problem has been observed also

by others [8]. To address this problem I teach a variety of specific techniques, ground-

mailto:chofmeister@esu.edu

ed where possible at the code level, because undergraduates have the most experience

at this level. One example is the use of UML diagrams to model C++ code. Another

example is determining whether a given implementation obeys a class specification

(given as pre and post conditions on the operations).

The use of code-level models has the important benefit of precisely revealing vari-

ous kinds of dependencies. Interfaces of course allow us to directly control dependen-

cies, and this property is revealed in a UML Class Diagram. In a UML Sequence Dia-

gram, however, the interfaces dissolve. So the use of UML diagrams at the code level

nicely supports the teaching of interfaces. The factory design patterns extend depend-

ency management into the realm of object creation. The factory patterns allow us to

create an object without knowing (exactly) which type of concrete object is being

created. I use two variants, “Class Factory” and “Factory Method,” which differ in the

mechanism for supplying the concrete object type.

The reasons for using C++ in this course are that it remains a prevalent, mainstream

language, and that it is a rich language with multiple ways of accomplishing things.

Variables can be allocated statically (at compile-time) or dynamically (using “new”),

and there is no garbage collection. These are good vehicles for teaching object

memory allocation. Its lack of native interface support means that in order to write an

interface in C++, students learn precisely the difference between a class and an inter-

face, and even about constructor and destructor chaining. Its support of both static and

dynamic method binding is good for understanding polymorphism. Finally, since it

supports both methods and classes, it can be used to teach libraries and linking, and

enables us to use the factory method design pattern.

I would expect a typical introductory-level software engineering course to include

some UML and to advocate the use of interfaces. The course described in this paper

differs in that UML and interfaces receive a deeper treatment and are taught as tech-

niques for managing dependencies. The dependency focus also encompasses the

teaching of the factory design patterns for managing creation dependencies.

The next three sections of the paper describe these three key aspects of the course:

modeling and specification, interfaces, and the factory design patterns. These are fol-

lowed by sections on course evaluation, related work, and a concluding summary.

2 Modeling and Specification

In addition to being used to model the software at various levels of abstraction,

UML is often used to model the problem domain. However, I found that most students

were confused by seeing multiple uses of UML, so now I teach only how to use it to

model code. This has the added benefit that there is no ambiguity in determining

whether a diagram is correct of not, which has obvious pedagogical advantages.

UML Class Diagram. The software engineering students use UML Class Diagrams

for modeling a set of related classes and interfaces. To translate C++ code into a class

diagram, the students follow a set of conventions, most of which are the same as those

used by a typical round-trip engineering UML tool such as Rational Rose.

The conventions describe when attributes should be shown in the attribute com-

partment or drawn as a composition or aggregation relationship to another class in the

diagram. The basic dependency relationship is used for local variables, parameters,

and method invocations. For object creation we use the dependency relationship with

a <<creates>> stereotype. The standard inheritance (generalization) and implements

(realization) relationships are used, as is the standard interface notation. We use a

class symbol with the stereotype <<method>> to show how a static method is related

to classes, e.g. with the main() method. (Since we use C++, methods need not be en-

capsulated in a class.) We do not typically show library classes such as string.

In addition to learning the language of the UML Class Diagram, students learn

what C++’s “virtual,” “pure virtual,” and “static” mean in more general object-

oriented terminology. They are able to see visually how an interface is a barrier for

dependencies (see Figure 1).

UML Sequence Diagram. UML sequence diagrams require few additional

conventions for modeling C++ code, beyond using a <<method>> stereotype for class

methods (known as static methods in C++). In the sequence diagrams, interfaces

dissolve and inheritance is flattened. In other words, while the class diagrams show an

object’s static type (the type seen by the compiler), the sequence diagram shows its

dynamic type (the type it was created as).

Another thing the sequence diagrams reveal is the fact that C++ implicitly invokes

the constructor when variables are declared statically as opposed to dynamically:

Stack s; // compile-time allocation

Stack* sp = new Stack(); // run-time allocation

This experience of modeling C++ code in a sequence diagram also deepens the stu-

dents’ understanding of object-oriented languages.

Specification of Class Behavior. To describe class behavior the students are given a

specification consisting of pre- and post-conditions for each method in the class. From

this specification I ask them to draw a State Chart Diagram describing the class’s

interaction protocol, and to determine whether an implementation fulfills the

specification. The interaction protocol (i.p.) is the allowed sequences of method

invocations.

Of the UML modeling we do, our use of the State Chart Diagram is the most chal-

lenging for students, since it involves first extracting the i.p. then modeling it. The i.p.

is implied by the specification; it is not necessarily explicit in the pre- and post-

conditions. The approach is to use the state chart to model just one class, with the

possible invocations of this class’s methods as transitions between states. The con-

structor call labels the transition from the start state to the first state, and the destructor

labels all transitions to the end state. If a caller does not obey the interaction protocol,

the behavior of the class is unspecified; in those cases the code could do anything or

nothing.

The second use of these class specifications is to give the students a description of

an implementation and ask whether the implementation conforms to the specification.

One example is an implementation of the FIFO queue not as a linked list but as a cir-

cular buffer. A second example is an underspecified Bank class that allows an imple-

mentation to impose a “service charge” on deposits.

The purpose of these exercises is to teach the students to think carefully about what

the specification really says, without giving the specification the benefit of their do-

main knowledge, and without allowing the specification to dictate implementation

details. These exercises reinforce the work the students do writing Requirements Spec-

ifications, by using the same specification concept but applying it at the class level

(closer to the code base).

3 Interfaces

In general, interfaces present a unified, stable view of a component and eliminate

call-dependencies on a concrete class. They are used to hide variants, to specify a call-

back (e.g. with GUI components), and to reduce the impact of future changes (below

the interface).

In order to prepare the students for using interfaces in C++, we first review poly-

morphism and abstract classes. For polymorphism, a simple example of a parent class

and two subclasses suffices to show the difference between virtual and non-virtual

operations. When a method is not virtual, C++ uses static method binding: the compil-

er resolves the method call by using the object’s static type, in this case the parent

type. This runs faster, since no dynamic lookup is needed for the method call. When a

method is virtual, C++ uses dynamic method binding (aka dynamic dispatch). The

method call is not resolved until runtime, when the object’s dynamic type is used to

decide which method should be called. In this case it could be either of the subclass

types. This polymorphic behavior is what is commonly found in object-oriented lan-

guages.

Because C++ does not have native interface support, we use a set of conventions

for making a C++ class act as an interface. A C++ interface is an abstract class that

contains only public abstract (“pure virtual”) operations. No attributes are allowed,

nor are private or protected operations. We also put a virtual destructor with an empty

body in the interface, in order to preserve destructor chaining. (See Item 7 in [7], and

see [9].) The destructor is defined inline so that no .cpp file is needed. An example of

a C++ interface is shown in Table 1.

Table 1. Example of a C++ Interface (defined in IMessage.h)

class IMessage { public:

 virtual void setMessage(std::string) = 0;

 virtual void showMessage() = 0;

 virtual std::string readMessage() = 0;

 virtual ~IMessage() {}

};

Although interfaces are defined in .h files, a typical .h file is not an interface. Un-

fortunately it is common, even in some textbooks, to refer to the class declaration in

the .h file as the class’s “interface.” For C++ classes, the convention is to declare the

class in a .h file and define the operations (provide method bodies) in a .cpp file. The

.h file is a mechanism for giving the class declaration to the compiler (via a #include).

It can contain attributes, private or protected operations, and even method bodies (in-

line functions). None of these belong in an interface.

To motivate the use of an interface, I show the students the following very simple

Hello example. It prompts the user for a first and last name, then, depending on

whether the executable was built using the PLAINTEXT or SECURE option, displays

the name in plaintext or encrypted. The main() method creates a Name object, then

calls Name’s firstName() and lastName() methods and prints the results. The Name

class creates two Message objects, one for input and one for output. Methods first-

Name() and lastName() use the output object to set and show the prompt, and use the

input object to capture the user’s input and return it to the caller.

The main() method, the classes, and their relationships are shown in the UML Class

Diagram in Figure 1 (left side). Notice that FlexibleHello1 (the main()) knows about

all the variants of Message that exist: it creates a Name object either with an Encryptor

(SECURE option) or not (PLAINTEXT option). Name does not know about the Mes-

sage variants. It simply passes the Encryptor* when it constructs its Message objects.

Message is capable of providing both plaintext and encrypted messages.

At this point in the class I ask the students to add a third kind of message, a LOUD

(all caps) message. They see that this design is clumsy: the Encryptor* does double

duty as a flag and as access to the Encryptor object, and the design is not easily exten-

sible for other kinds of message objects.

Next I show the students a new design for the application, one that uses an inter-

face. Instead of making the Message class handle multiple message variants, we create

a separate class for each variant. These message variants are hidden behind an inter-

face IMessage. This design is shown on the right in Figure 1.

Each message variant (Message, SecureMessage) is a separate class that imple-

ments interface IMessage. The Encryptor is now encapsulated in SecureMessage. The

main() (FlexibleHello2) still chooses which variant of message is used, but now it

creates the message object and passes it as an IMessage to Name. Name depends only

on interface IMessage, and knows nothing about the variants. When Name invokes

setMessage(), showMessage(), or readMessage(), the method that executes depends on

which type of object FlexibleHello2 created.

However, since Name needs two message objects (two instances), the main() must

create both and pass both to Name, which is clumsy. The main() could even create two

different kinds of messages to pass to Name, which is probably not what Name would

like. A better solution would allow Name to create its own Message objects, but still

Figure 1. Hello Example: Initially (left) and with an Interface (right)

keep Name ignorant of the message variants. This is the motivation for the factory

design patterns.

After presenting this version, I ask the students to add the LOUD message variant

to it, and compare the effort to what was needed for the initial version.

4 Factory Design Patterns

A factory design pattern helps in managing dependencies that arise due to the crea-

tion of objects. In object-oriented languages, in order to instantiate an object, you

must use its class name. The only way to create an object without knowing its concrete

type is to use indirection, which is how factory patterns work.

Class Factory. There are two factory design patterns I use in the software engineering

course. The first I call “Class Factory,” since it is a class whose methods do nothing

other than create objects. This pattern is known as the ‘Abstract Factory’ in [6]. A

class factory is a class that simply creates objects. The code for Message Factory is

shown in Table 2.

Table 2. Code for Class MessageFactory

In MessageFactory.h: In MessageFactory.cpp:

class MessageFactory : public

IMessageFactory { public:

MessageFactory();

virtual IMessage* newMessage();

virtual ~MessageFactory();

};

MessageFactory::MessageFactory(){ }

MessageFactory::~MessageFactory(){ }

IMessage* MessageFacto-

ry::newMessage()

{ return new Message(); }

Different class factories create different kinds of objects. Figure 2 (left) shows the

FlexibleHello example revised to use a class factory. The main() decides which kind

of factory object to create: with MessageFactory, IMessageFactory::newMessage()

creates a Message. With SecureMessageFactory, IMessageFactory::newMessage()

creates a SecureMessage.

Figure 2. Hello Example with Class Factory (left) and with Factory Method (right)

Next main() passes its factory object as an IMessageFactory object to the Name ob-

ject. Name does the creation of the IMessage object by calling IMessageFactory’s

method newMessage(). Depending on which kind of IMessageFactory object it re-

ceived from main(), newMessage() creates either a Message or a SecureMessage, and

returns this object to Name as an IMessage.

In summary, main() chooses (and creates) the Factory. Name uses the IMes-

sageFactory to create an IMessage object (without knowing exactly what type of ob-

ject it is creating). Name uses only the interfaces IMessageFactory and IMessage,

even though the objects it accesses via these interfaces have concrete types Mes-

sageFactory & Message or SecureMessageFactory & SecureMessage.

Clearly this design is more complicated; adding a level of indirection for object

creation comes at a price. However, as the students see when they add a third variant

(the LoudMessage), Name now has the ability to create its own messages without

knowing which variant it is creating.

Factory Method. The second factory pattern is called “Factory Method,” but it is not

the same as the ‘Factory Method’ pattern in [6], which puts the factory method in a

class. The names we use are meant to help the students remember the key difference

between the two patterns. This second factory pattern comes directly from my

industrial experience.

The pattern we use is simpler than the class factory because instead of creating a

factory class for each variant, we provide multiple definitions of a C++ static method

that is not inside a class. Each variant is compiled and linked into a separate library,

and at build time or runtime we choose one of the libraries to link in. Table 3 shows

the method declarations and definitions for the Hello example.

Table 3. Declaration and Definition of a Factory Method

Decl. in IMessage.h Definition in Message.lib Def. in SecureMessage.lib

IMessage*

NewMessage();

IMessage* NewMessage()

{ return new Message(); }

IMessage* NewMessage()

{ return new

SecureMessage(); }

If a dynamic link library (aka shared library) is used, then the variant can be select-

ed and linked in at runtime. We use static libraries in the software engineering course

because libraries are new to most students and static libraries are simpler than dynam-

ic link libraries.

In this version of the Hello example, shown in Figure 2 (right), the main() is called

“ConsoleHello” rather than “FlexibleHello” because the main does not contain any

code to choose variants. With static libraries the application contains no code related

to selecting variants. With dynamic link libraries all that is needed at runtime is the

name and path of the library file, which need not be hardcoded into the application.

The declaration for the NewMessage() method goes in IMessage.h (within the in-

clude guard, but declared after the class, not as part of the class). A definition of

NewMessage() goes in the same .cpp file as the class it creates. For example, Secure-

Message’s version of NewMessage() goes in SecureMessage.cpp.

When Name needs to create an IMessage object, it simply calls NewMessage(). For

an in-class exercise, as before the students add a third variant, a LoudMessage. There

is little new code needed to accomplish this, but there is additional work needed for

creating a library and linking it into the executable.

Combining the Factory Design Patterns. The class factory pattern moves the

creation dependency to another part of the system. Normally this is used to produce a

coherent set of objects, where each factory provides a set of methods newX(), newY(),

etc. appropriate for that variant. See ‘Abstract Factory’ [6] for more discussion of

where this is useful. The factory method pattern moves the creation dependency to a

link-time binding. For maximum flexibility these two patterns can be used together:

the factory method pattern is applied to a factory. The factory classes implement the

interface IFactory, and the method NewFactory() has multiple definitions, one for

each concrete factory class.

5 Evaluation

This course has evolved in the fourteen years I have taught it, and nearly all of the

present elements have been in place for the last ten or eleven years. The changes made

to arrive at the present form were primarily driven by analysis of student performance

on exams and assignments, and students’ comments and questions. The two course

elements described in this paper, modeling and design patterns, have been part of the

course since I started teaching it. What has changed is the role of these topics in the

course.

Figure 3: Students’ Evaluations of Course Quality

Students evaluate each course each semester. As can be seen in Figure 3, their rat-

ings have improved as the course has evolved. The graph shows my students’ rating of

course quality, comparing the Software Engineering (SE) course to all my other

courses (Non-SE). In addition, students are asked to comment on the strongest and

weakest aspects of the course, and how the course could be improved. Students find

the project experience both frustrating and rewarding, as would be expected. For the

strongest aspect of the course, students have noted the active learning approach, the

progression of exercises (in-class examples, in-class exercises, homework, project

work), and the modeling.

Other important forms of evaluation are student exit interviews (for graduating stu-

dents) and regular surveys of our alumni and of employers of our students. Students

value the course particularly for the practical techniques they learn. Alumni and em-

ployers regularly cite UML and design patterns as very important topics for computer

science majors.

Students also tell me when a job interview touches on one of the topics we covered

in the course. One of our students was asked about the difference between a class and

an interface during an interview, and believes that his answer to this question clinched

the job offer.

6 Related Work

A number of authors mention the problem of getting students to appreciate the chal-

lenges of software engineering. Rather than spending most of the course surveying the

software engineering discipline, Rajlich advocates project development and teaching

of specific skill training to occupy the bulk of the course [8]. My approach is similar.

Putting a design focus in the introductory software engineering course, as I do, is

also advocated in [11] and [10]. In [3] Boehm sees COTS components and model-

driven development as playing an increasing role in software development. This ar-

gues for the kind of focus on dependency management that I advocate.

In [5] Fox and Patterson describe their experiences teaching software engineering

using an agile process and cloud computing. They motivate this approach in part by

interviews with “a half-dozen leading software companies.” They note “the number-

one request from each company: that students learn how to enhance sparsely docu-

mented legacy code.” This is completely consistent with my experience in the soft-

ware industry, and has been the driving force behind my focus on modeling and de-

pendency management.

Badreddin et. al. provide compelling evidence that UML and Umple (a textual

modeling language) provide significant benefit over Java when students or software

professionals are trying to understand a software system [2]. This finding supports the

importance of teaching a modeling language to students. The models used in their

experiments were models of source code, which is consistent with how I use UML.

Just three years after the classic design patterns book [6] was published, Astrachan

et. al. argued for the inclusion of design patterns in the computer science curriculum

[1]. They have become an accepted part of teaching object-oriented design, but are not

always included in an introductory software engineering course, where there is already

so much other material to be covered. Denzler and Gruntz advocate using design pat-

terns and software design as a bridge between programming language courses and the

first software engineering course [4].

7 Conclusion

While from the start I taught modeling (UML) and design patterns as part of the in-

troductory Software Engineering course, over time my approach has evolved. The

changes can be summarized as follows:

 Make design a more prominent aspect of the course, make dependencies the pri-

mary design consideration, and make reuse and managing variants the primary

design goals.

 Narrow the focus so that models are taught in one context only (as an abstraction

of source code), and the design patterns are taught via the factory patterns.

 Use modeling and design patterns to support the design goals of reuse and manag-

ing variants.

 Provide a logical progression of design solutions that starts with inheritance and

polymorphism, then adds interfaces, and ends with the factory design patterns

(class factory, then factory method, then combined factory patterns). Use model-

ing to expose the dependencies in these design solutions and to see their impact at

runtime.

I am convinced these are significant improvements, and this is corroborated by the

marked improvements in student satisfaction with the course, as evidenced in the

course evaluation scores.

References

[1] Owen Astrachan, Garrett Mitchener, Geoffrey Berry, and Landon Cox. 1998.

Design patterns: an essential component of CS curricula. In Proceedings of the

29th SIGCSE technical symposium on Computer science education (SIGCSE '98),

D. Joyce and J. Impagliazzo (Eds.). ACM, New York, NY, USA, 153-160.

[2] Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge. 2012. Model

oriented programming: an empirical study of comprehension. In Proc. of the 2012

Conf. of the Center for Advanced Studies on Collab. Research (CASCON '12), H.

Jacobsen, Y. Zou, and J. Chen (Eds.). IBM Corp., Riverton, NJ, USA, 73-86.
[3] Barry Boehm. 2006. A view of 20th and 21st century software engineering. In

Proceedings of the 28th International Conference on Software Engineering

(ICSE '06). ACM, New York, NY, USA, 12-29.

[4] Christoph Denzler and Dominik Gruntz. 2008. Design patterns: between pro-

gramming and software design. In Proceedings of the 30th international confer-

ence on Software engineering (ICSE '08). ACM, New York, NY, USA, 801-804.

[5] Armando Fox and David Patterson. 2012. Crossing the software education chasm.

Commun. ACM 55, 5 (May 2012), 44-49.

[6] Gamma, Helm, Johnson, Vlissides. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley.

[7] Meyers, Scott, 2007. Effective C++, Third Edition. Pearson Education.

[8] Václav Rajlich. 2013. Teaching developer skills in the first software engineering

course. In Proceedings of the 2013 International Conference on Software Engi-

neering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 1109-1116.

[9] http://stackoverflow.com/questions/318064/how-do-you-declare-an-interface-in-c

[10] Taylor, R.N.; Van der Hoek, Andre, "Software Design and Architecture: The

once and future focus of software engineering," Future of Software Engineering,

2007. FOSE '07, pp.226-243, May 2007.

[11] van Vliet, H., 2006. Reflections on software engineering education. Software,

IEEE, vol.23, no.3, pp.55-61, May-June 2006.

