Navigation on Density-Unbalanced Terrain

Qiang Han, Weiya Yue
University of Cincinnati
School of Electronic & Computing System
Cincinnati, OH 45220, USA
hanqg @ucmail.uc.edu, weiyayue @hotmail.com

Abstract

Navigation algorithms have shown to be important in
many practical applications. In an unknown or con-
stantly changing environment, D* Lite, a classic dy-
namic algorithm, replans a shortest path in an efficient
manner. However, if there are multiple shortest paths,
the D* Lite algorithm arbitrarily selects one. When
it comes to a density-unbalanced terrain, the shortest
paths with the same cost may have different meaning.
The algorithm performance largely depends on how
crowded are the areas through which the selected short-
est path traverses. In this paper, we propose the density-
aware D* Lite algorithm, DAD* Lite, which is capa-
ble to take into account crowded areas and avoid them
to find a (best) shortest path even when this has more
detours than other shortest paths. Experiments show
DAD*#* Lite improves D* Lite by giving better results
on successful runs and moving distance.

Introduction

Navigation algorithms, largely used to develop autonomous
vehicles, intelligent agents, etc, are an important area of
study in artificial intelligence. Under a dynamic environ-
ment, knowledge of the terrain — initially partially known, or
unknown — is updated as the agent (for example, an explor-
ing planet rover, and vehicle parking) moves. Replanning
in dynamic circumstances is a very practical problem and
it is a key part of a navigation algorithm. D* Lite (Koenig
& Likhachev 2002) (Koenig & Likhachev 2005) has been
proven and largely used as an efficient dynamic navigation
algorithm.

The D* Lite algorithm seeks to find a minimum cost path
from the start point to the goal point in the dynamic envi-
ronment. Terrain information is modeled as an undirected
graph G(V, E') with a start vertex v, and a goal vertex v,.
An edge cost function, denoted by ¢(v, u), is associated to
each directed edge (v, u), and the cost of a path is the sum
of all the edge costs along that path. Determining the global
minimum cost path from v, to v is by no means trivial since
the known environment information held by the agent may
change unpredictably.

Copyright held by the authors.

When the environment is static, the well known A* algo-
rithm (Hart, Nilsson, & Raphael 1968) uses a vertex evalu-
ation function f(v) to determine the order in which the al-
gorithm chooses vertices in the search tree to build the path
from v, to vg. The evaluation function, f(v) has two addi-
tive components, that is, f(v) = g(v) + h(v), where g(v) is
the actual cost from vy to the current vertex v, and h(v) is
a cost estimating heuristic from v to v,. Another algorithm,
Lifelong Planning A* (LPA*) (Koenig, Likhachev, & Furcy
2004) (Koenig & Likhachev 2001), introduces an additional
component, rhs(v), which is calculated using the updated
g-value of v’s predecessors and thus potentially better in-
formed and more updated than v’s own g-value. However,
LPA* only recalculates the lowest cost path when the agent
is at v, and it does not replan as the agent moves and finds
changes.

D* Lite can be treated as a dynamic version of LPA*.
However, unlike LPA*, which detects environment changes
globally, D* Lite employs a parameter called sensor-radius.
Only vertices that are within sensor-radius from the current
vertex are exactly in sight and the agent has accurate infor-
mation on these vertices. Therefore, the agent knows only
part of the terrain precisely, beyond which it holds old infor-
mation, which might be out of date.

As the D* algorithm (Stentz 1995) (Stentz 1997), D* Lite
performs a backward search from v, to vs. For D* and all its
descendant algorithms, the backward search is the key point
to their success, because the g-value of every node v in G
is exactly the path cost from v, to v and can be reused after
the agent moves. When edge cost changes are detected, and
the g-values of the vertices affected by these changes need
to be updated, D* Lite propagates the computation from the
affected vertices to vs. In most cases, the backward propa-
gation expands much less vertices than a forward search.

D* Lite also uses the “more informed” rhs function to
make better vertex updates during expansion. The rhs func-
tion in D* Lite is defined by
Ths(’U) _ { (r)ninv’e.succ(v) g(v/) + (v, vl) v # Vg

otherwise.
Three states are defined for a vertex v: the vertes is lo-
cally consistent if rhs(v) = g(v), locally overconsistent if
rhs(v) < g(v), and locally underconsistent if rhs(v) >
g(v). To generate the shortest path, D* Lite maintains

the vertices in a priority queue with in ascending order of
key — values defined as min(g(v),rhs(v)) + h(vs,v).

Every time an inconsistent vertex is updated by making
g(v) = rhs(v), the algorithm needs to check whether its
neighbor becomes inconsistent. If this happens, this neigh-
bor is added to the queue. D* Lite propagates calculations
until all vertices on the path, including v, are locally con-
sistent. When selecting the shortest path, the agent moves
to its neighbor vertex with the minimum of g-value plus the
edge cost, which is the maximum-g-decrease-value. If the
agent detects any changes that have been made since the
last round, this makes these changed vertices inconsistent,
and D* Lite adds them to the priority queue for possible up-
date. Because D* Lite only updates partially inconsistent
vertices, making (g, rhs) consistent instead of all vertices,
it can perform much more efficient than the other navigation
algorithms.

D* Lite has been improved by avoiding unneccessary cal-
culations in the case where the previous planned shortest
path is still available and considering the new changes de-
tected there is no better solution to replace this path (Yue &
Franco 2009) (Yue & Franco 2010). Additionally, a variant
of D*, ID* Lite, seeks to reduce calculation by first expand-
ing the vertices which are more likely to contribute a short-
est path (Yue et al. 2011). A threshold is used in ID* Lite
to control updates. Only the vertices with key-value smaller
than the threshold can be updated. The threshold value is
increased gradually, until the shortest path is found. Due to
the way of performing undates, ID* Lite avoids unnecessary
update significantly and it shows much better results than D*
Lite.

There are many other variants from D* Lite, which deal
with different constraints or requirements. For example,
DD#* Lite (Mills-Tettey, Stentz, & Dias 2006) combines D*
Lite with a technique of detecting dominance relationships
to solve navigation problems with global constraints. By
using the dominance relationship it prunes the search tree
obtaining a fast planning. The anytime algorithm family,
such as AWA* (Hansen & Zhou 2007), ARA* (Likhachev,
Gordon, & Thrun 2003), AD* (Likhachev et al. 2005),
and IAD* (Yue et al. 2012), share the so called inflated
heuristics strategy, according to which the evaluation func-
tion f(v) is replaced by f'(v) = g(v) + € - h(v), where
€ >= 1 denotes the inflation factor. Its effect is to increase
the weight of h-value in f(v), which causes fewer vertices to
be updated, and a sub-optimal path is returned. Thus, any-
time algorithms work best in time-limited and suboptimal
solution acceptable environments.

A new algorithm, Density-Aware D* Lite (DAD* Lite),
which replans a minimum cost path in a density-unbalanced
environment is introduced in this study. Section Planning on
Density-Unbalanced Terrain describes DAD* Lite and moti-
vation behind it. The experimental setup, results, and analy-
sis are presented in Section Experiments. Finally, Section
Conclusion and Future Work concludes the current study
and presents future work.

Planning on Density-Unbalanced Terrain
Motivation for DAD* Lite

D* Lite and all its variants conduct experiments on random
terrains. For example, each node on the grid world is se-
lected as a block with the same probability and all the un-
blocked edges have equal cost. However, the real world en-
vironments are much more complex for which the assump-
tion of an even-distribution terrain does not hold. Moreover,
these algorithms do not consider the information caused by
the unbalance, when, in fact, such information can help de-
velop a more efficient navigation algorithm. Fig. 1 is a Mars
panorama taken by Mars Exploration Rover (Nasa 2012).
In the middle of the picture, there is an area crowded with
rocks, while in other regions the terrain is clear of rocks and
spacious.

Figure 1: Mars Panorama taken by Mars Exploration Rover

Density-unbalanced terrain can be illustrated in a grid
world as shown in Fig. 2, where v; ; denotes the it" row
and j*" column vertex. Fig. 2 shows three shortest paths
from vy = v3 3 to v4 = vg 0. When the agent starts to move
from v, D* Lite picks up one of v,’s on-the-shortest-path
Successors, vs o Or vo 3 arbitrarily. Based on the perception
of human beings, going to vy 3 is better, because this area
is spacious while the bottom left side of the grid is more
crowded. Path; may be blocked more in the future, and
it does not have a detour. However, D* Lite makes deci-
sions on the next move only depending on ¢(vs, v) + g(v),
v € succ(vs), thus the agent has the same probability to go
to the crowded area or the spacious area.

vg 4_4_._._'4_4_r/ Path2

x ' —Path3
X L._.&!/

t

X i

Vs

f

Pathl

Figure 2: A 4 x 4 4-directional grid example

Heuristics in DAD* Lite

With the above observations, designing an algorithm able
to select a shortest path in the most spacious region, thus
avoiding crowded areas is an important problem. To solve
this problem, two issues must be considered.

The first issue concerns the pool of candidate paths, in
particular, how to obtain them. In DAD* Lite, the candi-
date pool contains all the shortest paths from v, to v4. One
could argue that a slightly-longer-than-shortest path that
goes through a much more spacious and easier route each of
the shortest paths, will potentially avoid more interruptions
and finally get to v, with the minimum overall cost. It may
help to overcome the shortcomings of the D* Lite family al-
gorithms due to the unpredictable future changes (dynamic
environment) and the inaccurate information (limitation of
the sensor radius): D* Lite only computes the shortest path
based on local and temporary information which turns out
not to be a globally optimal solution almost certainly. How-
ever we treat this non-trivial problem as our future work and
in this paper, the proposed DAD* Lite algorithm considers
only all the shortest paths as the candidate pool.

As a descendant of D* Lite, DAD* Lite uses the same
procedure to calculate shortest paths. D* Lite finds all the
shortest paths after calling ComputerShortestPath() shown
in the pseudocode of (Koenig & Likhachev 2005). The rea-
son is that when one child of a vertex has been updated to be
consistent, then all its other children will be updated to be
consistent. So if one shortest path has been found, suppos-
ing an other arbitrary path p from v, to v is also shortest,
then the child of v. on p must be updated and consistent too.
Iteratively, all the vertices on p are updated and consistent,
and thus all alternative shortest paths can be found, as shown
in (Yue & Franco 2009) and (Yue & Franco 2010). The cor-
rectness of DAD* Lite follows from that of D* Lite, and thus
DAD* Lite is guaranteed to find all the shortest paths.

The second issue concerns the design of heuristics to
select a path along with less crowded areas. DAD* Lite
chooses two factors to represent the how crowded a path is:

e Number of blocked path neighbors:
e Number of detours to other shortest paths:

The heuristic value of a path is an accumulation of each ver-
tex’s evaluation on this path, and DAD* Lite calculates the
evaluation value of each vertex along the shortest paths. The
evaluation value reflects the information of both the number
of blocked neighbors from this vertex to the goal and the
number of detours to the other shortest paths. The detailed
computation of the evaluation value is shown next.

DAD#* Lite Implementation

Fig. 3 and Fig. 4 illustrate the DAD* Lite pseudocode.
Since DAD* Lite is built on D* Lite only the new and
changed subroutines are shown; the omitted D* Lite sub-
routines can be found in (Koenig & Likhachev 2005). In
the main function in Fig. 4, when ComputerShortestPath()
in Line 03 and Line 16 finishes, all the shortest paths are
found. Then DAD#* Lite calls GetDAPath() which aims to
find the shortest path avoiding crowded areas. Another dif-
ference from D* Lite in the main function, is that when the
agent moves, it just moves to next(vs). next(v) is the next
vertex from v based on the density-aware path.

In Fig. 3, firstly GetDAPath() initializes eval(v) for ver-
tices which are visited in the last round of GetDAPath() com-
putation. Then it calls GetDAPath(v). GetDAPath(v) is a re-

Procedure Initialize():

01. U=0;

02. km=0;

03. forallv € V rhs(v) = g(v) = oo; eval(v) = 0;
04. rhs(vg) = 0;

05. eval(vg) =1;

06. U.Insert(vy, CalcKey(vg));

Procedure GetDAPath(u)
01. if(u # vg)

02. for all v € succ(u)

03. if (rhs(u) = g(v) + c(u,v) && eval(v) = 0)

04. eval(u)+ =GetDAPath(v);

05. next(u) = argmaxyc suce(u)&ierhs(u)=g(v)+c(u,v) €V (V);
06. cnt = # of blocked v | v € pred(u);

07. eval(u) = eval(u)/2°;

08. return (eval(u));

Procedure GetDAPath()

01. for all visited v in last round except v,

02. eval(v) = 0;

03. GetDAPath(v,);

Figure 3: Subroutines of DAD* Lite

Procedure Main():

01. Viast = Vs,

02. Initialize();

03. ComputeShortestPath();

04. GetDAPath();

05. while (vs # vg)

06. /*if (g(vg) = inf) then there is no known path */
07. vs = next(vs);

08. Agent moves to vs;

09. Scan graph for changed edge costs;

10. if any edge cost changes were observed

11. km = km+h(vlast7vs);

12. Viast = Us;

13. for all directed edges (u, v) with changed edge costs
14. Update the edge cost c(u, v);

15. UpdateVertex(u);

16. ComputeShortestPath();

17. GetDAPath();

Figure 4: Main function of DAD* Lite

cursive function, which computes eval(v) for each vertex v
on the shortest paths. Lines 02-07 show how the heuristics
are calculated. Lines 02-04 sum the eval(v) of u’s succes-
sors only if its successor v is on the shortest paths. This
calculation gives higher value for the vertices with more de-
tours. Line 05 chooses the vertex v which has the high-
est evaluation value from all u’s successors and saves it to
next(u). In line 06, cnt counts the number of the blocked
v in u’s predecessors. The larger cnt, the higher probability
that a block will move to u and block the path from u to vg.
Line 07 gives the formula of eval(u), which is is directly
proportional to the sum of u’s on-the-shortest-path succes-
sors’ evaluation value, and is inversely proportional to two
to the power of the number of blocks around u.

An Example

Fig. 5 shows how DAD* Lite works in a grid world exam-
ple. In Fig. 5(a), (g, rhs) values are calculated in Comput-
erShortestPath(). GetDAPath() calculates eval(v) in depth-
first-search fashion from the root vs. For example, in Fig.
5(b) to calculate eval(vy3), its two successors vy o and
vp,3 evaluation values are é and é respectively, and v 3
has one blocked neighbor. So eval(v; 3) is calculated as

(& + %)/ = .

1 1 1
\'4 (1L,1) | (22) | (33) VBA‘— i EA*' 32,
I I I

1 1 1
(1,2) X (3,3) | (44) . X = T,
T T

1 1 1

(22) | 33) X (5,5) % T N X o
1! 1 ‘

X | 84| 55 | vs X | seedom | Vs

(a) (g, rhs) value (b) eval(v) value

Figure 5: A 4-direction grid world example on eval(v) cal-
culation

In Fig. 5(b), arrows indicate the vertex pointed to by
next(v). Then next(v) always goes to the successor with
the maximum eval. That is, next(vs) points to vg 3, be-
cause it has a larger eval (equal to %8) than v3 ». It can be
seen in Fig. 5(b) that the eval value has the capability to

reflect directly how crowded a shortest path is.

Experiments
Experimental Setup

In this section, DAD* Lite is compared with D* Lite on ran-
dom grid terrains. The grid world is a 4-direction square
terrain with size X size vertices. All the experiments are
carried out on the terrain with size = 200. vy, = v(20,20)
and vs = v(1g0,180)- The sensor-radius is the observable dis-
tance from the agent’s current vertex. In every experiment,
each vertex in the spacious area is randomly selected as
blocked with some probability spacious-percentage, which
higher for vertices in crowded areas, described by crowded-
percentage. To simulate the crowded areas, a number of
squares, with a random side length from 30 to 50, are in-
jected in the terrains. The total crowded areas sum up to 30%

of the whole terrain area; different crowded areas overlap.
Before every navigation, the agent has an old map, in which
every obstacle is considered wrongly to be at its neighbor
position with probability 0.5. As the agent moves, in each
step, all the obstacles in the terrain have probability 0.5 to
move to their neighbors excluding vy and vg.

Results and Analysis

In Fig. 6, the performance of D* Lite and DAD* Lite is
compared along two aspects — successful runs and moving
distance — with different crowded-percentage. Experiments
of D* Lite and DAD* Lite, respectively, run 1000 times. In
each experiment, navigation stops when the algorithm can-
not find a single path from v, to v, and thus v, can never
be reached. successful runs represents the number of exper-
iments in which the agent reaches v, in the end. Among all
the successful runs, moving distance measures the average
distance that the agent moves from v, to v4. Compared to
the other D* Lite family algorithms experiments, where the
emphasis is mostly on running time and heap operation, suc-
cessful runs and moving distance reflect a more global point
of view.

450 ‘ . ‘

1000 D" Lite
- ~ 8 | DAD* Lite
5 7507 ANy 5 0
= S~— 2 o
2 500 = 350 P — 1
@ =4
S 0l 3 300
@ D* Lite =

DAD* Lite

250
0.15 0.2 0.25 03 035 04
crowded-percentage

0
0.15 0.2 0.25 0.3 035 04
crowded-percentage

(@ (b)

Figure 6: size = 200, sensor — radius = 10, spacious —
percentage = 0.1

In Fig. 6(a), DAD* Lite shows better results in success-
ful runs than D* Lite. This benefit reaches the maximum
at crowded-percentage = 0.3. When crowded-percentage
is small, the terrain is actually rather spacious, with small
crowded areas, so the advantage of DAD* Lite is not ob-
vious. As crowded-percentage increases, the crowded ar-
eas have more obstacles. If a shortest path exists, D* Lite
picks up one arbitrarily. If this shortest path goes through
crowded areas, the probability that the agent is trapped in
one of these increases. Therefore, DAD* Lite outperforms
D* Lite in this situation. As crowded-percentage increases,
fewer and fewer paths can pass through the crowded areas,
so the shortest paths through the crowded areas account for
a small proportion among all the shortest paths and there-
fore, it becomes easy for D* Lite to select a path avoiding
crowded areas. This explains why DAD* Lite gains less in
successful runs when crowded-percentage = 0.4.

In Fig. 6(b), DAD* Lite has shorter moving distance than
D* Lite. Because the benchmark used is random and the ter-
rain block density is still small, if the planned shortest path
is interrupted, it is easier for the algorithm to find an alter-
native shortest path with the same distance as the old one,
and hence, for both DAD* Lite and D* Lite, the moving dis-
tance is not big. However, it should be noticed that since

Vs = V(180,180) and vy = v(20,20), the cost of the possible
shortest path is 320. In Fig. 6(b) the values for moving dis-
tance produced by DAD* Lite are all closed to 320, which
shows that the benefit of DAD* Lite with respcet to the mov-
ing distance is relatively stable.

450

1000 : D* Lite —
" 3 | DAD* Lite
5 70+ g 40
5 —— 2 I
ﬁ 500 f g 350 D
g — 5 a0
. o r
3 0 D* Lite 2
DAD* Lite
0 . | ! 250 . . .
2 5 10 15 20 2 5 10 15 20
sensor-radius sensor-radius
(a) (b)

Figure 7: size = 200, spacious-percentage = 0.1, crowded-
percentage = 0.3

In Fig. 7, two algorithms are compared with different
sensor-radius. Fig. 7(a) shows that the number of successful
runs decreases with sensor-radius for both DAD* Lite and
D*. However, compared to D* Lite, DAD* Lite is less af-
fected by the change of sensor-radius. More importantly, it
can be seen that DAD* Lite with sensor-radius = 2 shows
the similar result to D* Lite with sensor-radius = 20. In
other words, in the same environment, the result of using
DAD* Lite is equal to that of using D* Lite with a 10x
sensor-radius. Fig. 7(b) shows the improvement of DAD*
Lite with respect to the moving distance.

450

1000 —— D* Lite
0 S g DAD* Lite
€ 750 < g 400
E % 350 = -
a 500 > =
Q g _
8 e 3 300
@ D* Lite =

DAD* Lite
0 . . 250 L .

0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25
spacious percentage spacious percentage
= crowded percentage = crowded percentage

(@) (b)

Figure 8: size = 200, sensor-radius = 10

Fig. 8 depicts the results of two algorithms in the terrains
when spacious percentage = crowded percentage. In this
case, all blocks are randomly chosen and evenly distributed
among the terrain. DAD* Lite performs better than D* Lite
with respect to both successful runs and moving distance.
The advantage is small but stable. This result shows that
even for a block-evenly-distributed terrain, there may exist
some random crowded areas, of which DAD* Lite can take
advantage to a certain extent.

Fig. 9 shows the running time comparisons of the above
three experiment configurations, responding to Fig. 6, Fig.
7 and Fig. 8 respectively. Running time is the average time
of all the successful runs in each experiment configuration.
Because DAD* Lite inserts the procedure GetDAPath() and
it basically has the same structure as D* Lite, potentially its
running time is longer. GetDAPath() has to traverse all the
vertices on the shortest paths to calculate evaluation values.

600 — 600

500 t 500 |

400 f —— 400 b

300 300 |

D* Lite D* Lite
00 DAD* Li}e ; DAD* Lite

0.15 0.2 025 0.3 035 04 2 5 10 15 20

crowded-percentage

Time(milliseconds)
\
Time(milliseconds)

sensor-radius
(a) sensor-radius = 10, (b) spacious-percentage = 0.1,
spacious-percentage = 0.1 crowded-percentage = 0.3

650
600

500 A
w0l

300 D* Lite
DAD* Lite
200 . .
0.1 0.15 0.2 0.25
spacious percentage
= crowded percentage

Time(milliseconds)
\

(c) sensor-radius = 10

Figure 9: Running time comparisons

Similarly, ID* Lite (Yue et al. 2011) also calls a subroutine,
get-alternative(), to generate the shortest path. Because ID*
Lite reduces the number of vertices to expand, it consumes
much less time than D* Lite in total. Another big difference
is that the subroutine get-alternative() in ID* Lite only ex-
pands one shortest path, and thus does not have to traverse
all the vertices on all the shortest paths as DAD* Lite does.
In Fig. 9(a), the difference between two algorithms
reaches the minimum point at crowded-percentage = 0.3,
because DAD* Lite saves more moving distance than D*
Lite as shown in Fig. 6(b). In Fig. 9(c), the biggest differ-
ence between the two algorithms comes when block percent-
age = 0.1. That is, when the terrain becomes more spacious,
there are more shortest paths, therefore GetDAPath() needs
to expand more vertices and thus, it consumes more time.

Conclusion and Future Work

This study proposed DAD* Lite, the Density-Aware D*
Lite algorithm. Compared to D* Lite selecting a shortest
path arbitrarily, DAD* Lite finds a shortest path which may
have more detours than other shortest paths and avoid the
crowded areas. From a global point of view, by using a
heuristic to quantify how crowded an area is, DAD* Lite
produces better results than D* Lite. This improvement is
reflected experimentally in the values of successful runs and
moving distance.

From the experimental results, DAD* Lite consumes
more time than D* Lite, which is determined by the struc-
ture of the algorithm. Future work will set a threshold on
running time of GetDAPath() or a threshold on the number
of the shortest paths to search in GetDAPath() to prune the
search tree. Furthermore, the option of embedding DAD*
Lite heuristic with ID* Lite, in order to shorten computation
time, will also be explored. However, for a system that does
not have a strict time limit, and when crowded areas are an
important issue (e.g., the agent may be damaged if traveling

in such areas), DAD* Lite will always have a higher chance
to reach v, successfully on the shorter path (i.e., moving less
distance).

As already discussed, D* Lite has its inherent shortcom-
ings because the local and temporary nature of the informa-
tion it owns. Without global information, it is impossible to
find a globally optimal solution. The DAD* Lite algorithm
presented here is a good start in the direction of obtaining
a globally optimal solution. Improving the candidate pool
of the paths and development of better heuristics will likely
lead solutions close to global optimality.

References

Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28(1):267-297.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on
4(2):100-107.

Koenig, S., and Likhachev, M. 2001. Incremental a*. Ad-
vances in neural information processing systems 14:1539—
1546.

Koenig, S., and Likhachev, M. 2002. D*lite. In Eighteenth
national conference on Artificial intelligence 2002, 476—
483.

Koenig, S., and Likhachev, M. 2005. Fast replanning for
navigation in unknown terrain. Robotics, IEEE Transac-
tions on 21(3):354-363.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning a*. Artificial Intelligence 155(1):93-146.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and

Thrun, S. 2005. Anytime dynamic a*: An anytime, replan-
ning algorithm. In Proceedings of the International Con-

ference on Automated Planning and Scheduling (ICAPS),
262-271.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. Ara*:
anytime a* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems.

Mills-Tettey, G.; Stentz, A.; and Dias, M. 2006. Dd™*
lite: Efficient incremental search with state dominance. In
Proceedings of the National Conference on Artificial Intel-
ligence, volume 21(2), 1032. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.

Nasa. 2012. Spirit mars rover in ’‘mcmurdo’
panorama. http://marsrovers. jpl.nasa.gov/
gallery/press/spirit/20121109a.html.

Stentz, A. 1995. The focussed d* algorithm for real-time
replanning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 1652—1659.

Stentz, A. 1997. Optimal and efficient path planning for
partially-known environments. The Kluwer International
Series in Engineering and Computer Science 388:203-220.

Yue, W., and Franco, J. 2009. Avoiding unnecessary cal-
culations in robot navigation. In Proceedings of World
Congress on Engineering and Computer Science, 718-723.
Yue, W., and Franco, J. 2010. A new way to reduce com-
puting in navigation algorithm. Journal of Engineering
Letters 18(4):EL_18_4_03.

Yue, W.; Franco, J.; Cao, W.; and Yue, H. 2011. Id*
lite: improved d* lite algorithm. In Proceedings of the
2011 ACM Symposium on Applied Computing, 1364—1369.
ACM.

Yue, W.; Franco, J.; Cao, W.; and Han, Q. 2012. A new
anytime dynamic navigation algorithm. In Proceedings of
the World Congress on Engineering and Computer Science

2012, WCECS 2012, volume 1, 17-22.

