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Abstract 

A human spine is a complicated structure of bones, joints, 

ligaments and muscles which all undergo a process of 

change with age. This paper describes the use of artificial 

intelligence in visualization and better understanding of the 

progressive and degenerative changes in human lumbar 

spine. Visualizing this pattern of change will be helpful in 

finding the correlations among the spinal features and 

understanding of how a change in one feature affects 

others. The self-organizing map (SOM) is an efficient tool 

for visualization of multidimensional numerical data. It is 

capable of projecting high-dimensional data onto a regular, 

usually 2-dimensional grid of neurons. In this paper, SOM 

is used to visualize the pattern of change in lumbar spine 

features with the varying age. The paper gives an idea of 

how the information can be acquired from SOM 

representations and how the SOM can be best utilized in 

exploratory data visualization. Data from the lumbar spine 

MRIs of 61 patients (both male and female) were used in 

this study.  The age of patients ranged from 2 to 93 years. 

Information for vertebral height, disc height and disc signal 

intensities were recorded from the MRI scans. SOM then 

transformed the larger feature space to a smaller one for 

getting a more meaningful relation between the spinal 

features. Complexity is reduced and the data set is 

represented in the form of 2D map which is easier to 

understand and provides visual description.  

I. Introduction 

A human spine is a complicated and key component of 
human being. During the normal ageing process, spine 
undergoes progressive and regressive changes which 
presumably follow certain pattern. This research focuses 
explicitly on the study of progressive and degenerative 
changes occurring in the human lumbar spine with the 
normal ageing process. This research work concentrates on 
the identification and classification of age-related 
variations in "human spine" with the help of Magnetic 
Resonance Image (MRI). These scans of the lumbar spine 
area belong to patients of different age groups. Back pain 
is usually associated with the spine disorder. It is the 
second most common reason for visits to the doctor’s 

clinic, outnumbered only by the upper-respiratory 
infections [1, 2, 3]. Back pain is one of the most common 
reasons for missed work too. One-half of all working 
Americans admit to having back pain symptoms each year 
[1, 4]. Before finding the specific cause of back pain, it is 
important to study the variation of spinal features with age 
first and their correlation with one another [5]. These 
variations and correlation among the features were studies 
using the data collected from University Hospital Coventry 
and Warwickshire, United Kingdom in the form of 
magnetic resonance images (MRI) of the lumbar spine.  
Scoring of features (feature selection and extraction) was 
done under the expertise of an orthopedic surgeon and 
radiologist. The model was designed and built using self-
organizing maps.  
 
A self-organizing map (SOM) is a special type of artificial 
neural network which is trained using unsupervised 
learning to produce a low-dimensional (typically two-
dimensional), discretized representation of the input space 
of the training samples, called a map. Unlike to other 
artificial neural networks, self-organizing map uses a 
neighborhood function to preserve the topological 
properties of the input space [6]. One of the most 
interesting aspects of SOMs is that they learn to classify 
data without supervision. With this approach an input 
vector is presented to the network (typically a multilayer 
feedforward network) and the output is compared with the 
target vector. If they differ, the weights of the network are 
altered slightly to reduce the error in the output. This is 
repeated many times and with many sets of vector pairs 
until the network gives the desired output. Training a SOM 
requires no target vector and learns to classify the training 
data without any external supervision whatsoever [7]. To 
study the variations and correlation of the spinal features, a 
model was built which assigns patient a certain cluster to 
which he/she resembles the most on the basis of his/her 
spinal scores. This will help spine specialists to rank and 
categorize patients on the basis of their spinal scores. This 
research work will provide a better overview to the spine 
specialists and the patients about the abnormal behavior if 
any shown by their spine.    
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II. Lumbar Spine 

A human spine consists of bones, joints, ligaments and 
muscles. There are a total of 33 vertebrae in the human 
spine: 7 in the neck (cervical region), 12 in the middle 
back (thoracic region), 5 in the lower back (lumbar 
region), 5 that are fused to form the sacrum and the 4 
coccygeal bones that form the tailbone [8]. The anatomy of 
human spine is shown in the figure 1 below. The focus of 
this research work is to look at the age related changes in 
the lumbar spine area. This lumbar spine area consists of 
vertebrae L1, L2, L3, L4, L5 and intervertebral discs 
between these vertebrae.         
 

 
Figure 1: Anatomy of human spine 

III. Data Set 

The data set used in this research was taken from the 
University Hospital Coventry and Warwickshire (UHCW), 
United Kingdom. The raw data is in the form of Magnetic 
Resonance Images (MRI) specifically of the lumbar spine 
area. The format of data is Digital Imaging and 
Communications in Medicine (DICOM). These magnetic 
resonance images are the actual scans of the patients. 
Figure 2, shows the lumbar spine MRI. 
 
  
 
 
 
 
 
 
 
 
 

Fig 2: Sagittal and an axial view of the lumbar spine MRI 

     
Information associated with each MRI scan is the age and 
gender of the patient which is used for SOM modeling. 

MRI scans of 61 patients were selected to develop an initial 
model. Age and gender distribution of patients are shown 
in the Table 1 below. Ten groups were formed on the basis 
of age decades as: G0: up to 10 years, G1: 11-20 years, G2: 
21-30, years, G3: 31-40 years, G4: 41-50 years, G5: 51-60 
years, G6: 61-70 years, G7: 71-80 years, G8: 81-90 years 
and G9: 91 and above years of age).  

Table I. Age wise clustering of the samples 

Age Group Age (years) Female Male Total 

Group 0 10 and younger 3 1 4 

Group 1 11 to 20 2 4 6 

Group 2 21 to 30 4 2 6 

Group 3 31 to 40 3 3 6 

Group 4 41 to 50 3 2 5 

Group 5 51 to 60 4 2 6 

Group 6 61 to 70 6 2 8 

Group 7 71 to 80 4 4 8 

Group 8 81 to 90 4 3 7 

Group 9 91 and over 2 3 5 

 Total 35 25 61 

 
There are lots of notable features which can be studied 
from a lumbar spine MRI scan. The scoring criteria were 
set to look initially on the vertebral height (L1, L2, L3, L4 
and L5), disc height (T12-L1, L1-L2, L2-L3, L3-L4, L4-L5 
and L5-S1) and disc signal (T12-L1, L1-L2, L2-L3, L3-L4, 
L4-L5 and L5-S1). These 17 spinal features were used as 
an input to build and test the initial model. These features 
were measured and recorded from the lumbar spine MRIs 
of 61 patients.  

Table II. Extracted features of 5 samples from lumbar spine MRIs 

  1 2 3 4 5 

Gender m/f f f m m f 

Age Years 8 23 40 68 89 

Vertebral height 

 

L1 16.94 22.82 27.16 23.95 21.7 

L2 17.34 22.98 27.16 23.57 22.06 

L3 16.8 24.57 26.08 23.53 21.94 

L4 17.34 24.65 27.85 23.53 21.33 

L5 17.22 25.94 27.25 23.95 19.11 

Disc height 

 

T12 L1 5.95 7.51 9.33 9.48 4.45 

L1 L2 7.43 9.92 11.41 12.13 6.3 

L2 L3 7.75 10.22 13.05 13.27 5.35 

L3 L4 8.34 10.84 12.67 15.15 4.69 

L4 L5 8.0 9.06 11.83 15.41 7.15 

L5 S1 6.84 11.13 7.71 10.74 5.35 

Disc Signal 

 

T12 L1 272.4 132.5 189.4 138.8 61.9 

L1 L2 268.6 126.1 180.8 127.9 69.6 

L2 L3 255.1 123 185.2 120.2 43 

L3 L4 307.6 104.4 208.7 129.9 75.1 

L4 L5 263 95.3 138.4 137.6 67.2 

L5 S1 260 109.3 52.6 57.4 89.6 



IV. Methodology  

Self-organizing maps (SOMs) are a data visualization 
technique invented by Teuvo Kohonen which reduces the 
dimensions of data through the use of self-organizing 
neural networks. As the humans simply cannot visualize 
high dimensional data so this technique was created to help 
us understand high dimensional data. The way SOMs go 
about reducing dimensions is by producing a map of 
usually 1 or 2 dimensions which plot the similarities of the 
data by grouping similar data items together. So SOMs 
accomplish two things, they reduce dimensions and 
display similarities. The proposed model has a set of 17 
input vectors arranged as columns in a matrix. SOM 
groups or ranks each sample (patient) on the basis of 
similarities in their 17 features and assigns certain location 
to each sample in the map. Figure 3 below; shows the step 
by step demonstration of the methodology used.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Steps involved in modeling  

V. Self-Organizing Maps 

Self-Organizing Map (SOM) is a data visualization 
technique which helps to understand high dimensional data 
by reducing data dimensions and displaying similarities 
among data. According to Teuvo Kohonen; the self-
organizing map (SOM) is a new, effective software tool 
for the visualization of high dimensional data. It converts 
complex, nonlinear statistical relationships between high-
dimensional data items into simple geometric relationships 
on a low-dimensional display. As it thereby compresses 
information while preserving the most important 
topological and metric relationships of the primary data 
items on the display, it may also be thought to produce 
some kind of abstractions [9].  
 
SOM contains two processes: training and mapping. In 
training process, it constructs the map using input samples. 
After the training, it automatically classifiers a new input 
sample in the mapping process. The map consists of 
several neurons which associated with a weight vector that 
has the same dimension as the input sample and a position 
in the map. The neurons are arranged originally in physical 
positions according to a topology function, such as a grid, 
hexagonal, or random topology. The purpose of SOM is to 
detect regularities and correlations in their input, and also 
to recognize groups of similar input vectors [10, 11]. It can 

adapt their future responses to that input accordingly in 
such a way that neurons of competitive networks physically 
near each other in the neuron layer respond to similar input 
vectors.  
 
 
 
 

Figure 4, Structure of self-organizing map 

 
With SOM, clustering is performed by having several units 
compete for the current object. Once the data have been 
entered into the system, the network of artificial neurons is 
trained by providing information about inputs. The weight 
vector of the unit is closest to the current object becomes 
the winning or active unit. During the training stage, the 
values for the input variables are gradually adjusted in an 
attempt to preserve neighborhood relationships that exist 
within the input data set. As it gets closer to the input 
object, the weights of the winning unit are adjusted as well 
as its neighbors [12, 13]. SOM training is shown below: 

Figure 5. SOM training 

 
The self-organization process involves four major 
components: 
 
Initialization: All the connection weights are initialized 
with small random values. 
Competition: For each input pattern, the neurons compute 
their respective values of a discriminant function which 
provides the basis for competition.  The particular neuron 
with the smallest value of the discriminant function is 
declared the winner. 
Cooperation: The winning neuron determines the spatial 
location of a topological neighbourhood of excited neurons, 
thereby providing the basis for cooperation among 
neighbouring neurons. 
Adaptation: The excited neurons decrease their individual 
values of the discriminant function in relation to the input 
pattern through suitable adjustment of the associated 
connection weights, such that the response of the winning 
neuron to the subsequent application of a similar input 
pattern is enhanced. 
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SOM Algorithm:  
 
Unlike other learning technique in neural networks, 
training a SOM requires no target vector. A SOM learns to 
classify the training data without any external supervision. 
Each node's weights are initialized. If the input space is D 
dimensional (i.e. there are D input units) we can write the 
input patterns as:  
 
   x = {xi: i = 1, …, D}  
 
And the connection weights between the input units i and 
the neurons j in the computation layer can be written as: 
 
   wj = {wji : j = 1, …, N; i = 1, …, D} 
 
“N” is the total number of neurons. To determine the best 
matching unit, one method is to iterate through all the 
nodes and calculate the Euclidean distance between each 
node's weight vector and the current input vector. The 
node with a weight vector closest to the input vector is 
tagged as the BMU. The Euclidean distance is given as: 
 
 
 
 
Where x is the current input vector and w is the node's 
weight vector. 
 

Network Architecture 

 
In SOM, the network is created from a 2D lattice of 
'nodes', each of which is fully connected to the input layer.  
Figure 6 shows a very small Kohonen network of 3 x 3 
nodes connected to the input layer shown in dark blue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6, SOM network architecture  

 
Each node has a specific topological position (an x, y 
coordinate in the lattice) and contains a vector of weights 
of the same dimension as the input vectors. That is to say, 
if the training data consists of vectors, X, of n dimensions: 
(x1, x2, x3...xn). Then each node will contain a 

corresponding weight vector W, of n dimensions: (w1, w2, 
w3...wn).  

VI. Experimentation  

The measurements taken from the lumbar MRI of 61 
patients were used to model the SOM. Each patient has 17 
features which were used as input to the model. These 17 
input variables are vertebral heights (5 variables), disc 
height (6 variables) and disc signal (6 variables). So the 
variables 1-5 are the vertebral height (L1-L5), variables 6-
11 are the disc heights from T12/L1--L5/S1 and variables 
12-17 are the disc signals from T12/L1—L5/S1 
respectively. The inputs vertebral heights, disc heights and 
disc signals have difference ranges. Initial model was built 
without normalization of the inputs. Figure 7, below shows 
the SOM model built on the basis of 17 input variables 
without normalization. In this mode, final quantization 
error was: 47.292 and final topographic error was: 0.00.   
    
 

 

 

 

 

 

 

 

 

 

Figure 7, 17 variables SOM without normalization of Inputs 

Figure 8, SOM and U-matrix without normalization of inputs 
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There are two separate parts of the SOM display. These 
include the unified matrix or U-matrix, and the component 
planes that are provided for individual variables [14, 15]. 
The U-matrix allows examination of the overall cluster 
patterns in the input data set after the model has been 
trained. [16, 17, 18] Each hexagonal cell represents 
individual neurons, which are the mathematical linkages 
between the input and output layers. 
 
The neurons are drawn into distinct clusters during model 
training. Relative distances between neuron clusters are 
displayed by the intensity of the colors, with dark color 
representing greater distance [19, 20]. In the U-matrix 
generated here, a strong cluster is apparent, occurring in 
the top half (dark blue) and another one in the middle and 
lower middle half (light blue). This indicates that most of 
the input variables are covarying in one direction in n-
dimensional space (where n is the number of input 
variables). A different trend is seen when SOM is modeled 
with normalized data. When the input variables are 
normalized, following trend was seen as shown in figure 9 
below.     
 

Figure 9, 17 variables SOM with normalized inputs 

 
SOM model without input normalization showed final 
quantitation error of 47.292. However, by the 
normalization the inputs this quantization error is reduced 
to 1.989. The final quantization error was: 1.989 and the 
final topographic error was: 0.033. This shows that SOM 
analysis with normalized input variables provides far 
accurate and reliable results as compared to the results 
without normalization.  The first map in the figure 10 
below is the unified distance matrix or U-Matrix which 
represents overall behavior of the model. Variables 1 to 5 
are the vertebral heights. Variable 6 to 11 are the disc 
heights and variable 12 to 17 are the disc signal intensities 
of all 61 patients. The color of the units (neurons) in the 
map shows the behavior of the specific neuron. Similar 
color shows that the neurons are located close to one 
another or similarity among the samples.      

 
Figure 10, SOM and U-matrix with normalized inputs 

VII. Results 

In the component planes for individual variables, the color 
coding corresponds to actual numerical values for the input 
variables that are referenced in the scale bars adjacent to 
each plot. Blue colors show low values and red corresponds 
to high values. The relationships between each of the 
variables are visualized by comparing the color patterns for 
individual maps. In this manner, the relationships between 
all of the variables entered into the model can be examined 
simultaneously or in pair-wise combinations.  

Figure 11, Visualization of SOM U-Matrix and variables   

 
Here in figure 11 above, matching the color code of each 
variable with U-matrix it can be seen that vertebral heights 
L1, L2, L3, L4, L5 (corresponding to variables 1, 2, 3, 4, 5 
respectively) do not correlate with the age (dissimilarity 
with U-matrix). Disc heights T12-L1, L1-L2, L2-L3, L3-
L4, L4-L5 and L5-S1 (corresponding to variables 6, 7, 8, 9, 
10, 11 respectively) show somewhat correlation with the 
age. However, disc signal T12-L1, L1-L2, L2-L3, L3-L4, 
L4-L5 and L5-S1 (corresponding to variables 12, 13, 14, 
15, 16, 17 respectively) shows strong correlation with age.   



VIII. Conclusion 

The objective of the SOM analysis was to observe 
interrelationships that exist between 17 variables that were 
tested and thereby provides a basis for more advance 
analysis. The SOM does not replace existing statistical 
tools, but complements our ability to examine relationships 
between disparate types of variables in a visual 
presentation of the data. By visualizing the SOM results 
obtained by normalized dataset, it was concluded that 
lumbar spine vertebral height does not correlate with the 
age whereas disc height shows somewhat correlation with 
age. Disc signal intensities of lumbar spine show a strong 
correlation with the age. In future, other spinal features 
will be incorporated to study the spinal aging process in 
more depth.   
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