
Hybrid genetic algorithm for the maximum clique problem
combining sharing and migration

Roger Ouch, Kristopher W. Reese, Roman V. Yampolskiy

Computer Engineering and Computer Science,
University of Louisville

Louisville, Kentucky 40292

Abstract

The Maximum Clique Problem (MCP) has been studied for
decades and is well known in graph theory as a problem that is
difficult as it as it is known to be NP-complete. The MCP has a
vast domain of application such as finance, biochemistry,
bioinformatics, and many more. Many niching methods have
been successfully applied in Genetic Algorithms (GA) to
diversify the population and avoid getting trapped within local
optima. In this paper, we propose an approach using the Sharing
method and a Hybrid Genetic Algorithm (HGA) for the
maximum clique problem. We also propose a non-evolutionary
approach using a migration mechanism to boost the current HGA.

I. Introduction

A. The Maximum Clique Problem
The maximum clique problem is a classically studied
combinatorial optimization problem, which comes from
graph theory and has many domains of application. The
maximum clique problem can be briefly summarized using
the following definition.
 Let’s G= (V,E) be an undirected graph on N vertices,
where V is the vertex set and E is the edge set. A clique in
G is a subgraph of G in which there is an edge between
any two vertices. The size of a clique is the number of
vertices in the clique, and the maximum clique problem is
to find the largest clique in a given graph G.

B. Need For Improved Technique For Huge
Networks

Over the last few years, the size of networks has increased
rapidly and the amount of information from massive data
sets has become a highly researched computational
challenge.
 Some examples of fast growing networks exist in social
networks and bioinformatics. The use of traditional
methods for analyzing and treating the large amounts of
information has become problematic. The nature of the
MCP (NP-complete) explains why is it more complicated
to find the maximum clique when the number of vertice N

 Copyright retained by the authors.

increases dramatically. Traditional heuristic approaches for
finding the maximum clique problem have become
insufficient for this new challenge.
 Cheng et al. [1] investigated finding the maximal clique
within massive networks. They introduced the concept of
an H* graph where the maximum clique is computed in a
small part of a large graph recursively one at a time using
external memory. Their experiments were done on large
graph with 10 million vertices and 80 millions edges.

C. Description of Genetic Algorithms
A well-known metaheuristic in evolutionary algorithms is
the genetic algorithm. The earliest work related to GAs
dates back to 1954 when Nils and Barricelli published a
paper on computer simulation of evolution [2]. Genetic
algorithms have been formalized in later years and date
back as early as 1975 when J.H Holland published his
papers on the subject [3].
 A GA is a combinatorial optimization technique that
mimics the process of natural evolution. The algorithm
does not rely on building the final solution based on local
search, which distinguishes itself from traditional
approaches. A subset of feasible solutions of a problem is
encoded in chromosomes that represent individuals in a
population. The evolutionary process is then applied
through population selection, crossover, and mutation
operations. Each individual is then evaluated using a fitness
function and the best of the individuals are transmitted into
the next generation. The following procedure shows a basic
genetic algorithm:

GA procedure(){
 Initialize population();
 Evaluate population();
 While not (End_Condition){
 Select parent();
 Crossover();

 Mutation();
 Evaluate population();

}
}
Figure 1 Genetic algorithm

 Since the 1990s, significant research has been conducted
on genetic algorithm, especially for finding the maximum
clique.

II. Related Work
Early works on the maximum clique problem were focused
on greedy approaches. One of the first significant
improvements on the maximum clique was done by Bron-
Kerbausch[4]. This algorithm uses a recursive
backtracking procedure that augments the clique by one
vertex at a time. Tomita, Tanaka and Takahashi [5] proved
that with a worst-time complexity O(3n/3), the Bron-
Kerbaush algorithm was reported as one of the fastest
algorithms for listing all possible maximum cliques.
 In 1986, Robson improved this algorithm by adding
backtracking techniques in combination with more
complicated case analyses and dynamic programming.
This however increased the space complexity of the MCP
[6].

A. Genetic Algorithm Methods For Max Clique
Genetic algorithms have been successfully applied to many
NP-hard problems in various domains [7-8]. GA has also
been successfully used on graph problems, particularly on
the graph-coloring problem [9]. On the MCP, the first
approaches using GA had poor performance compared to
other local search techniques [10, 11].
 The idea of combining a genetic algorithm and a
heuristic local search has been used in earlier applications.
Marchiori [12] proposed a simple genetic algorithm based
on a combination of heuristic algorithms for the MCP. In
this HGA several important genetic mechanisms were
implemented such as the keep-two-best parents, elitism, a
roulette-wheel population selection, uniform crossover,
and a fitness function based on the size of the maximal
clique. Moreover, the heuristic method is used to do local
transformation on a sub-graph transforming all
chromosomes after crossover and mutation into a maximal
clique. These processes have become known as the
“relax”, “repair”, and “extend” phases. Her experiments on
the DIMACS data sets showed that results quality and
computational time have improved dramatically compared
to other heuristic approaches. Marchiori [13] continued
developing the hybrid genetic algorithm and compared this
algorithm with two other competitive variations of genetic
algorithm: the iterated local search algorithm and the
multistart local search algorithm.

B. Fitness Sharing Method
Fitness sharing method has been used to avoid GA
converging to local maxima. This technique was proposed
by Holland [3] and expanded by Goldberg and Richardson
[22]. In a GA, the formation of population in local optimal
(also called niche) makes difficult the convergence toward
the global optimal solution. The fitness sharing method
helps to diversify the population by reducing the fitness

score of individual in populated landscapes. This technique
is known as one of the best niching technique to escape
from local optima.
 In this paper, we implemented the sharing method, as we
are attempting to diversify and explore the elements of the
graph more thoroughly. The sharing function recalculates
the fitness function based on how dense an area of the
graph is used. Therefore, as with any fitness function, our
shared fitness becomes that shown in equation 1.

€

f '(i) =
f (i)

sh(d(i, j))
j=1

n

∑
 (1)

where sh is the sharing based on the distance d between
vertex i and j. The sharing function is found in equation
(2).

€

sh(d) =
1− (d

σshare

)α , if d <σshare

0, otherwise

⎧
⎨
⎪

⎩ ⎪
 (2)

C. Migration in GA
Yet another technique that inspired sociological and
ecological movements between sub-populations is the
concept of migration. Migration in genetic algorithms has
been well studied and applied in many parallel genetic
algorithms.
 There are important considerations before implementing
migration in genetic algorithms. Migration policies define
the replacement rule to apply between two sub-populations.
It is equivalent to answering the question: “What kind of
individual in a sub-population A is replacing what kind of
individual in sub-population B”. Topology is another
important aspect in multi-population genetic algorithm.
 The topology defines the structure of communication
between several sub-populations [14]. Finally, the
migration rate must be used to define the proportion of a
sub-population that is replaced with the immigrant
individuals.
 Migration rates and migration policies have been shown
to improve the convergence of genetic algorithm
considerably. Cantu-Paz has conducted experiments in
which the best-replacing-worst population policy has
demonstrated the best results for migration policies [15].

III. Proposed Solutions

A. Hybrid Genetic Algorithm
The heuristic local search algorithm is a local search based
on greedy approach. Given a set of vertices, this algorithm
finds the maximal clique using a “Relax”, a “Repair” and
an “Extend” steps. Marchiori described this algorithm in
details [12]. The relax step adds random vertices to a
subgraph. The repair step then extracts a small maximal
clique from the current sub-graph. Finally the extend step

generates a bigger maximal clique by adding random
nodes to the clique obtained in the repair step.
 The HGA is then obtained by combining the heuristic
local search with a genetic algorithm given in figure 1. The
heuristic function is added after the crossover operation to
find maximal clique.

B. Introduction of a Migration Mechanism in
Genetic Algorithm

In our solution we propose a migration mechanism based
on two sub-populations, a main sub-population and a
secondary sub-population. The main population will have
the role of a standard HGA. The secondary sub-population
will serve as a pool that generates the new chromosomes
for migrating into the main subpopulation. This
mechanism should help to accelerate the convergence of
the current hybrid genetic algorithm.

1) Role of the Two Sub-Populations
The idea of combining a heuristic local search and a
genetic algorithm is not new. It has proven to be
competitive in solving the maximum clique problem. One
issue with this approach is the convergence into local
optima. The diversification strategy relies on the genetic
operators: crossover and mutation. The exploration of the
set of feasible solutions (or neighborhood) in hybrid
genetic algorithm is an area that can be improved.
 In our approach we define two sub-populations. The
Main sub-population uses a generic HGA defined
previously. This sub-population specializes in the
exploitation of the data. The secondary sub-population will
be dedicated to exploration of the data. In the secondary
population, an effort is made to diversify the population.
The sub-population will then transfer the best of its
population to the main sub-population through a migration
mechanism. In this approach, we want to maximize the
functions of exploration and exploitation of the genetic
algorithm. Figure 2 shows the role of each sub-population.

Figure 2 Role of sub-populations

2) Migration Mechanism
In our algorithm, it was decided to use a best-replace-worst
migration policy at each generation, where the best
individuals in the sub-population will replace a percentage
of the worst individuals in the main sub-population. We
also used a ladder migration topology defined in [15],
which allows the migration between the two sub-

populations to occur over each generation of the system.
Figure 3 shows the implementation of our hybrid genetic
algorithm with a migration mechanism.

Figure 3 Hybrid GA with migration mechanism
 The main sub-population is the standard genetic heuristic
algorithm discussed by Marchiori [11]. The secondary sub-
population, however, is of more interest. This
subpopulation uses a non-evolutionary structure. It has no
genetic operators and its role is to give random “seed” to
the main population at every generation.
 To initialize the population, we randomly choose
vertices for each chromosome in the new population. We
then apply the heuristic function, which extracts the
maximal clique from each chromosome. We then sort the
population by fitness, to determine which of the elements
should migrate to the main sub-population.

IV. Experimental Results

A. Benchmark Datasets Used
The data used for our experiments are from the DIMACS
(Center for Discrete Mathematics and Theoretical
Computer Science) benchmark graphs. It is composed of a
collection of 9 different classes of graphs for evaluating
and comparing different algorithms for solving the
maximum clique problem. This collection consists of
random graphs with known maximum clique size as well as
graphs obtained from various areas of applications. The C-
FAT graphs are based on the fault diagnosis problem [16].
The Hamming and Johnson graphs are from the coding
theory problems [17] [18]. The Keller graphs arise from the
Keller conjecture on tiling using hypercube [19]. The SAN,
SANR, BROCK and P-HAT are composed of various types
of random graphs with known maximum clique sizes. The
BROCK graphs contain random graphs constructed so that
they have hidden cliques that are larger than what might be
expected in a random graph. The P-HAT graphs are
random graphs with large variance in the vertex degree
distribution and a larger clique than usual random graphs
[20]. Finally, the MANN graphs are from the vertex-
covering problem, which is closely related to the maximum
clique problem [21].

B. Results Obtained
A series of experiments were conducted using a small
subset of the Dimacs data sets. The results obtained show
that the performance of our algorithm is close to the best
results obtained on the same data sets from the DIMACS
challenge (table 1).

Graph Best obtained Best DIMACS
keller4	
 11	
 11	

keller5	
 27	
 27	

keller6	
 49	
 59	

hamming8-­‐4	
 16	
 16	

hamming10-­‐4	
 38	
 40	

MANN_a27	
 126	
 126	

MANN_a81	
 1096	
 1098	

Table 1 Comparison of our algorithm with Best DIMACS

C. Effect of Mutation Rate Variation on Results
In these experiments, we evaluate the effect of the
mutation by holding other parameters static. We analyzed
the effect of mutation on the Keller5 graph with the
mutation rate parameters: 0.5%, 1%, 5%, 10% and 20%.
Table 2 shows the parameters chosen for this set of
experiments.

Parameters Value
Population size 100
Maximum iteration 50
Mutation 0.5%, 1%, 5%, 10%, 20%
Crossover rate 100% (uniform crossover)

Table 2 Parameters for testing mutation rate

 At each generation, the mutation breaks current
maximal clique in every chromosome, by replacing current
nodes by other random nodes.
 On one hand, a low mutation rate keeps nodes that are
good candidates for the maximum clique and the heuristic
algorithm find good local solutions. But less graph
exploration are possible using a low mutation rate. On the
other hand, a high mutation rate gives a good chance of
graph exploration, but the local search become less
efficient, as to many nodes are exchanged in
chromosomes. Choosing a good mutation rate is a trade-off
between finding a good local solution and good graph
exploration. Figure 4 shows the minimum, the average and
maximum fitness score for each chromosome for 1%
mutation rate.
 We can observe two phases applying the GA to the
maximum clique problem. In the first phase, a high
variation of the fitness score phase can be observed from 0
to the 15th generation. During this phase, the HGA
explores various combinations of nodes in the graph, so
the fitness score change rapidly. Then a phase of
stabilization is observed where the maximal cliques are
kept in the population and improvement occurs
progressively. During the stabilization phase, the chances

of discovering bigger cliques are low because the HGA
reach local maxima.

Figure 4 mutation= 1%

 The results obtained in our experiments shows that 1%
mutation rate achieves the best performance with the fastest
convergence and helps diversifying the population to its
maximums. The HGA algorithm found a 24-clique after
only eight generations.

D. Effect of Migration Rate Variation on Results
In this set of experiments, we fix the mutation rate with the
value found greedily in the previous experiment. We then
vary the migration rate with the parameters: 1%, 5%, 10%,
20%, 30%, 50% and 90%. Table 3 shows the parameters
chosen applied on the same graph (Keller5).

Parameters Value
Population size 100
Maximum iteration 50
Mutation 1%
Crossover rate 100% (uniform crossover)
Migration rates 1%, 5%, 10%, 20%, 30%,

50%, 90% Table 3 Parameters for testing migration rate

 The effect of a high migration rate is the replacement of
good solutions obtained by the HGA, whereas a low
migration rate injects not enough new seeds in new
population. The experiments show that the optimum
migration rate is reached at 10% and the maximum clique
is found after 28 generations (ground truth maximum
clique=27). Figure 5 shows the minimum, the average and
maximum fitness score for each chromosome for 10%
migration rate.
 In this graph, we can observe that the maximum fitness
increase by levels, which means that new maximal cliques
are found. After one or two generations the stabilization
phase is reached and the GA continued graph exploration.
The results show that the migration process helped the
genetic algorithm to escape from local maxima and find the

maximum clique by adding more graph exploration
capability.

Figure 5 Migration rate 10%

E. Effect of Migration with Variation of
Population Size and Number of Generations

In these experiment we test the effect of migration on a
variation of the population size and maximum number of
generation. We compare the effect of migration on
different parameter setup. Table 4 shows the parameters
for this set of experiments.

Parameters Value
(Population size /
Maximum iteration /
migration)

 (10/1000,y), (10/1000,n),
(50/200,y), (50/200,n),
(100/100, y), (100/100,n),
(200/50,y), (200/50,n)

Mutation 1%
Crossover rate 100% (uniform crossover)
Migration rates 10%

Table 4 Parameters for testing effects of migration

The results indicate that for each configuration, applying
our migration mechanism increase the size of maximum
clique found and also accelerates the convergence toward
the best solution.

F. Effect of fitness Sharing on Results
In these experiments we test the effect of fitness sharing on
same graph. The parameter σshare from equation (2)
represents the number of niches. We vary the number of
niches with the values: 3, 7, 10, 20. Table 5 shows the
parameters used for this set of experiments.

Parameters Value
Population size 10
Maximum iteration 1000
Mutation 1%
Crossover rate 100% (uniform crossover)
Number of Niches (σshare) 3,7,10, 20

Table 5 parameters for testing fitness sharing

 A high number of niches (σshare) allow diversifying the
population by reducing the fitness value of individual from
the same niche. This way, the chance to promote other
individuals from other niches is higher.
 We obtained the best results in this series of experiments
with the parameter σshare=20. the maximum clique is found
after 170 generations. Figure 6 shows the minimum, the
average and maximum fitness score for each chromosome
for σshare=20.

Figure 6 σshare =20

 The fitness sharing method also plays a function of
graph exploration by reducing the fitness values of
individual in the same niche. Then other individual from
other niches are promoted in the population. Finally we
have shown that fitness sharing method is also well suited
for graph exploration and helps to find the maximum
clique.

V. CONCLUSION
For the maximum clique problem, we have proposed a
solution that implemented a migration mechanism
composed of two subpopulations. The main sub-population
is specialized on data exploitation and the secondary
subpopulation is specialized on data exploration.
 Our results have shown that both sharing and migration
improve the convergence and results of the genetic
algorithm. We have shown that migration proves to be a
valuable tool in converging on the maximum, or high
maxima relatively quickly. We have also discussed the
potential usefulness in using sharing to find multiple
maximum solutions in the same problem. We also found
that in order to maximize the difference and prevent fast
convergence of the minimum fitness value, a 1% mutation
rate appears to give the best results. The migration rate was
also empirically derived to be best at 10% migration.
 These experiments lay groundwork for potential research
in the future. We used a non-evolutionary approach by
adding a second sub-population, which serves the main

population by generating random new seeds. Other
improvements can be made by developing a more specific
heuristic local search algorithm for the secondary sub-
population dedicated to graph exploration.
 There are more improvement possibilities by developing
a co-evolutionary method where instead of generating new
seed at each iteration, the second sub-population evolves at
the same time with the main sub-population. Migration is
maintained at every generation for faster convergence.
Finally a cultural co-evolutionary approach would give
feedback from the main sub-population to the secondary
sub-population, to help building better candidate for
exploration.

REFERENCES
[1] Cheng, James, Yiping Ke, Ada Wai-Chee Fu, Jeffrey

Xu Yu, and Linhong Zhu. "Finding maximal cliques
in massive networks by h*-graph." Proceedings of the
2010 international conference on Management of data,
pp. 447-458. ACM, 2010.

[2] Barricelli, Nils Aall (1954). "Esempi numerici di
processi di evoluzione". Methodos: 45–68.

[3] Holland J. H. Adaptation in natural and artificial
systems. The University of Michigan Press, Ann
Arbor, MI, 1975.

[4] Bron, Coen, and Joep Kerbosch. "Algorithm 457:
finding all cliques of an undirected graph."
Communications of the ACM 16.9 (1973): 575-577.

[5] Tomita, Etsuji, Akira Tanaka, and Haruhisa
Takahashi. "The worst-case time complexity for
generating all maximal cliques and computational
experiments." Theoretical Computer Science 363, no.
1 (2006): 28-42.

[6] Robson, John Michael. "Algorithms for maximum
independent sets." Journal of Algorithms 7.3 (1986):
425-440.

[7] Yampolskiy, R., P. Anderson, J. Arney, V. Misic, and
T. Clarke. "Printer model integrating genetic
algorithm for improvement of halftone patterns."
Western New York Image Processing Workshop
(WNYIPW). 2004.

[8] Ashby, Leif H., and Roman V. Yampolskiy. "Genetic
algorithm and Wisdom of Artificial Crowds algorithm
applied to Light up." 16th International Conference on
Computer Games (CGAMES), pp. 27-32. IEEE, 2011.

[9] Hindi, Musa M., and Roman V. Yampolskiy. "Genetic
Algorithm Applied to the Graph Coloring Problem."
Midwest Artificial Intelligence and Cognitive Science
Conference, p. 60. 2012.

[10] B. Carter and K. Park. How good are genetic
algorithms at finding large cliques: an experimental
study. Technical report, Boston University, Computer
Science Department, MA, October 1993.

[11] K. Park and B. Carter. On the effectiveness of genetic
search in combinatorial optimization. Proceedings of

the 10th ACM Symposium on Applied Computing.
ACM Press, 1995.

[12] Marchiori, Elena. "A simple heuristic based genetic
algorithm for the maximum clique problem."
Symposium on Applied Computing: Proceedings of
the 1998 ACM symposium on Applied Computing,
vol. 27, pp. 366-373. 1998.

[13] E. Marchiori. Genetic, iterated and multistart local
search for the maximum clique problem”. Applications
of Evolutionary Computing. Berlin, Germany:
Springer-Verlag, 2002, LNCS 2279, pp. 112–121.

[14] Cantu-Paz, E. (1999) Migration policies and
takeovertimes in parallel genetic algorithms. IlliGAL
Technical Report No. 99008. University of Illinois at
Urbana-Champaign.

[15] Cantu-Paz, E. A survey of parallel genetic algorithms.
Technical report 97003. University of Illinois at
Urbana-Champaign, May 2007.

[16] Berman, Pioa, and A. Pelc. "Distributed probabilistic
fault diagnosis for multiprocessor systems." Fault-
Tolerant Computing. FTCS-20. Digest of Papers. 20th
International Symposium. IEEE, 1990.

[17] J. MacWilliams and N. J. A. Sloane, The Theory of
Error Correcting Codes," North-Holland, Amsterdam,
1979.

[18] Sloane, N. J. A. "Unsolved problems in graph theory
arising from the study of codes." Graph Theory Notes
of New York 18 (1989): 11-20.

[19] J. C. Lagarias and P. W. Shor, Keller's Cube-Tiling
Conjecture is False in High Dimensions," Bulletin
AMS, 27(2), pp. 279-283.

[20] M. Brockington and J. Culberson, Camouflaging
Independent Sets in Quasi-Random Graphs." Working
Paper, Second DIMACS Implementation Challenge,
1993.

[21] T. N. Bui and P. H. Eppley, A Hybrid Genetic
Algorithm for the Maximum Clique Problem."
Proceedings of the 6th International Conference on
Genetic Algorithms (ICGA), Pittsburgh, PA, Morgan
Kaufmann, 1995, pp. 478-484.

[22] Goldberg, David E., and Jon Richardson. "Genetic
algorithms with sharing for multimodal function
optimization." Proceedings of the Second International
Conference on Genetic Algorithms and their
application, pp. 41-49. 1987.

