
Efficient Query Answering in DL-Lite through
FOL Reformulation (Extended Abstract)

Damian Bursztyn1, François Goasdoué2 and Ioana Manolescu1

1 INRIA & U. Paris-Sud, France 2 U. Rennes 1 & INRIA, France

Abstract. We propose a general query optimization framework for for-
malisms enjoying FOL reducibility of query answering, for which it reduces
to the evaluation of a FOL query against facts. This framework allows
searching within a set of alternative equivalent FOL queries, i.e., FOL re-
formulations, one with minimal evaluation cost when evaluated through
a relational database management system. We provide two algorithms,
an exhaustive and a greedy, for exploring the optimization space. This
framework is applied to the lightweight description logic DL-LiteR un-
derpinning the W3C’s OWL2 QL profile, for which an experimental eval-
uation validates the interest and applicability of our technique.

1 Introduction

Query answering in the lightweight DL-LiteR description logic [1] has received
significant attention in the literature, as it provides the foundations of the W3C’s
OWL2 QL standard for Semantic Web applications. In particular, query answer-
ing techniques based on FOL reducibility, e.g., [1,2,5,6,7], which reduce query an-
swering against a knowledge base (KB) to FOL query evaluation against the KB’s
facts only (a.k.a. ABox) by compiling the KB’s domain knowledge (a.k.a. TBox)
into the query, hold great potential for performance. This is because FOL queries
can be evaluated by a highly optimized Relational Database Management Sys-
tem (RDBMS) storing the KB’s facts.

The goal of our study is to identify efficient techniques for query answering in
description logics enjoying FOL reducibility, with a focus on DL-LiteR. Notably,
we reduce query answering to the evaluation of alternative FOL queries, a.k.a. FOL
reformulations, belonging to richer languages than those considered so far in the
literature; in particular, this may allow several (equivalent) FOL reformulations
for a given input query. This contrasts with related works, e.g., the aforemen-
tioned ones, which aim at a single FOL reformulation (modulo minimization).
Allowing a variety of reformulations is crucial for efficiency, as such alternatives,
while computing the same answers, may have very different performance (re-
sponse time) when evaluated through an RDBMS. Therefore, instead of having
a single fixed choice that may or may not be performant, we select the one with
lowest estimated evaluation cost among possible alternatives.

2 Cover-based query answering optimization

RDBMS query optimizers consider a set of evaluation alternatives (a.k.a. logical
and physical plans), and select the one minimizing a cost estimation function.



Since the number of alternatives is in O(2n × n!) for a conjunctive query (CQ)
of n atoms [4], modern optimizers rely on heuristics to explore only a few al-
ternatives; this works (very) well for small-to-moderate size CQs. However, FOL
reformulations go beyond CQs in general, and may be extremely large, leading the
RDBMS to perform poorly.

To work around this limitation, we introduce the cover-based query answer-
ing technique to define a space of equivalent FOL reformulations of a CQ. A cover
defines how the query is split into subqueries, that may overlap, called frag-
ment queries, such that substituting each subquery with its FOL reformulation
(obtained from any state-of-the-art technique) and joining the corresponding
(reformulated) subqueries, may yield a FOL reformulation for the query to an-
swer. Not every cover of a query leads to a FOL reformulation; but every cover
which does, yields an alternative cover-based FOL reformulation of the original
query. Crucially for our problem, a smart cover choice may lead to a cover-based
reformulation whose evaluation is more efficient. Thus, the cover-based tech-
nique amounts to circumventing the difficulty of modern RDBMSs to efficiently
evaluate FOL reformulations in general.

Problem 1 (Optimization problem). Given a CQ q and a description logic KB K,
the cost-driven cover-based query answering problem consists of finding a cover-
based reformulation of q based on K with lowest (estimated) evaluation cost.

We solve this problem for DL-LiteR in two steps. First, we provide a sufficient
condition for a cover to be safe for query answering, i.e., to lead to a cover-based
FOL reformulation. The main idea for this condition is to have a cautious ap-
proximation of the query atoms which are interdependent w.r.t. reformulation,
i.e., which (directly or after specialization) unify through state-of-the-art refor-
mulation techniques, and keep them in the same cover fragment. The space of all
covers of a query q satisfying this condition is denoted Lq; all Lq covers turn out
to correspond to some fusion of fragments from a certain root cover we denote
Croot. We also refine our sufficient condition to identify an extended space of
covers Eq, which includes Lq and also leads to FOL reformulations of q.

Second, based on a function ε estimating the evaluation cost of a given FOL

query through an RDBMS, we devise two cover search algorithms. The first
one, termed EC-DL (Exhaustive Covers), starts from Croot and explores all
Eq covers in the case of DL-LiteR. The second one, named GC-DL (Greedy
Covers), also starts from Croot but explores Eq partially, in greedy fashion. It
uses an explored cover set initialized with {Croot}, from which it picks a cover C
inducing a qFOL reformulation with minimum cost ε(C), and attempts to build
from C a cover C ′, by fusing two fragments, or adding (copying) an atom to a
fragment. GC-DL only adds C ′ to the explored set if ε(C ′) < ε(C), thus it only
explores a small part of the search space. Both algorithms return a cover-based
reformulation with the minimum estimated cost w.r.t. the explored space. When
fusing two fragments into one, or adding an atom to a fragment, ε(C) decreases
if the new fragment is more selective than the fragment(s) it replaces. Therefore,
the RDBMS may find a more efficient way to evaluate the query of this new
fragment, and/or its result may be smaller, making the evaluation of qFOL based
on the new cover C ′ faster.



Fig. 1: (a) Evaluation time for FOL reformulations. (b) Cover search running time.

3 Experimental validation

We implemented our cover-based approach in Java 7, on top of PostgreSQL
v9.3.2. We used the LUBM∃

20 DL-LiteR TBox and associated EUDG data gen-
erator [3]: LUBM∃

20 consists of 34 roles, 128 concepts and 212 constraints; the
generated ABox comprises 15 million facts. We chose RAPID [2] for CQ-to-UCQ
(unions of CQs) reformulation. For ε, we used Postgres’ own estimation, obtained
using the explain directive. We devised a set of 13 CQs, ranging from 2 to 10
atoms (5.77 on average); their UCQ reformulations have 35 to 667 CQs (290.2 on
average).

Figure 1(a) depicts the evaluation time through Postgres, of four FOL refor-
mulations: (i) the UCQ produced by RAPID [2]; (ii) the JUCQ (joins of UCQs)
reformulation based on Croot; (iii) the JUCQ reformulation corresponding to the
best-performing cover found by our algorithm EC-DL, and (iv) the JUCQ refor-
mulation based on the best-performing cover found by GC-DL. First, the figure
shows that fixed FOL reformulations are not efficiently evaluated, e.g., UCQ for
Q1, Q5 and Q9-Q11, and the one based on Croot for Q6-Q8 and Q13. This poor
performance correlates with the large size of the UCQ reformulations: such very
large unions of CQs are very poorly handled by current RDBMS optimizers, which
are designed and tuned for small CQs. Second, the reformulation based on the
cover returned by EC-DL is always more efficient than UCQ reformulation (more
than one order of magnitude for Q5), respectively, Croot-based reformulation (up
to a factor of 230 for Q6). Third, in our experiments, the GC-DL-chosen cover
leads to a JUCQ reformulation as efficient as the EC-DL one, demonstrating that
even a partial, greedy cover search leads to good performance (this cannot be
guaranteed in general). For Q7 and Q9-Q13, the best cover we found is safe; for
all the others, this is not the case, confirming the interest of the larger space Eq.

Figure 1(b) depicts the running time of the EC-DL and GC-DL algorithms,
which can be seen as the overhead of our cover-based technique. The time is very
small, between 2 ms (Q11-Q13, with just 2 atoms) and 221 ms (EC-DL on Q10, of
10 atoms). The time is higher for more complex queries, but these are precisely
the cases where our techniques are most benefficial, e.g., for Q10, EC-DL runs in
less than 2% of the time to evaluate the UCQ reformulation, while the cover we
recommend is more than 4 times faster than UCQ. As expected, GC-DL is faster
than EC-DL due to the exploration of less covers. Together, Figure 1(a) and
1(b) confirm the benefits and practical interest of our cost-based cover search.



Acknowledgements This work has been partially funded by the Programme
Investissement d’Avenir Datalyse project and the ANR PAGODA project.

References

1. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
JAR 39(3), 385–429 (2007)

2. Chortaras, A., Trivela, D., Stamou, G.B.: Optimized query rewriting for OWL 2
QL. In: CADE (2011)

3. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: ISWC. pp. 314–330 (2013)

4. Ono, K., Lohman, G.M.: Measuring the complexity of join enumeration in query
optimization. In: VLDB (1990)

5. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2. In:
ISWC (2009)

6. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR (2010)

7. Venetis, T., Stoilos, G., Stamou, G.B.: Incremental query rewriting for OWL 2 QL.
In: Description Logics (2012)


	Efficient Query Answering in DL-Lite through FOL Reformulation (Extended Abstract)

