
Comparison of Fast Learning Large Scale Multi-Class Classification

A. Jovanovich and A. Lazar
Department of Computer Science and Information Systems

Youngstown State University
Youngstown, Oh 44555

{ajovanovich, alazar}@gmail.com

Abstract
Recent progress in the development of techniques
to optimize large-scale classification problems has
extended the use of multi-class classification.
Specifically the use of multi-class classification
algorithms when the dataset is to large to fit into
limited memory available of most computers. The
most prominent algorithms used today solve the
multi-class classification problem through an
optimization approach based on coordinate decent.
Two of the most recognized algorithms, Vowpal
Wabbit and LIBLINEAR LibSVM have emerged as
the most consistent options when solving for a
multi-class problems. This paper proposes an
analysis of these methods and tests the efficiency
and performance of each algorithm. The results
are recorded and comparisons are made. After
analyzing the results, the conclusion made is that
the Vowpal Wabbit algorithm is best suited for
solving large-scale multi-class classification
problems when computer memory is constrained.

Introduction
Big Data has affected the way statistical analysis is being
conducted. Many real-world datasets contain hundreds or
thousands of variables of interest which can contain
hundreds of thousand or millions of records. Time spent
on reading/writing between memory and disk becomes
the bottleneck, rendering most algorithms inefficient (Yu
et al. 2012). Even with the growing memory sizes of
computers, a large data set can still be problematic. As a
consequence, the complexity of analysis increasingly
becomes unmanageable by using traditional machine
learning algorithms. To extract useful knowledge from
dense data makes the task of analysis time consuming.
Coupled with the fact that most algorithms use a iteration
process that cycles through the dataset multiple times, the
process is seemingly impossible to finish.

In the past, classification models have been shown to
handle large amounts of data well, and several
optimization techniques have been applied to efficiently
train data intensive models (Aly 2005). However the
performance of the algorithms begin to decline when the
data cannot be processed into memory (Yu et al. 2012). In
these cases, training techniques that deal well with
memory limitations become critical.

Recent progress has been made in the development of
techniques to optimize over memory constrained systems,
including binary classification. It is a well studied special
case of the classification problem that provides the
foundation for multi-class problem solvers. Statistical
properties of binary classifiers, such as consistency, have
been investigated in a variety of settings. Most machine-
learning algorithms are originally developed for binary
decision problems, and extended to handle multi-class
problems (Argyriou, Herbster, and Pontil 2005).

The goal of this paper is to study the existing multi-
class classification methods and provide a noteworthy
comparison. In order to provide a thorough and
comprehensive comparison, classification tests were run
multiple times over contrasting datasets. The paper is
organized in the following manner. Section 2 contains
background information. Section 3 presents related work.
Our approach is in section 4, followed by experiments in
section 5. Conclusions follow and finally work cited.

Background
The principles of Multi-class classification are founded
upon the same principles of binary classification. Each
case involves assigning a class label for each instance
present. Given a training data set of the form (xi , yi),
where xi R∈ n is the ith example and yi {1, . . . , K} is∈
the ith class label, we aim at finding a learning model H

such that H(xi) = yi for new unseen examples (Menon
2009). The problem is simply formulated in the two class
case, where the labels yi are just 0 or 1 for the two classes
involved.

Several algorithms have been proposed to solve the
binary problem. Some of these can be easily extended to
the multi-class case, and some that involve high levels of
computation. In contrast to traditional data classification
where each instance is assigned to only one label,
instances used in multi-class classification may be
simultaneously relevant to several labels. For example: in
text categorization, one document can belong to multiple
topics.

Existing approaches to handle Large Scale multi-class
classification can be categorized into two types. The first
approach solves problems through a block minimization
scheme. The second approach considers online learning
algorithms (Dekel 2008). Both algorithms attempt to
solve the classification problem of assigning labels from
Y to instances X (Tewari and Bartlett 2007).

Block Minimization For Support Vector
Machines
Optimization through block minimization has been used
in the past to efficiently deal with data to large too fit into
memory. One of the most prominent learning algorithms
associated with block minimization is Support Vector
Machine (SVM) algorithm. Proposed by Cortes and
Vapnik in 1995, the algorithm has since grown into one of
the most widely used learning algorithm in the world
(Bottou and Lin 2007). The implementation and broad
uses of SVMs have been well documented in the years
since past.

The framework for an SVM is modified to solve for
classification problems in the event limited memory is
available. The process entails using an optimization
technique based on block minimization. Where the term
“block” refers to partitions of the dataset that can be read
through the memory available. The size and content of
each block varies from approach to approach. Pérez-
Cruz, Figueiras, and Artes (2004) propose the use of
“double chunking.” Where data is partitioned into both
“large chunks” and “small chunks.” Another approach
described by Chang and Roth (2011) uses selective
sampling for block minimization. By selecting only
significant instances, the goal is to minimize the size of
data blocks and speed up the iteration process. Yu et al.
(2012) suggest a framework for block minimization that is
also used for testing in this paper. In this approach the
amount of memory available for processing correlates to

the size of blocks. The framework consists of 3 steps that
split the data and read the blocks into memory, set initial
values before solving for classification through an
iterative process. The algorithm can be summarized as
following:

Algorithm 1 A block minimization framework for Dual
SVM

 1. Split {1, . . . , l} to B1 , . . . , Bm and store data into m
partitions accordingly.
2. Set initial w
3. For j = 1, . . . , m (inner iterations)
 For K = 1, 2, . . . (outer iterations)
 3.1. Read xr , r ∀ ∈ Bj from disk
 3.2 Approximately solve the sub-problem (1)

 3.3 Update w by (2)

Here, {B1 , . . . , Bm } are sequential partitions of all
data indices {1, . . . , l}. The size of the blocks are
determined by the known memory constraints. Each
instance is read and randomly assigned a block.
Algorithm 2 explains the process for data splitting.
Optimization over a single block is identified as the inner
iteration, whereas the m steps of going over all blocks is
deemed an outer iteration (Yu et al. 2012).

Algorithm 2 Framework for block splitting

1. Decide m and create m empty files
2. For i = 1, ….
 2.1 Convert xi to a binary format xi .
 2.2 Randomly choose number j {1,...,m}.
 2.3 append xi into the end of the jth file.

In order to optimize through block minimization only
the dual form of SVM must be used. By examining the
dual form of the optimization problem we are able to
write the entire algorithm in terms of only inner products
between input feature vectors. Updates to the weight
vector w, which corresponds to the entire data set treating
instances uniformly prevent the primal for of SVM to be
used (Shalev-Shwartz et al. 2007). Algorithm 1 is able to
efficiently learn in very high dimensional spaces.

 The sub-problem is solved in the inner iteration step,
and the solution is then used to update w. The solution
uses only instances that belong to block Bj. The solution
to the sub-problem is presented below in (1).

 l
 w = ∑ αiyixi (1)
 i=1

The iteration round is then complete after w is updated.
To update w, if dBj is an optimal solution for the sub-
problem:

 w←w + ∑ dr yrxr (2)

 r Bj∈

The iteration process continues until optimization is
reached, converging when one of two conditions are met
(Yu et al. 2012). The first condition states that
optimization is complete when the sub-problem for each
block is solved and the solutions converge. The second
condition is a stopping criteria. Usually a finite number
of iterations is chosen, or an accuracy threshold is
obtained.

 LIBLINEAR addresses both conditions while solving
for the sub-problem. The software contains a library with
tools used for SVM classification when data cannot fit
into memory (Yu et al. 2012). LIBLINEAR sequentially
selects one variable for update and fixes others inside the
block. The framework not shown in this paper is
explained by Yu et al. (2012). LIBLINEAR uses a SVM
coordinate descent method and solver to update instances
in block Bj before solving for (1).

Online Learning with Stochastic Gradient
Descent

Online learning algorithms are designed to effectively
classify data by building a weight model derived from
sequentially received training examples. Compared to
block minimization which solves for the sub-problem of
each block, online learning updates instances through the
use of a cache file. Each iteration round updates the
cache file where the weight model is stored. The
algorithm classifies each instance, and uses the new
“instance-label pair” to update and improve the stored
model (Tewari and Bartlett 2007). This method is
expected to accurately predict the labels of instances that
are not part of the training set.

Several strategies were proposed to optimize online
learning algorithms. Most of which aim to extend the
original purpose of binary classification to multi-class
learning. In the study conducted by Argyriou et al (2005),
an extension to a graph-based approach to online learning
was discussed. Shalev-Shwartz et al (2007) exploited the
dual formation of optimization to create a more efficient
online learning algorithm.

John Langford and his colleagues at Yahoo! Research
developed Vowpal Wabbit, a fast online-learning

algorithm that uses stochastic gradient descent. Vowpal
Wabbit can handle very large datasets without ever
needing to load the entire dataset into memory. The
algorithm also requires less computational power and far
fewer resources by learning through online gradient
descent (Langford, Li, and Zhang, 2009). Algorithm 3
below presents the framework.

Algorithm 3 Online-learning framework for Vowpal Wabbit

 Inputs:
 • threshold θ ≥ 0
 • gravity sequence gi ≥ 0
 • learning rate η (0, 1)∈

 initialize weights w
j
 ← 0 (j = 1, . . . , d)

 1. Acquire an unlabeled example x = [x
1
 , x

2
 , . . . , x

d
]

 2. Compute prediction: y = ∑ j w
j
x

j

 3. Acquire the label y from dataset
 for all weights w

j
 (j = 1, . . . , d)

 (a) if w
j
> 0 and w

j
 ≤ θ then w

j
← max{w

j
 − gi η, 0}

 (b) else if w
j
< 0 and w

j
 ≥ −θ then w

j
← min{w

j
+ gi η, 0}

 4. Update weights for all features j: w
j
 ← w

j
 + 2η(y − y)x

j

Here, the superscripted symbol w
j
 denotes the jth

component of vector w in order to differentiate from
wi, which references the ith weight vector (Langford
and Zhang 2009).

Updates to the assigned weights are stored in a cache
file that is small enough to be read into the limited
memory available. Vowpal Wabbit stores only the cache
file, allowing for faster implementation, and increased
performance through the optimization process.

Related Work

In this section we discuss related work pertaining to
comparisons of Large-scale Classification problems. The
topic has compiled a comprehensive library primarily for
binary classification. As such there seems to be a gap in
knowledge pertaining to multi-class classification. We
derive the techniques used for our comparison from
strategies implemented in related work.

Yu et al. first introduced a comparison for large linear
classification in his paper published in 2012. His
comparison of SVM solvers and online-learning
algorithms only extended to binary classification. The
study defined one assumption that is significant in our
comparison.

 Figure 1 SensIT Vehicle Class Training Frequency

 Assuming that the amount of available memory is
limited, entire datasets cannot be stored in memory, but
can be stored in the disk of one computer. The size of the
datasets used in this paper are large enough to satisfying
this constraint, and must be accessed through the hard
drive where they are stored.

Multi-class classification was addressed in the paper by
Chang and Roth in 2011. In the paper comparisons were
drawn from both batch learning as well as online-learning
algorithms. Unfortunately Vowpal Wabbit at that time
was limited to binary classification and no comparisons
were drawn. Instead the focus was primarily on block
minimizing algorithms. Of which LibSVM was deemed
superior to several other algorithms. It is our intent to
extend this comparison of LibSVM to Vowpal Wabbit.

Approach
The aim of this paper is to test the performance of Vowpal
Wabbit (Langford, Li, and Zhang, 2009) against the
LIBLINEAR block learning extension of LibSVM (Yu et
al 2012). Due to the recent advances in the Vowpal
Wabbit library this is one of the first tests using the multi-
class solver.

Testing was performed using one-against-all multi-class
solver options implemented in both algorithms. For a K-
class problem the one-against-all method constructs K
models, where each model separates a class from the rest.
The ith model is trained with all of the binary instances
pertaining to the ith class. The final output of the one-
against-all method is the class that corresponds to the
SVM with the highest output value (Liu, Wang, and Zeng
2007).

Figure 2 RCV1 Class Training Frequency

Data
Comparisons were drawn from test conducted over multi-
class datasets. The SensIT Vehicle dataset was used, in
addition to a larger 53 class (RCV1) dataset. Using the
smaller dataset to establish a baseline reading and
evaluation. The classification problem was then extended
the simple classification problem to one more complex in
that of the RCV1 dataset. The tests conducted here would
reinforce the results gathered from the SensIT dataset.
 The SensIT Vehicle dataset features 3-class labels. The
instances were extracted from sensor data collected
during a real world experiment carried out at Twenty nine
Palms, CA in November of 2001 (Duarte and Hen 2004).
The sensors were used to obtain both acoustic and seismic
activity from vehicles in the vicinity. In total 50 features
were extracted. Each vehicle was driven around a road
while sensors collected information as they passed.
Classes included in the training set included: AAV3 (class
1), DW3 (class 2), and a third class for noise (class 3). In
total there are 78,823 training samples and 19,705 testing
samples. In Figure 1 the frequency of each class used for
training is presented. The distribution of samples shows
an unbalanced dataset where more instances of noise
classification are recorded than vehicle. The total sample
size of the 2 vehicles combines is close to the total sample
size of the noise. The data being skewed as such can
increase the error rate and degrade performance in certain
cases. Later in the paper we discuss the impact of this on
classification accuracy.

The RCV1 dataset was used in part due to its 53-class
problem. The Reuters Corpus Volume I (Reuters RCV1)
is one of the most widely used test collection for text
categorization research (Lewis et al. 2004). It contains
534,135 newswire documents, which are split into 15,564
training documents and 518,571 test documents. The

1 2 3
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Class

Fr
eq

ue
nc

y

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

500

1000

1500

2000

2500

3000

3500

4000

Class

Fr
eq

ue
nc

y

Figure 3 Iteration time over SensIT Data

Figure 4 Percent Accuracy Per Iteration over SensIT Data

dataset contains 47,236 features. The class frequency of
all 53 labels is presented in figure 2. Again the frequency
of the samples collected in the training dataset represent
an unbalanced sample size where the first 25 class
frequencies are significantly larger than the last 28.

Experiment

In order to successfully draw comparisons testing criteria
was first established. The criteria is based of overall
performance of the ability of the algorithms to learn a
classification model and successfully label the instance
into the the right class. Stopping criteria was also
established before tests were conducted. The iteration
threshold was set to 78 rounds. Figures 3 – 6 present the
individual performance measures of the algorithms from
iteration round 1 to the stopping threshold reached in
round 78. The algorithms were compiled in C++ and run
on the Linux operating system. All experiments were run
on a laptop with 6GB of memory. To ensure accurate
results each test was repeated 3 times and the averages
were used to rate performance.

 Figure 5 Iteration time over RCV1 Data

Figure 6 Percent Accuracy Per Iteration over RCV1 Data

Before the experiment can be run using the
LIBLINEAR extension LibSVM, the training dataset
must be partitioned into smaller blocks. The optimal
number of partitions was discovered to be 8 for this case.
Vowpal Wabbit on the other hand uses a cache file which
fulfills the memory constraint. The dataset does not need
to be split or compressed, Vowpal Wabbit can access each
instance without reading the entire datasets. The
algorithms were first trained and tested using the SensIT
dataset. The dataset represents a simple scenario where
binary classification is extended into a 3-class problem.
The results from both algorithms are shown in figures 3
and 4.

On average the runtime per iteration for Vowpal
Wabbit was 0.36 seconds, while the average for libSVM
was 1.48 seconds. Vowpal Wabbit performed at a pace 4
times as fast as LibSVM. Both algorithms scored over
80% accuracy classifying testing instances. By the end of
the 78 iteration the algorithms were close to converging
around the 80.3 percentile. The biggest differences
recorded can be seen between the first 5 iteration rounds.
This is were the optimization approaches can be

1 2 3 4 5 6 7 8 9 10 20 30 50 78
79.4%

79.6%

79.8%

80.0%

80.2%

80.4%

80.6%

Vowpal Wabbit libSVM

Iteration

A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10 20 30 50 78
80%

81%

82%

83%

84%

85%

86%

87%

88%

89%

90%

Vowpal Wabbit libSVM

Iteration
A

cc
ur

ac
y

1 2 3 4 5 6 7 8 9 10 20 30 50 78
0

20

40

60

80

100

120

140

Vowpal Wabbit libSVM

Iteration

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10 20 30 50 78
0

20

40

60

80

100

120

Vowpal Wabbit libSVM

Iteration

Ti
m

e
(s

ec
on

ds
)

Figure 7 SensIT Data Table of Statistics

distinguished. As the Vowpal Wabbit algorithm passes
through the dataset and the weights are updated from the
initial label, the accuracy of classification begins to rise.
While the consistent accuracy rate for LibSVM can be
attributed to the block minimization framework. By
solving the subproblem within each equally distributed
block first, the updated weights do not yield higher
accuracy. Instead the rate is consistent throughout the
optimization process.

The second experiment was conducting over the RCV1
dataset. Classification using the one-against-all option is
increasingly complicated with each additional class. The
increased sample, class, and feature size in the RCV1
dataset taxes the memory load in such a constrained
environment. Performance from both algorithms stayed
consistent with the baseline ratings established with the
tests run over the SensIT dataset. Average runtime per
iteration for Vowpal Wabbit increases slightly to 0.43
seconds, while LibSVM decreased slightly to 1.43
seconds. The runtime results of RCV1 is presented in
figure 5 are similar to those of SensIT testing in figure 3.
As with the sensIT data set, Vowpal Wabbit is consistently
quicker than libSVM.

Classification accuracy rose 8 percent when comparing
the results of figure 6 to figure 4. The larger dataset has
had a positive impact on the accuracy rate of
classification for the two algorithms. Again LibSVM
scores a higher classification accuracy while achieving
more consistent results. The accuracy of Vowpal Wabbit
begins to rise until the 20th iterations. From there the
accuracy begins to drop until the 78th iteration. Unlike
the SensIT tests, the algorithms never appear to converge.

Overall the LIBLINEAR extension LibSVM
classification algorithm achieved the highest classification
rates. At no point in the iteration process did the Vowpal
Wabbit algorithm correctly classify more test instances.
The highest classification accuracy rate occurred during
the first iteration step. LibSVM correctly classified

Figure 8 RCV1 Data Table of Statistics

80.47% of the SensIT testing dataset, whereas Vowpal
Wabbit managed to obtain a lower rate of 80.32% after
the final iteration. Figure 7 presents a table with the
results gathered testing over the SensIT test dataset. Once
more LibSVM attained the highest classification rate over
the RCV1 testing dataset. The results from both
algorithms are presented in figure 8. the highest accuracy
mark was obtained during the first iteration round when
LibSVM correctly classifies 88.64% of testing instances.
This rate was maintained throughout the iteration process.
Vowpal Wabbit reached the highest mark with an
accuracy of 86.99% after the 6th

t
iteration round.

The higher accuracy ratings from LibSVM do come at
a cost however. The runtime for each iteration was
significantly slower than that of Vowpal Wabbit. The total
time needed to reach the 78th iteration round presented in
figure 7 was only 27.81 seconds. Compared to 116.56
seconds for LibSVM. Figure 8 presented similar results.
Vowpal Wabbit was recorded at 33.85 seconds where
LibSVM reached the stopping threshold in 111.93
seconds. In both cases Vowpal Wabbit was 4 times as
fast.

Surprisingly both algorithms achieved higher levels of
performance solving for the larger RCV1 classification
problem. Iteration runtime of both algorithms experienced
a small increase in time when compared in figures 3 and
5. The classification accuracy improved in figure 6 when
compared to the accuracy ratings in figure 3. The lower
rates of classification accuracy can can be contributed to
the skewed training dataset. The frequency distribution in
presented in figures 1 and 2 are unbalanced. As such the
classification accuracy over the smaller SensIT data set
was lower than the larger RCV1 dataset. The increase in
instances correlated with the accuracy of overall
classification. The more instances the algorithm had to
train over, the more classification accuracy improved.

RCV1 Dataset
Vowpal Wabbit libSVM

Iteration Time Acc Iteration Time Acc
1 1.06 83.40% 1 8.20 88.64%
2 1.53 85.81% 2 9.46 88.64%
3 1.94 86.57% 3 10.80 88.64%
4 2.36 86.85% 4 12.25 88.64%
5 2.85 86.96% 5 13.61 88.64%
6 3.37 86.99% 6 14.87 88.64%
7 3.84 86.96% 7 16.20 88.64%
8 4.02 86.90% 8 17.63 88.64%
9 4.48 86.83% 9 19.01 88.64%
10 5.26 86.75% 10 20.33 88.64%
20 9.46 86.12% 20 33.99 80.45%
30 13.91 85.76% 30 47.30 80.43%
50 22.06 85.45% 50 74.17 80.44%
78 33.85 85.28% 78 111.93 80.43%

SensIT Dataset
Vowpal Wabbit libSVM

Iteration Time Acc Iteration Time Acc
1 1.28 79.86% 1 5.52 80.47%
2 1.64 80.06% 2 8.00 80.47%
3 2.05 80.12% 3 9.53 80.43%
4 2.46 80.15% 4 11.25 80.46%
5 2.87 80.16% 5 13.03 80.42%
6 3.29 80.20% 6 15.43 80.43%
7 3.56 80.19% 7 16.09 80.46%
8 3.95 80.19% 8 17.27 80.43%
9 4.40 80.19% 9 18.76 80.43%
10 4.81 80.19% 10 20.14 80.47%
20 7.13 80.24% 20 34.28 80.45%
30 10.83 80.22% 30 48.93 80.43%
50 17.52 80.27% 50 76.93 80.44%
78 27.81 80.32% 78 116.56 80.43%

Conclusion

Using the results recorded from figures 3 -8 the following
question about Fast Learning large-scale multi-class
classification can be answered:

Question: Which algorithm is most efficient when their
are constraints to the memory? When compared, Vowpal
Wabbit is the most efficient multi-class classification
algorithm. The results from the SensIT test case
suggested that Vowpal Wabbit was the quicker algorithm
while maintaining a slightly lower accuracy percentile
than LIBSVM. Moving from the SensIT dataset to the
larger RCV1, the results remained consistent. We have
concluded that Vowpal Wabbit had a slight advantage in
overall efficiency when there is a constraint placed of
computer memory size.

The performance of both algorithms was relatively
close however. Due to the small size of the experiment,
further testing is needed for a thorough comparison.
Testing over datasets that are more expansive, both in
sample and feature size could be used for a more
significant experiment. However, we feel that the size of
the datasets used in this paper are adequate to provide
conclusive results for the comparisons made.

References

Aly, M. 2005. Survey on multiclass classification
methods. Neural networks, 1-9.

Argyriou, A., Herbster, M., and Pontil, M. 2005.
Combining graph Laplacians for semi--supervised
learning.

Bottou, L., and Lin, C. J. 2007. Support vector machine
solvers. Large scale kernel machines: 301-320.

Chang, K. W., and Roth, D. 2011. Selective block
minimization for faster convergence of limited memory
large-scale linear models. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining: 699-707.

Chang, C. and Lin, C. 2011. LIBSVM: a library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3): 27:1--27:27.
Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine learning, 20(3): 273-297.

Dekel, O. 2008. From online to batch learning with
cutoff-averaging. NIPS.

Duarte, M. F., and Hen Hu, Y. 2004. Vehicle classification
in distributed sensor networks. Journal of Parallel and
Distributed Computing 64(7): 826-838.

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., &
Lin, C. J. (2008). LIBLINEAR: A library for large linear
classification. The Journal of Machine Learning Research
9: 1871-1874.

Langford, J., Li, L., and Zhang, T. 2009. Sparse online
learning via truncated gradient. The Journal of Machine
Learning Research 10: 777-801.

Lewis, D., Yang, Y., Rose, T., and Li, F. 2004. RCV1: A
new benchmark collection for text categorization
research. Journal of Machine Learning Research 5: 361-
397.

Liu, Y., Wang, R., and Zeng, Y. S. 2007. An Improvement
of One-Against-One Method for Multi-class Support
Vector Machine. In Machine Learning and Cybernetics,
2007 International Conference 5: 2915-2920.

Menon, A. K. 2009. Large-scale support vector machines:
algorithms and theory. Research Exam, University of
California, San Diego.

Pechyony, D., Shen, L., and Jones, R. Solving Large Scale
Linear SVM with Distributed Block Minimization.

Pérez-Cruz, F., Figueiras, A., and Artes, A. 2004. Double
chunking for solving SVMs for very large datasets.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. 2007.
Pegasos: Primal estimated sub-gradient solver for svm. In
Proceedings of the 24th international conference on
Machine learning, 807-814.: ACM.

Tewari, A., and Bartlett, P. L. 2007. On the consistency of
multiclass classification methods. Journal of Machine
Learning Research 8: 1007-1025.

Yu, H. F., Hsieh, C. J., Chang, K. W., and Lin, C. J. 2012.
Large linear classification when data cannot fit in
memory. ACM Transactions on Knowledge Discovery
from Data TKDD 5(4): 23.

