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Abstract  

The Maximum Clique Problem (MCP) has been studied for 
decades and is well known in graph theory as a problem that is 
difficult as it as it is known to be NP-complete. The MCP has a 
vast domain of application such as finance, biochemistry, 
bioinformatics, and many more. Many niching methods have 
been successfully applied in Genetic Algorithms (GA) to 
diversify the population and avoid getting trapped within local 
optima. In this paper, we propose an approach using the Sharing 
method and a Hybrid Genetic Algorithm (HGA) for the 
maximum clique problem. We also propose a non-evolutionary 
approach using a migration mechanism to boost the current HGA. 

I. Introduction 

A. The Maximum Clique Problem 
The maximum clique problem is a classically studied 
combinatorial optimization problem, which comes from 
graph theory and has many domains of application. The 
maximum clique problem can be briefly summarized using 
the following definition. 
 Let’s G= (V,E) be an undirected graph on N vertices, 
where V is the vertex set and E is the edge set. A clique in 
G is a subgraph of G in which there is an edge between 
any two vertices. The size of a clique is the number of 
vertices in the clique, and the maximum clique problem is 
to find the largest clique in a given graph G. 

B. Need For Improved Technique For Huge 
Networks 

Over the last few years, the size of networks has increased 
rapidly and the amount of information from massive data 
sets has become a highly researched computational 
challenge.  
 Some examples of fast growing networks exist in social 
networks and bioinformatics. The use of traditional 
methods for analyzing and treating the large amounts of 
information has become problematic. The nature of the 
MCP (NP-complete) explains why is it more complicated 
to find the maximum clique when the number of vertice N 
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increases dramatically. Traditional heuristic approaches for 
finding the maximum clique problem have become 
insufficient for this new challenge. 
 Cheng et al. [1] investigated finding the maximal clique 
within massive networks. They introduced the concept of 
an H* graph where the maximum clique is computed in a 
small part of a large graph recursively one at a time using 
external memory. Their experiments were done on large 
graph with 10 million vertices and 80 millions edges. 

C. Description of Genetic Algorithms 
A well-known metaheuristic in evolutionary algorithms is 
the genetic algorithm. The earliest work related to GAs 
dates back to 1954 when Nils and Barricelli published a 
paper on computer simulation of evolution [2]. Genetic 
algorithms have been formalized in later years and date 
back as early as 1975 when J.H Holland published his 
papers on the subject [3].  
 A GA is a combinatorial optimization technique that 
mimics the process of natural evolution. The algorithm 
does not rely on building the final solution based on local 
search, which distinguishes itself from traditional 
approaches. A subset of feasible solutions of a problem is 
encoded in chromosomes that represent individuals in a 
population. The evolutionary process is then applied 
through population selection, crossover, and mutation 
operations. Each individual is then evaluated using a fitness 
function and the best of the individuals are transmitted into 
the next generation. The following procedure shows a basic 
genetic algorithm: 

GA procedure(){ 
 Initialize population(); 
 Evaluate population(); 
 While not (End_Condition){ 
  Select parent(); 
  Crossover(); 

             Mutation(); 
  Evaluate population(); 

} 
} 
Figure 1 Genetic algorithm  



 Since the 1990s, significant research has been conducted 
on genetic algorithm, especially for finding the maximum 
clique.  

II. Related Work 
Early works on the maximum clique problem were focused 
on greedy approaches. One of the first significant 
improvements on the maximum clique was done by Bron-
Kerbausch[4]. This algorithm uses a recursive 
backtracking procedure that augments the clique by one 
vertex at a time. Tomita, Tanaka and Takahashi [5] proved 
that with a worst-time complexity O(3n/3), the Bron-
Kerbaush algorithm was reported as one of the fastest 
algorithms for listing all possible maximum cliques.  
 In 1986, Robson improved this algorithm by adding 
backtracking techniques in combination with more 
complicated case analyses and dynamic programming. 
This however increased the space complexity of the MCP 
[6].  

A. Genetic Algorithm Methods For Max Clique 
Genetic algorithms have been successfully applied to many 
NP-hard problems in various domains [7-8]. GA has also 
been successfully used on graph problems, particularly on 
the graph-coloring problem [9]. On the MCP, the first 
approaches using GA had poor performance compared to 
other local search techniques [10, 11].  
 The idea of combining a genetic algorithm and a 
heuristic local search has been used in earlier applications. 
Marchiori [12] proposed a simple genetic algorithm based 
on a combination of heuristic algorithms for the MCP. In 
this HGA several important genetic mechanisms were 
implemented such as the keep-two-best parents, elitism, a 
roulette-wheel population selection, uniform crossover, 
and a fitness function based on the size of the maximal 
clique. Moreover, the heuristic method is used to do local 
transformation on a sub-graph transforming all 
chromosomes after crossover and mutation into a maximal 
clique. These processes have become known as the 
“relax”, “repair”, and “extend” phases. Her experiments on 
the DIMACS data sets showed that results quality and 
computational time have improved dramatically compared 
to other heuristic approaches. Marchiori [13] continued 
developing the hybrid genetic algorithm and compared this 
algorithm with two other competitive variations of genetic 
algorithm: the iterated local search algorithm and the 
multistart local search algorithm.  

B. Fitness Sharing Method 
Fitness sharing method has been used to avoid GA 
converging to local maxima. This technique was proposed 
by Holland [3] and expanded by Goldberg and Richardson 
[22]. In a GA, the formation of population in local optimal 
(also called niche) makes difficult the convergence toward 
the global optimal solution. The fitness sharing method 
helps to diversify the population by reducing the fitness 

score of individual in populated landscapes. This technique 
is known as one of the best niching technique to escape 
from local optima. 
 In this paper, we implemented the sharing method, as we 
are attempting to diversify and explore the elements of the 
graph more thoroughly. The sharing function recalculates 
the fitness function based on how dense an area of the 
graph is used. Therefore, as with any fitness function, our 
shared fitness becomes that shown in equation 1. 
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where sh is the sharing based on the distance d between 
vertex i and j. The sharing function is found in equation 
(2). 
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C. Migration in GA 
Yet another technique that inspired sociological and 
ecological movements between sub-populations is the 
concept of migration. Migration in genetic algorithms has 
been well studied and applied in many parallel genetic 
algorithms.  
 There are important considerations before implementing 
migration in genetic algorithms. Migration policies define 
the replacement rule to apply between two sub-populations. 
It is equivalent to answering the question: “What kind of 
individual in a sub-population A is replacing what kind of 
individual in sub-population B”. Topology is another 
important aspect in multi-population genetic algorithm.   
 The topology defines the structure of communication 
between several sub-populations [14]. Finally, the 
migration rate must be used to define the proportion of a 
sub-population that is replaced with the immigrant 
individuals. 
 Migration rates and migration policies have been shown 
to improve the convergence of genetic algorithm 
considerably. Cantu-Paz has conducted experiments in 
which the best-replacing-worst population policy has 
demonstrated the best results for migration policies [15]. 

III. Proposed Solutions 

A. Hybrid Genetic Algorithm 
The heuristic local search algorithm is a local search based 
on greedy approach. Given a set of vertices, this algorithm 
finds the maximal clique using a “Relax”, a “Repair” and 
an “Extend” steps. Marchiori described this algorithm in 
details [12]. The relax step adds random vertices to a 
subgraph. The repair step then extracts a small maximal 
clique from the current sub-graph. Finally the extend step 



generates a bigger maximal clique by adding random 
nodes to the clique obtained in the repair step.  
 The HGA is then obtained by combining the heuristic 
local search with a genetic algorithm given in figure 1. The 
heuristic function is added after the crossover operation to 
find maximal clique.  

B. Introduction of a Migration Mechanism in 
Genetic Algorithm 

In our solution we propose a migration mechanism based 
on two sub-populations, a main sub-population and a 
secondary sub-population. The main population will have 
the role of a standard HGA. The secondary sub-population 
will serve as a pool that generates the new chromosomes 
for migrating into the main subpopulation. This 
mechanism should help to accelerate the convergence of 
the current hybrid genetic algorithm.  

1) Role of the Two Sub-Populations 
The idea of combining a heuristic local search and a 
genetic algorithm is not new. It has proven to be 
competitive in solving the maximum clique problem. One 
issue with this approach is the convergence into local 
optima. The diversification strategy relies on the genetic 
operators: crossover and mutation. The exploration of the 
set of feasible solutions (or neighborhood) in hybrid 
genetic algorithm is an area that can be improved.  
 In our approach we define two sub-populations. The 
Main sub-population uses a generic HGA defined 
previously. This sub-population specializes in the 
exploitation of the data. The secondary sub-population will 
be dedicated to exploration of the data. In the secondary 
population, an effort is made to diversify the population. 
The sub-population will then transfer the best of its 
population to the main sub-population through a migration 
mechanism. In this approach, we want to maximize the 
functions of exploration and exploitation of the genetic 
algorithm. Figure 2 shows the role of each sub-population. 
 

 
Figure 2 Role of sub-populations 

2) Migration Mechanism 
In our algorithm, it was decided to use a best-replace-worst 
migration policy at each generation, where the best 
individuals in the sub-population will replace a percentage 
of the worst individuals in the main sub-population. We 
also used a ladder migration topology defined in [15], 
which allows the migration between the two sub-

populations to occur over each generation of the system. 
Figure 3 shows the implementation of our hybrid genetic 
algorithm with a migration mechanism. 

 
Figure 3 Hybrid GA with migration mechanism 
 The main sub-population is the standard genetic heuristic 
algorithm discussed by Marchiori [11]. The secondary sub-
population, however, is of more interest. This 
subpopulation uses a non-evolutionary structure. It has no 
genetic operators and its role is to give random “seed” to 
the main population at every generation.  
 To initialize the population, we randomly choose 
vertices for each chromosome in the new population. We 
then apply the heuristic function, which extracts the 
maximal clique from each chromosome. We then sort the 
population by fitness, to determine which of the elements 
should migrate to the main sub-population.  

IV. Experimental Results 

A. Benchmark Datasets Used 
The data used for our experiments are from the DIMACS 
(Center for Discrete Mathematics and Theoretical 
Computer Science) benchmark graphs. It is composed of a 
collection of 9 different classes of graphs for evaluating 
and comparing different algorithms for solving the 
maximum clique problem. This collection consists of 
random graphs with known maximum clique size as well as 
graphs obtained from various areas of applications. The C-
FAT graphs are based on the fault diagnosis problem [16]. 
The Hamming and Johnson graphs are from the coding 
theory problems [17] [18]. The Keller graphs arise from the 
Keller conjecture on tiling using hypercube [19]. The SAN, 
SANR, BROCK and P-HAT are composed of various types 
of random graphs with known maximum clique sizes. The 
BROCK graphs contain random graphs constructed so that 
they have hidden cliques that are larger than what might be 
expected in a random graph. The P-HAT graphs are 
random graphs with large variance in the vertex degree 
distribution and a larger clique than usual random graphs 
[20]. Finally, the MANN graphs are from the vertex-
covering problem, which is closely related to the maximum 
clique problem [21]. 



B. Results Obtained 
A series of experiments were conducted using a small 
subset of the Dimacs data sets. The results obtained show 
that the performance of our algorithm is close to the best 
results obtained on the same data sets from the DIMACS 
challenge (table 1). 

Graph Best obtained Best DIMACS 
keller4	
   11	
   11	
  
keller5	
   27	
   27	
  
keller6	
   49	
   59	
  
hamming8-­‐4	
   16	
   16	
  
hamming10-­‐4	
   38	
   40	
  
MANN_a27	
   126	
   126	
  
MANN_a81	
   1096	
   1098	
  

Table 1 Comparison of our algorithm with Best DIMACS 

C. Effect of Mutation Rate Variation on Results 
In these experiments, we evaluate the effect of the 
mutation by holding other parameters static. We analyzed 
the effect of mutation on the Keller5 graph with the 
mutation rate parameters: 0.5%, 1%, 5%, 10% and 20%. 
Table 2 shows the parameters chosen for this set of 
experiments.  

Parameters Value 
Population size 100 
Maximum iteration 50 
Mutation 0.5%, 1%, 5%, 10%, 20% 
Crossover rate 100% (uniform crossover) 

Table 2 Parameters for testing mutation rate 

 At each generation, the mutation breaks current 
maximal clique in every chromosome, by replacing current 
nodes by other random nodes.  
 On one hand, a low mutation rate keeps nodes that are 
good candidates for the maximum clique and the heuristic 
algorithm find good local solutions. But less graph 
exploration are possible using a low mutation rate. On the 
other hand, a high mutation rate gives a good chance of 
graph exploration, but the local search become less 
efficient, as to many nodes are exchanged in 
chromosomes. Choosing a good mutation rate is a trade-off 
between finding a good local solution and good graph 
exploration. Figure 4 shows the minimum, the average and 
maximum fitness score for each chromosome for 1% 
mutation rate.  
 We can observe two phases applying the GA to the 
maximum clique problem. In the first phase, a high 
variation of the fitness score phase can be observed from 0 
to the 15th generation. During this phase, the HGA 
explores various combinations of nodes in the graph, so 
the fitness score change rapidly. Then a phase of 
stabilization is observed where the maximal cliques are 
kept in the population and improvement occurs 
progressively. During the stabilization phase, the chances 

of discovering bigger cliques are low because the HGA 
reach local maxima. 
 

 
Figure 4 mutation= 1% 

  
 The results obtained in our experiments shows that 1% 
mutation rate achieves the best performance with the fastest 
convergence and helps diversifying the population to its 
maximums. The HGA algorithm found a 24-clique after 
only eight generations.  

D. Effect of Migration Rate Variation on Results 
In this set of experiments, we fix the mutation rate with the 
value found greedily in the previous experiment. We then 
vary the migration rate with the parameters: 1%, 5%, 10%, 
20%, 30%, 50% and 90%. Table 3 shows the parameters 
chosen applied on the same graph (Keller5). 

Parameters Value 
Population size 100 
Maximum iteration 50 
Mutation 1% 
Crossover rate 100% (uniform crossover) 
Migration rates 1%, 5%, 10%, 20%, 30%, 

50%, 90% Table 3 Parameters for testing migration rate 

 The effect of a high migration rate is the replacement of 
good solutions obtained by the HGA, whereas a low 
migration rate injects not enough new seeds in new 
population. The experiments show that the optimum 
migration rate is reached at 10% and the maximum clique 
is found after 28 generations (ground truth maximum 
clique=27). Figure 5 shows the minimum, the average and 
maximum fitness score for each chromosome for 10% 
migration rate.  
 In this graph, we can observe that the maximum fitness 
increase by levels, which means that new maximal cliques 
are found. After one or two generations the stabilization 
phase is reached and the GA continued graph exploration. 
The results show that the migration process helped the 
genetic algorithm to escape from local maxima and find the 



maximum clique by adding more graph exploration 
capability. 

 
Figure 5 Migration rate 10% 

E. Effect of Migration with Variation of 
Population Size and Number of Generations 

In these experiment we test the effect of migration on a 
variation of the population size and maximum number of 
generation. We compare the effect of migration on 
different parameter setup. Table 4 shows the parameters 
for this set of experiments.  

Parameters Value 
(Population size / 
Maximum iteration / 
migration) 

 (10/1000,y), (10/1000,n), 
(50/200,y), (50/200,n), 
(100/100, y), (100/100,n), 
(200/50,y), (200/50,n) 

Mutation 1% 
Crossover rate 100% (uniform crossover) 
Migration rates 10% 

Table 4 Parameters for testing effects of migration 

The results indicate that for each configuration, applying 
our migration mechanism increase the size of maximum 
clique found and also accelerates the convergence toward 
the best solution.  

F.  Effect of fitness Sharing on Results 
In these experiments we test the effect of fitness sharing on 
same graph. The parameter σshare from equation (2) 
represents the number of niches. We vary the number of 
niches with the values: 3, 7, 10, 20. Table 5 shows the 
parameters used for this set of experiments. 

Parameters Value 
Population size 10 
Maximum iteration 1000 
Mutation 1% 
Crossover rate 100% (uniform crossover) 
Number of Niches (σshare) 3,7,10, 20 

Table 5 parameters for testing fitness sharing 

 A high number of niches (σshare) allow diversifying the 
population by reducing the fitness value of individual from 
the same niche. This way, the chance to promote other 
individuals from other niches is higher. 
 We obtained the best results in this series of experiments 
with the parameter σshare=20. the maximum clique is found 
after 170 generations. Figure 6 shows the minimum, the 
average and maximum fitness score for each chromosome 
for σshare=20. 

 
Figure 6 σshare =20 

 The fitness sharing method also plays a function of 
graph exploration by reducing the fitness values of 
individual in the same niche. Then other individual from 
other niches are promoted in the population. Finally we 
have shown that fitness sharing method is also well suited 
for graph exploration and helps to find the maximum 
clique. 

V. CONCLUSION 
For the maximum clique problem, we have proposed a 
solution that implemented a migration mechanism 
composed of two subpopulations. The main sub-population 
is specialized on data exploitation and the secondary 
subpopulation is specialized on data exploration. 
 Our results have shown that both sharing and migration 
improve the convergence and results of the genetic 
algorithm. We have shown that migration proves to be a 
valuable tool in converging on the maximum, or high 
maxima relatively quickly. We have also discussed the 
potential usefulness in using sharing to find multiple 
maximum solutions in the same problem. We also found 
that in order to maximize the difference and prevent fast 
convergence of the minimum fitness value, a 1% mutation 
rate appears to give the best results. The migration rate was 
also empirically derived to be best at 10% migration. 
 These experiments lay groundwork for potential research 
in the future. We used a non-evolutionary approach by 
adding a second sub-population, which serves the main 



population by generating random new seeds. Other 
improvements can be made by developing a more specific 
heuristic local search algorithm for the secondary sub-
population dedicated to graph exploration. 
 There are more improvement possibilities by developing 
a co-evolutionary method where instead of generating new 
seed at each iteration, the second sub-population evolves at 
the same time with the main sub-population. Migration is 
maintained at every generation for faster convergence. 
Finally a cultural co-evolutionary approach would give 
feedback from the main sub-population to the secondary 
sub-population, to help building better candidate for 
exploration. 
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