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1 Introduction

In this paper, we construct a combination HS-LiteHhorn of the Halpern-Shoham
interval temporal logic HS [15] with the description logic DL-LiteHhorn [12, 1],
which is a Horn extension of the standard language OWL 2 QL. The temporal
operators of HS are of the form 〈R〉 (‘diamond’) and [R] (‘box’), where R is one of
Allen’s interval relations After, Begins, Ends, During, Later, Overlaps and their
inverses (Ā, B̄, Ē, D̄, L̄, Ō). The propositional variables of HS are interpreted
by sets of closed intervals [i, j] of some flow of time (e.g., Z, R), and a formula
〈R〉ϕ ([R]ϕ) is regarded to be true in [i, j] iff ϕ is true in some (respectively, all)
interval(s) [i′, j′] such that [i, j]R[i′, j′] in Allen’s interval algebra.

In HS-LiteHhorn, we represent temporal data by means of assertions such
as SummerSchool(RW, t1, t2) and teaches(US,DL, s1, s2), which say that RW is
a summer school that takes place in the time interval [t1, t2] and US teaches
DL in the time interval [s1, s2]. Note that temporal databases store data in a
similar format [17]. Temporal concept and role inclusions are used to impose
constraints on the data and introduce new concepts and roles. For example,
AdvCourseu〈D̄〉MorningSession v ⊥ says that advanced courses are not given in
the morning sessions described by 〈B̄〉LectureDayu〈A〉Lunch v MorningSession;
teaches v [D]teaches claims that the role teaches is downward hereditary (or
stative) in the sense that if it holds in some interval then it also holds in all of its
sub-intervals; [D](〈O〉teaches t 〈D̄〉teaches) u 〈B〉teaches u 〈E〉teaches v teaches,
on the contrary, states that teaches is coalesced (or upward hereditary). The
inclusions teaches v [D]teaches and [D](〈O〉teaches t 〈D̄〉teaches) v teaches
ensure that teaches is both upward and downward hereditary. On the other hand,
‘rising stock market’ and ‘high average speed’ are typical examples of concepts
that are not downward hereditary; for a discussion of these notions see [6, 21, 18].

Although the complexity of full HS-LiteHhorn remains unknown, in this paper

we define two fragments, HS-LiteH/flat
horn and HS-LiteH[G]

horn , where satisfiability and
instance checking are P-complete for both combined and data complexity.

Our interest in tractable description logics with interval temporal operators
is motivated by possible applications in ontology-based data access (OBDA) [12]
to temporal databases. In this context, we naturally require reasonably expressive
yet tractable ontology and query languages with temporal constructs (although
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some authors advocate the use of standard atemporal OWL 2 QL with temporal
queries [16, 7]). Our choice of HS as the temporal component of HS-LiteHhorn

is explained by the fact that modern temporal databases adopt the (downward
hereditary) interval-based model of time [17, 13] and use coalescing to group time
points into intervals [6]. We show that, unfortunately, the logics HS-LiteH/flat

horn

and HS-LiteH[G]
horn cannot guarantee first-order rewritability of even atomic queries,

though we conjecture that datalog rewritings are possible.

2 Description Logic HS-LiteHhorn

The language of HS-LiteHhorn contains individual names a0, a1, . . . , concept names
A0, A1, . . . , and role names P0, P1, . . . . Basic roles R, basic concepts B, temporal
roles S and temporal concepts C are given by the grammar

R ::= Pk | P−k , B ::= Ak | ∃R,
S ::= R | [R]S | 〈R〉S, C ::= B | [R]C | 〈R〉C,

where R is one of Allen’s interval relations or the universal relation G. Over the
closed intervals [i, j] = {n ∈ Z | i ≤ n ≤ j}, for i ≤ j, we set:

– [i, j]A[i′, j′] iff j = i′, (After)
– [i, j]B[i′, j′] iff i = i′ and j ≥ j′, (Begins)
– [i, j]E[i′, j′] iff i ≤ i′ and j = j′, (Ends)
– [i, j]D[i′, j′] iff i ≤ i′ and j′ ≤ j, (During)
– [i, j]L[i′, j′] iff j ≤ i′, (Later)
– [i, j]O[i′, j′] iff i ≤ i′ ≤ j ≤ j′ (Overlaps)

and define their inverses in the standard way. Note that we allow single-point
intervals [i, i] and use non-strict ≤ instead of the more common < (in fact, one
can show that the use of < would make reasoning non-tractable). An HS-LiteHhorn

TBox is a finite set of concept and role inclusions and disjointness constraints of
the form

C1 u · · · u Ck v C+, S1 u · · · u Sk v S+,

C1 u · · · u Ck v ⊥, S1 u · · · u Sk v ⊥,

where C+, R+ denote temporal concepts and roles without diamond operators
〈R〉. An HS-LiteHhorn ABox is a finite set of atoms of the form Ak(a, i, j) and
Pk(a, b, i, j) in which temporal constants i ≤ j are given in binary. AnHS-LiteHhorn

knowledge base (KB) is a pair K = (T ,A), where T is a TBox and A an ABox.
An HS-LiteHhorn interpretation, I, consists of a family of standard (atemporal)

DL interpretations I[i, j] = (∆I , ·I[i,j]), for all i, j ∈ Z with i ≤ j, in which
∆I 6= ∅, aI[i,j]k = aIk for some (fixed) aIk ∈ ∆I ,AI[i,j]k ⊆ ∆I and P I[i,j]k ⊆ ∆I×∆I .
The role and concept constructs are interpreted in I as follows:

(P−k )I[i,j] =
{

(x, y) | (y, x) ∈ P I[i,j]k

}
, (∃R)I[i,j] =

{
x | (x, y) ∈ RI[i,j]

}
,

([R]S)I[i,j] =
⋂

[i,j]R[i′,j′]

SI[i
′,j′], ([R]C)I[i,j] =

⋂
[i,j]R[i′,j′]

CI[i
′,j′]

and dually for the ‘diamond’ operators 〈R〉.



The satisfaction relation |= is defined by taking:

I |= A(a, i, j) iff aI ∈ AI[i,j],
I |= P (a, b, i, j) iff (aI , bI) ∈ P I[i,j],
I |=

d
k Ck v C iff

⋂
k C
I[i,j]
k ⊆ CI[i,j], for all intervals [i, j],

I |=
d

k Sk v S iff
⋂

k S
I[i,j]
k ⊆ SI[i,j], for all intervals [i, j],

and similarly for disjointness constraints. Note that concept and role inclusions
as well as disjointness constraints are interpreted globally. For a TBox inclusion
or an ABox assertion α, we write K |= α if I |= α, for all models I of K.

3 Propositional HShorn is Tractable

Denote by HShorn the fragment of HS-LiteHhorn without role names and with
ABoxes that contain a single individual name. TBoxes in this restricted language
can be regarded as Horn formulas of the propositional interval temporal logic
HS, which is notorious for its nasty computational behaviour; for results on the
(un)decidability of various fragments of HS, see, e.g., [14, 10, 9, 8, 19, 11, 20]. The
designed logic HShorn appears to be the first tractable fragment of HS:

Theorem 1. HShorn is P-complete for both combined and data complexity.

Membership in P follows from the polynomial canonical model and P-hardness
for (data) complexity is by reduction of the monotone circuit value problem.

So far, we have managed to lift this result to two proper interval temporal
description logics, both of which are fragments of HS-LiteHhorn.

4 Tractability of HS-LiteH/flat
horn and HS-LiteH[G]

horn

The first fragment, denoted HS-LiteH/flat
horn , only allows those HS-LiteHhorn TBoxes

that are flat in the sense that their concept inclusions do not contain ∃R on
the right-hand side. Our second fragment, denoted HS-LiteH[G]

horn , allows only the
operator [G] in the definition of temporal roles S (with no restrictions imposed
on temporal concepts). Thus, unlike HS-LiteH/flat

horn , the fragment HS-LiteH[G]
horn

contains full DL-LiteHhorn.

Theorem 2. (i) The satisfiability problem for HS-LiteH/flat
horn and HS-LiteH[G]

horn

KBs is P-complete for combined complexity.
(ii) Instance checking for HS-LiteH/flat

horn and HS-LiteH[G]
horn is P-complete for

data complexity.

This result contrasts with the lower data complexity (AC0 and NC1) of
instance checking with point-based temporal DL-Lite [5, 3, 2].

In view of Theorem 2 (ii), the temporal ontology languages HS-LiteH/flat
horn and

HS-LiteH[G]
horn cannot guarantee first-order rewritability of even atomic queries,

though we believe that datalog rewritings are possible. We leave the query
rewritability issues, in particular, the design of DL-LiteHcore-based fragments sup-
porting first-order rewritability as well as temporal extensions of the OWL 2 EL
and OWL 2 RL profiles of OWL 2 for future research.
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