
An Initial Investigation of Multi-Cyclic Training Regimen for

Collaborative Filtering Models in GraphChi

James W. Curnalia and Alina Lazar
Department of Computer Science and Information Systems

Youngstown State University
Youngstown, Ohio 44555

jwcurnalia@student.usu.edu
alazar@ysu.edu

Abstract
More and more outlets are utilizing collaborative filtering
techniques to make sense of the sea of data generated by our
hyper-connected world. How a collaborative filtering model
is generated can be the difference between accurate or
flawed predictions. This study is to determine the impact of
a cyclical training regimen on the algorithms presented in
the Collaborative Filtering Toolkit for GraphChi.

Introduction to Collaborative Filtering

With the growth of on-line services and e-commerce
the amount of data that users need to make sense of has
increased exponentially. The difficult task facing these
service providers is to sift through a sea of options and find
what a user wants before their competitors. One of the tools
they have at their disposal is collaborative filtering.

One of the central assumptions about collaborative
filtering is that people with similar tastes, or shopping
histories, are better predictors of a user's future behavior
than a random person. Collaborative filtering techniques
sift through large datasets to identify patterns and
similarities between these users, and then make
recommendations. These processes are not limited to the
retail sphere, collaborative filtering has also been applied to
financial, geological, and other endeavors. An examination
of a small example of collaborative filtering, to produce
song recommendations for customers, will help illustrate
some of these ideas.

Table 1: Example User Song History and Ratings

User song1 song2 song3 song4 song5 song6 song7

A 3 X X 4 1 5 2

B 1 2 X 2 4 X 4

C 5 X 4 X 1 4 X

D 2 X 1 X 5 X 5

The example data covers four different customers
(A-D) and their listening history over a catalog of seven

songs. In addition to the fact that a user has listened to a
particular song, there is an explicit rating (1-5, 5 being the
highest). If a user has not listened to a song this fact is
highlighted with an 'X'. A predicted rating needs to be
generated for these unknown songs, so that they can be
suggested to the appropriate users.

The first step in the process is to identify which users
have similar tastes. User A and User C have three points of
similarity. They both responded very positively to song6
(ratings of A:5 and C:4) and very negatively to song5 (both
had ratings of 1). The third point of similarity, song1, is
less significant. User C responded very favorably to the
song, while User A had a neutral reaction. A similar
process can generate a taste profile for Users B and D
(song1 B:1/D:2, song5 B:4/D:5, and song7 B:4/D:5). Using
these pairings we can begin to identify likely reactions to
some of the users' unknown songs.

Table 2: Suggestions Based on Similarities

User song1 song2 song3 song4 song5 song6 song7

A 3 X + 4 1 5 2

B 1 2 - 2 4 X 4

C 5 X 4 + 1 4 -

D 2 - 1 - 5 X 5

Six of the unknown songs have been replaced with a
suggested reaction (+ for positive or – for negative). An
exact score would require further analysis, and most likely
a great deal more information, but a more simplistic
measure of attitude can be inferred.

This still leaves four unknown songs in the table. A
quick look over the table shows that the two pairs of users
have completely opposite tastes in music. It would be
reasonable to assume that what one pair likes the other will
dislike, and vice versa. In this way we can utilize not only
the similarity between users to determine attitudes, but also
the reactions of diametrically opposed Users.

Now all that remains is to scale the entire process to
handle millions of users and products, while maintaining

accuracy and minimizing costs (both financial and
temporal).

Related Work

Collaborative Filtering has traditionally included
methods such as Bayesian Networks and clustering. A
Bayesian Network uses probability and causal relationships
to classify new observations (Pearl 1994). Clustering
algorithms attempt to represent observations as “points” in
a multi-dimensional space. The closer together that two
points are, the more similar the underlying observations
(Witten, Frank and Hall 2011). These and other traditional
methods are, and will continue to be, powerful and valid
collaborative filtering methods.

However, in the wake of events like the Netflix Prize a
new series of algorithms were developed to deal with a
new phenomenon “Big Data”. These new algorithms
sought to incorporate the concepts of the traditional
methods into new frameworks capable of dealing with data
that was increasingly large, complex, and often extremely
sparse.

This study will concern itself with thirteen of these
modern Collaborative Filtering algorithms:

• Alternating Least Squares (ALS), (Zhou et al. 2008)
• Stochastic Gradient Descent (SGD), (Koren 2009)
• Bias Stochastic Gradient Descent (BSGD), (Koren

2008)
• Koren’s Singular Value Decomposition (SVD++),

(Koren 2008)
• Weighted ALS (WALS), (Hu, Koren, and Volinsky

2008)
• Non-Negative Matrix Factorization (NMF), (Lee and

Seung 2001)
• Singular Value Decomposition (SVD), (Hernandez,

Roman, and Tomas 2007)
• One-Sided SVD, (Hernandez, Roman, and Tomas

2007)
• Tensor ALS (TALS), (Comon, Luciani, and de

Almeida 2009)
• Restricted Bolzman Machines (RBM), (Hinton 2010)
• Time-SVD++(TSVD++), (Koren 2009)
• libFM, (Rendle 2010)
• Probabilistic Matrix Factorization (PMF),

(Salakhutdinov and Mnih 2008)
Each of the modern Collaborative Filtering algorithms

seeks to either reduce or capitalize on the complexity of
large datasets. Algorithms utilizing decomposition,
factorization, and SGD seek to reduce the dimensionality
of data in order to expose underlying relationships. Least
squares methods treat recommendations as linear
equations, and attempt to find the best estimation of the
parameters necessary to calculate an accurate rating. TALS
and TSVD++ try to leverage additional information, in this
case time, in order to more accurately model behaviors.

This study will focus on graph-based implementations
of these algorithms given their recent popularity and the
ability to be executed on smaller machines. Recently

graph-based algorithms have been adopted by many large,
commercial websites including Amazon and YouTube
(Walia 2008). While it is important to note the adoption of
techniques like this by powerful and influential
corporations, it is admittedly the latter that was the driving
force in adopting a graph-based approach.

The GraphLab Project was developed in order to
facilitate distributed, parallel, graph-based algorithms in an
efficient and reliable manner (Low et al. 2010). GraphChi
is an offshoot of the GraphLab Project that seeks to
leverage the power graph-based algorithms on a single
machine, while maintaining high performance standards
(Kyrola, Blelloch, and Guestrin 2012). Bickson, one of the
original developers of GraphLab, has ported a number of
collaborative filtering algorithms from GraphLab to
GraphChi in the form of the Collaborative Filtering Toolkit
(CFT). Thirteen algorithms were supported at the time this
study was run, December 2012, but two additional
algorithms had already been added as this paper was being
written, January 2013.

In addition to developing the toolkit, Bickson has
written a blog entry which serves as an introduction to the
CFT and its underlying algorithms (Bickson 2012). In the
tutorial, Bickson identifies a number of algorithms which
have an element of fault tolerance. These algorithms allow
the user to save the model to disk and then resume training
from that exact state.

Experimentation with the fault-tolerant algorithms
seemed to yield an additional benefit, in that the accuracy
of the model would often jump between executions of the
training epochs (this paper will use the terms “epoch” and
“cycle” interchangeably to refer to a group of training
iterations). This would seem to suggest that there is an
advantage to using multiple cycles beyond simple fault
tolerance. The cumulative value of this inter-cycle bump in
accuracy could be quite significant.

As these algorithms train a model, they attempt to
reduce the sample space in an attempt to converge on an
optimal answer. Given that these algorithms become more
restrictive and focused the longer that they run, it is
reasonable to assume that restarting an algorithm would
have a significant positive impact on the final model. By
loosening the bounds placed on the algorithm it is possible
to identify the possibility that the current parameters have
focused on a local rather than global minimum.

Proposal

The observed increase in inter-epoch accuracy of
models being trained with fault tolerant algorithms
suggests that there is significant value to be gained from
such a training regimen. This study will first seek to
establish whether there is in fact a boost in model accuracy
between training cycles. If this is successful, we will
attempt to identify a cycle size that results in the best final
model.

It is our belief that a fault-tolerant algorithm, utilizing
a epoch size of no more than 20, should result in a model

that is significantly more accurate than those trained using
a single-epoch algorithm.

Methodology

Since this study is seeking to understand the impact of
epoch size on the accuracy of the resulting model, there
will be no attempt to tune any of the algorithms. The
default settings were used in order to limit the impact of
user proficiency on the resulting models (Bickson 2012).

The CFT reports the accuracy of the model generated
using root mean squared error (RMSE). This statistic is
generated for every complete pass over the training set, and
is reported in terms of both training and validation. The
training RMSE will not be used in this study as it is only a
reflection of how well the model performs on the training
data. Instead the validation RMSE will be the only measure
reported since it demonstrates how well the model handled
the test data. Additionally, the validation RMSE will
identify problems with the model such as overfitting which
are ignored in the training algorithm.

Fault Tolerance Algorithms (ALS, WALS, TALS,
NMF, SGD, BSGD and SVD++)

The initial epoch size will be set to the maximum
iterations specified in the tutorial, usually 6 iterations.
After the first training cycle, the argument
--load_factors_from_file=1 will be added to the algorithm
to resume training with the current state. Training cycles
will continue until one of the following three conditions are
met:

1. The validation RMSE no longer improves with
subsequent training cycles (a minima is reached).

2. The validation RMSE increases with additional
training cycles (overfitting).

3. Multiple training cycles result in an improvement
of the validation RMSE of less than .00005 / 10
iterations (diminishing returns).

Upon reaching one of the above criteria, the current
state of the model will be saved and the validation RMSE
and total number of training cycles recorded.

Next the epoch size will be increased and the entire
process will repeat for the new model. The training epoch
will be increased on the following schedule: 6, 20, 40, 80,
100, 120, 140, 180, 200. After 200 iterations the size of the
epoch will be incremented by 50 for every subsequent
increase. The training of new models on this schedule will
continue until the resulting model has a higher validation
RMSE than the previously generated model.

After the complete training of an algorithm is
completed, an average starting RMSE is selected and
recorded as well. The starting RMSE is defined as the
validation RMSE after a single iteration of the algorithm.
Since there is a degree of variation inherent in all of these
algorithms it is necessary to choose a representative initial
state. The starting RMSE will allow for a model’s training
regimen to be judged both by its final accuracy and the

degree of accuracy that is a result of training.

Remaining Algorithms (SVD, One-Sided SVD, RBM,
TSVD++, libFM, and PMF)

Even though these algorithms do not support a
multi-cyclic training regimen, they will be trained on the
same epoch schedule to provide additional context.

Additional Note on Alternating Least Squares (ALS)
Algorithms

Overfitting was a significant problem with the ALS
algorithms, and as such some modifications to the methods
were made for those algorithms. Instead of stopping the
training schedule with the first model resulting in a higher
RMSE, all schedules were run to at least a training epoch
of 80 iterations in size. This was an attempt to see if
overfitting could be overcome with additional training.
Overfitting also led to the inclusion of two smaller epoch
sizes on the training schedule, two and ten, in order to
identify if the optimal size was located at this smaller scale.

Control Groups
One final piece of information is necessary to

determine the effectiveness of a multi-cyclic training
regimen, a control group. The control group was trained
using a single-epoch consisting of a large number of
iterations. The control groups were generated after the
experimental group in an attempt to limit the number of
unnecessary training cycles, since large epochs require 8+
hours to run.

Waiting until after the experiment had the additional
benefit of identifying a number of algorithms which did not
need to included in the control group. All of the algorithms
utilizing ALS already had runs which demonstrated that
even moderately sized single iterations were outperformed
by multi-cyclic regimens. This meant that it was only
necessary to run control groups on SGD, BSGD, NMF, and
SVD++.

Each of the control groups is trained using the same
parameters utilized in the experimental phase, only the
progression of epoch size is altered. A starting size of 200
iterations was selected since it is within the bounds of each
of the selected algorithms total number of iterations run
from the experiment. Each succeeding epoch will be
doubled in size up to 1,600 iterations. The next epoch will
be increased to 2,000 and then incremented by 1,000 every
epoch after that. Training will continue until the RMSE no
longer decreases between runs, and actually begins to
increase.

Table 2: Netflix Control Group Results

Algorithm # of Iterations RMSE

SGD 200 1.123820

BSGD 400 1.117690

SVD++ 400 0.982024

NMF 2000 2.370640

The Data

This study uses the same dataset featured in Bickson’s
blog, which is a synthetic Netflix dataset created using an
anonymized sample of the original. Although the dataset
from the Netflix challenge is unavailable because of
copyright, the general characteristics of the data are well
established by the competition’s creators (Bennett and
Lanning 2007). The GraphLab Netflix sample was done to
preserve these characteristics (i.e. sparsity of data, user to
movie ratio, user to rating ratio, etc) while ensuring the
anonymity of the users.

The Netflix subset has the following general
characteristics: 95,526 unique users, 3,561 movies, and
3,298,163 ratings (non-zeroes). This is a very sparse
dataset with less than 0.97% of the resulting matrix having
ratings.

Historic Benchmarks

In order to provide some context in which to view the
results of this study the following results from the Netflix
Prize (Netflix 2009) were retrieved:

• Cinematch (2006) : RMSE 0.9525
• 2007 Progress Prize : "KorBell" : RMSE 0.8723
• 2008 Progress Prize : "BellKor in BigChaos" : RMSE

0.8627
• Winners : "BellKor's Pragmatic Chaos" (2009) : RMSE

0.8567
Additionally, KorBell reported that the best result they

could get from a single method was an increase of 6.57%
over Cinematch, RMSE ~0.8882 (Bell and Koren 2007).

Results

The initial impressions of the CFT suggested that the
apparent boost in accuracy between training epochs would
favor a training regimen consisting of a large number of
very small cycles (no more than 20 iterations per epoch).
This type of training would lead to results superior, to those
generated without it.

The first thing of note about Table 3 is that only eleven
algorithms are included. Both SVD and One-Sided SVD
have been left off of the table intentionally. No
modification to the number of training iterations yielded
any variation in how these algorithms performed. Every
run of these methods resulted in both an identical process
and model. Additionally, these algorithms utilize a
different error metric than the rest of the CFT by reporting
an error estimate for each of the features generated. For
these reasons these algorithms were left out of the rest of
the discussion of this study’s results, but an example of the
output of each has been included at the end of this paper as
Appendix 1.

Table 3: Algorithms Ordered by Final RMSE (Multi-Cyclic
Algorithms Bolded)

Algorithm Initial RMSE Final RMSE

PMF 2.498400 0.914566

RBM 0.979169 0.926279

SVD++ 1.124420 0.931921

BSGD 1.363540 0.952970

SGD 1.240700 0.959890

TSVD++ 1.041220 0.995435

LibFM 1.090030 1.025770

TALS 1.244250 1.147030

ALS 1.251550 1.159920

NMF 1.580120 2.375430

WALS 5.522080 5.325280

Looking at the results purely in terms of accuracy
suggest that the fault-tolerant algorithms are generally of
inferior quality. However, this view of the results is
misleading. There was no effort made to tune these
algorithms, or to even check if there current settings were
conducive to producing good models, before these results
were generated. So while it is interesting which algorithms
handled the data best, it doesn’t really show how well these
models developed over the course of training.

By ordering the results by how much a model’s
RMFigure 1: Trendlines of Algorithm PerformanceSE was
improved over the course of training reveals a far different
picture of the fault-tolerant algorithms. The improvement
in final RMSE would suggest that these algorithms are
more effective at training, but it is unclear whether this is a
product of the algorithm itself or the training regimen. A
closer look at all of the results, as well as the effect of the
restart boost, should provide a clearer picture of the factors
at work.

Table 4: Results Ordered by Percent Improved Over
Initial RMSE

Algorithm % Improvement

PMF 63.39%

BSGD 30.11%

SGD 22.63%

SVD++ 17.12%

TALS 7.81%

ALS 7.32%

LibFM 5.90%

RBM 5.40%

TSVD++ 4.40%

WALS 3.56%

NMF -50.33%

 Figure 1: Algorithmic Spark Lines

Figure 1 shows the percentage difference between all
of the training regimens for a given algorithm and its
starting RMSE. The spark lines illustrate that while the
effectiveness of the algorithms may vary, their general
training behaviors are very similar. From this limited
sample it would seem that there is no evidence that the
restart boost creates a more effective training regimen. But
this is not evidence that it has no effect.

While the cyclical training regimen fails to outperform
the single epoch algorithms, it is clearly not without its
benefits. Most of the cyclically generated models have
significantly higher accuracy than models learned over the
course of a lone epoch with the same algorithm. All of the
algorithms in the CFT suffer from the same design flaw,
they fail to take into account validation RMSE. This results
in either overfitting or the algorithm becoming trapped in a
local minima, as the parameters of the algorithms become
more and more restrictive. Restarting the algorithm loosens
the bounds on the program allowing it to move beyond
erroneous assumptions about the data. So while the
hypothesized accuracy failed to materialize, there are
definitely significant advantages to this style of training
with SGD, BSGD, and SVD++.

Table 9: Final RMSE of Control and Experimental Models

Algorithm Control
RMSE

Test RMSE Improvemen
t

SGD 1.123820 0.959890 14.59%

BSGD 1.117690 0.952970 14.74%

SVD++ 0.982024 0.931921 5.10%

NMF 2.370640 2.375430 -0.20%

Table 5: Epoch Size and Number of Cycles Trained for
Each Algorithm (Multi-Cyclic Algorithms Bolded)

Algorithm
Epoch Size
(Iterations)

Training
Cycles

Total Running
Time (sec)

PMF 180 - 2,501.9900

RBM 80 - 692.3140

SVD++ 40 7 691.6511

BSGD 40 92 6,860.8908

SGD 40 59 3127.5310

TSVD++ 80 - 251.9750

LibFM 200 - 908.0320

TALS 10 1 74.6055

ALS 2 4 47.4264

NMF 40 56 9,045.0080

WALS 10 1 66.1071

The idea that a cyclical training regimen is superior to
a single epoch system has been thoroughly disproved, but
what about the ideal size for these epochs? Table 5 shows,
rather conclusively, that the ideal number of iterations is
larger than the 20 iteration ceiling that had been
hypothesized. Each cycle needs to be large enough to take
advantage of as many positive iterations (those that reduce
the validation RMSE), while minimizing the number of
overfitted iterations (a common occurrence in later training
cycles).

Conclusion and Further Study

This study is only meant to serve as an initial foray
into the algorithms represented by the CFT, and a great

deal remains to be researched. However, there are
questions that relate directly to the results of this study
which would be logical next steps. The first is to determine
if the results here are a product of the algorithms or the
data. This study needs to be repeated on a number of other
datasets to see if similar results are generated. Similar
training patterns would suggest that the findings of this
study are a result of the algorithms used and not some
feature of the dataset. Secondly, a study should determine
if tuning the algorithms have an effect on training patterns.

The CFT represents a powerful tool for bringing
compact, easily executed data analysis to a variety of
ventures. Further experimentation with the package will
illuminate how it, and the algorithms it represents, can be
put to the best use.

Appendix 1: SVD and One-Sided SVD Output

./toolkits/collaborative_filtering/svd
--training=smallnetflix_mm --nsv=3 --nv=10 --max_iter=5
--quiet=1 --tol=1e-1
WARNING: common.hpp(print_copyright:104):
GraphChi Collaborative filtering library is written by
Danny Bickson (c). Send any comments or bug reports to
danny.bickson@gmail.com
[training] => [smallnetflix_mm]
[nsv] => [3]
[nv] => [10]
[max_iter] => [5]
[quiet] => [1]
[tol] => [1e-1]
Load matrix smallnetflix_mm
Starting iteration: 1 at time: 2.71863
Starting step: 1 at time: 3.42417
Starting step: 2 at time: 4.6307
Starting step: 3 at time: 5.88049
Starting step: 4 at time: 7.11613
Starting step: 5 at time: 8.36737
Starting step: 6 at time: 9.63118
Starting step: 7 at time: 10.9138
Starting step: 8 at time: 12.2115
Starting step: 9 at time: 13.5747
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
Number of computed signular values 5
Singular value 0 3276.69 Error estimate: 0.000305186
Singular value 1 1064.07 Error estimate: 1.18507e-13
Singular value 2 956.541 Error estimate: 0.00162432
Singular value 3 889.028 Error estimate: 0.00841469
Singular value 4 710.42 Error estimate: 0.0551811
Going to save output vectors U and V
Lanczos finished 22.5142

./toolkits/collaborative_filtering/svd_onesided
--training=smallnetflix_mm --nsv=3 --nv=10 --max_iter=5
--quiet=1 --tol=1e-1
WARNING: common.hpp(print_copyright:104):
GraphChi Collaborative filtering library is written by
Danny Bickson (c). Send any comments or bug reports to
danny.bickson@gmail.com
[training] => [smallnetflix_mm]
[nsv] => [3]
[nv] => [10]
[max_iter] => [5]
[quiet] => [1]
[tol] => [1e-1]
Load matrix smallnetflix_mm
Starting iteration: 1 at time: 0.560262
Starting step: 1 at time: 1.22546
Starting step: 2 at time: 4.76345
Starting step: 3 at time: 8.32286
Starting step: 4 at time: 11.8127
Starting step: 5 at time: 15.4576
Starting step: 6 at time: 19.1342
Starting step: 7 at time: 22.8375
Starting step: 8 at time: 26.5084
Starting step: 9 at time: 30.1965
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
Number of computed signular values 5
Singular value 0 3276.69 Error estimate: 3.8991e-14
Singular value 1 1064.07 Error estimate: 0.00146017
Singular value 2 956.541 Error estimate: 0.00782078
Singular value 3 889.028 Error estimate: 0.0440951
Singular value 4 710.42 Error estimate: 0.0864268
Lanczos finished in 47.1228

References

Bell, R. M.; Koren, Y. (2007). “Lessons from the Netflix
Prize Challenge.” SIGKDD Explorations Vol. 9 Issue
2, 75-79. ACM New York, NY.

Bennett, J.; Lanning, S. (2007). “The Netflix Prize”. In
Proceedings of KDD Cup and Workshop 2007, 3-6.
ACM New York, NY.

Bickson, D. (2012). “Collaborative filtering with
GraphChi”. Large Scale Machine Learning and Other
Animals. Accessed on December 5, 2012.
http://bickson.blogspot.com/2012/08/collaborative-filte
ring-with-demographical

Comon, P.; Luciani, X.; de Almeida, A. L. F. (2009).
“Tensor Decompositions, Alternating Least Squares
and other Tales.” Special issue, Journal of
Chemometrics. In memory of R. Harshman.

Hernandez, V.; Roman, J. E.; Tomas, A. (2007). “Restarted
Lanczos Bidiagonalization for the SVD in SLEPc.”
SLEPc Technical Report STR-8.

Hinton, G. (2010).” A Practical Guide to Training
Restricted Boltzmann Machines.” University of
Toronto Tech Report UTML TR 2010-003.

Hu, Y.; Koren, Y.; Volinsky, C (2008). “Collaborative
Filtering for Implicit Feedback Datasets”. IEEE
International Conference on Data Mining (ICDM
2008), IEEE Washington, DC.

Koren, Y. (2009). “Collaborative filtering with temporal
dynamics.” In Proceedings of the 15th ACM
SIGKDD, 447-456. ACM, New York, NY.

Koren, Y (2008). “Factorization Meets the Neighborhood:
a Multifaceted Collaborative Filtering Model”. ACM
SIGKDD. ACM, New York, NY.

Koren, Y.; Bell, R.; Volinsky, C (2009). “Matrix
Factorization Techniques for Recommender Systems.”
In IEEE Computer, Vol. 42, No. 8. (07 August 2009),
pp. 30-37. IEEE Washington, DC.

Kyrola, A.; Blelloch, G.; Guestrin, C. (2012).
“GraphChi: Large-Scale Graph Computation on Just a
PC.” In Proceedings of the Tenth USENIX
Symposium on Operating Systems Design and
Implementation, 31-46. OSDI Press Hollywood, CA.

Lee, D..D.; Seung, H.S. (2001). “Algorithms for
Non-negative Matrix Factorization”, Advances in
Neural Information Processing Systems 13, 556-562.

Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin,
C.; Hellerstein,J. M. (2010). "GraphLab: A New
Parallel Framework for Machine Learning." In
Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence. AAAI Press Palo
Alto, CA.

Netflix (2009). “Leaderboard”. NetflixPrize.com. Accessed
on January 5, 2013.
 http://www.netflixprize.com//leaderboard

Pearl, J. (1994). "A Probabilistic Calculus of Actions". In
UAI'94 Proceedings of the Tenth international
conference on Uncertainty in artificial intelligence.
Morgan Kaufman San Mateo CA. pp. 454–462.

Rendle, S. (2010). “Factorization Machines.” in
Proceedings of the 10th IEEE International Conference
on Data Mining (ICDM 2010), Sydney, Australia.
IEEE Washington, DC.

Salakhutdinov, R.; Mnih, A. (2008). “Bayesian
Probabilistic Matrix Factorization using Markov Chain
Monte Carlo.” In the Proceedings of the International
Conference on Machine Learning.

Walia, R.R. (2008). Collaborative Filtering: A comparison
of graph-based semi-supervised learning methods and
memory-based methods. Strengthening the Role of
ICT in Development, 70-82.

Witten, I.H.; Frank, E.; Hall, M.A. (2011). Data Mining:
Practical Machine Learning Tools and Techniques 3rd

ed. Morgan Kaufman San Mateo CA.

Zhou, Y.; Wilkinson, D.; Schreiber, R.; Pan, R. (2008).
“Large-Scale Parallel Collaborative Filtering for the
Netflix Prize.” In the Proceedings of the 4th
international conference on Algorithmic Aspects in
Information and Management, 337-348. Shanghai,
China.

