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Abstract 
Particle Swarm Optimization (PSO) is a powerful biology-
based optimization search strategy. This paper explores the 
addition of intuition into the PSO algorithm to improve the 
speed and number of iterations required to find solutions to 
the problem. This intuition will be modeled using a fuzzy 
variable called the Hunch Factor. It will act as memory for 
the system and influence the choices of the algorithm. Thus, 
allowing the algorithm to make more human-like decisions.  
This paper is an early exploration into the hunch factor via 
several experiments of the hunch factor with a simple opti-
mization problem. 

 Background   
L. Zadeh introduced the concept of fuzzy logic as an ex-
pansion of Boolean logic in his monumental paper entitled 
“Fuzzy Sets” (Zadeh 1965). Fuzzy logic is a set of rules 
and techniques for dealing with logic beyond a two-value 
(yes/no, on/off, true/false) system. Therefore, fuzzy logic, 
on a basic level, is an abstraction of traditional, two-value 
logic.  Thus, fuzzy logic mimics a more human like ap-
proach to decision making.  Fuzzy logic differs from tradi-
tional mathematical sets because it allows for an overlap of 
values between fuzzy sets. 
 Particle Swarm Optimization (PSO) is considered to be a 
highly successful and widely used problem-solving method 
and a subfield of swarm intelligence (Kennedy and Eber-
hart 2001).  PSO is a biology-based optimization search 
strategy.  It uses multiple independent particles to search 
the solution space of a given optimization problem. In PSO 
each individual particle stores the current candidate solu-
tion and refines the solution during the execution of the al-
gorithm. PSO was based on the social behavior of animals 
and insects that regularly exist in groups. 
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 The hunch factor supplies a human “hunch-like” ele-
ment into the decision-making processes of the PSO algo-
rithm. The hunch factor, represented by a membership 
function, is used to represent the innate ability of the sys-
tem to derive guesses that influence the decisions made by 
the system. Additionally, the hunch acts as a fuzzy learning 
component for the algorithm since the hunch is continually 
altered during PSO execution. The hunch factor was first 
introduced in the author’s dissertation (Coffman-Wolph 
2013). 
 
 
 
 
 
 
 
 
 
 
 
 

 

The PSO Algorithm 
The Particle Swarm Optimization (PSO) algorithm used in 
this paper is based on the original written by Kennedy and 
Eberhart (Kennedy and Eberhart 2001). The algorithm is a 
simple biology-inspired mathematical algorithm containing 
three main functions:  fitness, velocity, and new location. 
Each of the three functions is processed on each particle 
individually until either the number of iterations is com-
plete or a target value is reached. The fitness function de-
termines how “good” the current candidate solution is, the 
velocity function determines the direction and speed the 
particle should head during the next iteration, and the new 
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location function uses the velocity and previous location 
information to find the next candidate solution.  Figure 1 
provides the basic flowchart for the PSO algorithm. 

Particles 
Each particle has the following elements: 
• xi:  A candidate solution 
• vi

old:  Previous calculated velocity 
• pi: Particle’s best solution so far 
• Ni:  List of neighbors 
• pn: Neighbor’s best solution, nεNi 

Fitness Function 
The fitness equation is always problem dependent. Howev-
er, it will always be a method for the evaluation of the can-
didate solution information. The number of variables in the 
equation(s) equals the size of the candidate solution vector. 
Any problem that can be formulated into an optimization 
problem can be used as a fitness function for the PSO. 

Velocity Function 
The velocity function determines both the direction and 
speed the particle should move to form the next candidate 
solution.  The velocity is calculated for each element of the 
candidate solution using the following formula: 

vi = α * vi
old + φ1r()*(pi - xi) + φ2r()*(pn

*
 - xi) 

where: 
• α = Inertia [0,1] 
• φ1 = Learning factor 1 
• φ2 = Learning factor 2 
• [φ1 + φ2 = 4] 
• r() = Random number function [0,1] 

• xi:  Current position/candidate solution of particle i 
• vi

old:  Previous calculated velocity 
• pi: Particle’s best solution so far 
• pn: Neighbor’s best solution, nεNi 

New Location Function 
The new location function updates the particle’s candidate 
solution.  It uses the values calculated by the velocity func-
tion.  The equation can be problem specific.  The general 
equation for finding the new location for particle i is as fol-
lows: 

xi = xi + vi 
where: 
• xi:  Current position/candidate solution of particle i 
• vi:  Calculated velocity 

Nearest Neighbors Calculation 
The nearest neighbors are calculated using the traditional 
distance equation.  The neighbor list is part of the initial 
start up calculations. Additionally, the calculations are re-
run and updated after an iteration of the algorithm (i.e., all 
the particles have been updated). The distance equation is 
as follows: 
distance=   xo-­‐nx0 2+…+  (xn-­‐nxn)2  

where: 
• xi:  Current position/candidate solution of particle i 
• nxi:  Current position/candidate solution of neighbor par-
ticle ni 

The Hunch Factor 
As stated earlier the hunch factor is represented by a mem-
bership function. It is used to represent the innate ability of 
the system to derive guesses that influence the decisions 
made by an algorithm. The hunch provides memory for the 
system and acts as a learning element. The hunch member-
ship function is updated during runtime with information 
gained during the run of the algorithm. Specifically for the 
PSO, the hunch will be updated for every particle each it-
eration of the algorithm. 
 The hunch factor will be applied directly to the velocity 
function and, thus, influence the values of the next candi-
date solution.  Basically, the hunch factor will be an addi-
tional factor to the direction and speed the particle will 
move in based on previous history of either the particle 
and/or all the particles (depending on the experiment set). 

Figure 2: Initial Hunch Factor 

Hunch Factor Representation 
The hunch factor is stored as a fuzzy value and represented 
by a membership function.  For simplicity, the hunch fac-
tor will be represented by a triangle membership function 
for these experiments.  It is a fuzzy value and will be treat-
ed as such (i.e., storage and manipulation) during the exe-
cution of the algorithm.  The hunch factor will be defuzzi-
fied and applied to the non-fuzzy velocity function calcula-
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tion.  (Defuzzification, in this case, will be based on the 
center of mass for the membership function). 
 To illustrate this concept, we can compare this to the 
childhood game of hot and cold.  A group of players are at-
tempting to find an object within a given room based on a 
leader calling out hot and cold to various players as they 
move around the room.  The players begin by wanding 
around the room at random.  As a player get positive 
reinforcement (i.e., warmer) they move in that postive 
direction until they get negative reinforcement (i.e., colder) 
and they change their path.  The hunch factor is the 
accumulation of the warmer and colder clues received 
throughout the game and, thus, use the entire history 
instead of just the previous limited information.  The hunch 
factor assists in speeding up the processes to finding the 
correct solution. 

Hunch Factor Manipulation 
After each iteration of the PSO algorithm and for each par-
ticle, the difference between the old fitness value and the 
new fitness value is used to alter the hunch accordingly.  If 
the new fitness value is greater than the old fitness value, 
then the hunch is altered in a positive manner - the width of 
the membership function is decreased and the height in-
creased.  If the new fitness value is less than the old value, 
then the opposite changes are made to the hunch.  The 
magnitude of the difference between the values is also tak-
en into consideration. 

The Velocity Function with Hunch Factor 
As stated, the hunch factor is applied to the velocity func-
tion.  This allows the hunch factor to alter the speed and di-
rection of the particle.  The velocity function is, therefore, 
altered slightly from the original provided in the PSO algo-
rithm.  The following shows the altered velocity formula: 

vi = h * α * vi
old + (φ1r()*(pi - xi) + φ2r()*(pn

*
 - xi)) 

where: 
• h = hunch factor value 
• α = Inertia [0,1] 
• φ1 = Learning factor 1 
• φ2 = Learning factor 2 
• [φ1 + φ2 = 4] 
• r() = Random number function [0,1] 

• xi:  Current position/candidate solution of particle i 
• vi

old:  Previous calculated velocity 
• pi: Particle’s best solution so far 
• pn: Neighbor’s best solution, nεNi 

Experiments 
In this paper, several hunch factor experiments will be car-
ried out.  One set of experiments will be focused on the 
number of hunch factors considered: one global hunch fac-
tor vs. a hunch factor specific to an individual particle.  
Another set of experiments will focus on the level of influ-
ence the hunch factor has on the velocity function.  The fi-
nal set of experiments will focus on the manipulation of the 
hunch factor during the runtime of the function. 

Experiment #1: Number of Hunch Factors 
As mentioned in an earlier section, the preliminary hunch 
research began in the author’s dissertation (Coffman-
Wolph 2013).  In this work, a single global hunch factor 
was maintained for the system.  This simple hunch factor 
showed some promise in positively influencing the system.  
This first experiment directly expands on the original ex-
periment.  Thus, experiment #1 will compare the results of 
having a global hunch factor for the system with individual 
hunch factors associated with specific particles.  The 
membership functions will be constant and the update 
methods will be exactly the same, just the number of hunch 
factors will be different. 

Experiment #2: Hunch Factor and Velocity 
The hunch factor is applied directly to the velocity equa-
tion calculation.  Initially, the hunch factor is simply ap-
plied to the velocity as an additional factor.  In this exper-
iment the hunch factor will be applied at various partial 
levels and compared directly to the unaltered full hunch 
application.  Additionally, the hunch factor will be moved 
from the first term of the velocity equation (i.e., the old ve-
locity or the old information) to the second and third terms 
of the velocity equation (i.e., the best solutions seen by the 
particle and neighboring particles or the new information) 
to observe the effects. 

Experiment #3: Hunch Factor Manipulation 
The final set of experiments will focus on the manipulation 
of the hunch factor.  In the first two experiments, the hunch 
factor will be manipulated in a very simple manner.  If the 
fitness value improves, the hunch factor height will be in-
creased by 25 percent and width be decreased by 10 per-
cent.  If the fitness value does not improve, the hunch fac-
tor height will be decreased by 25 percent and width in-
creased by 10 percent. 
 In experiment #3 the hunch factor height and width will 
be increased/decreased using various percentages.  Also, 
the positive and negative influences will not remain con-
sistent (i.e., more “punishment” for wrong, less “reward” 
for correct).  The combinations that will be tried are as fol-
lows: 



• Height and width 10% increase/decrease 
• Height 10% increase when correct, 20% decrease when 
incorrect, width 10% increase/decrease 
• Height and width 10% increase when correct, 20% de-
crease when incorrect 
• Height 20% increase when correct, 10% decrease when 
incorrect, width 10% increase/decrease 
• Height and width 20% increase when correct, 10% de-
crease when incorrect 

Testing Problem 
For demonstration purposes in this paper, a simple optimi-
zation problem is used.  This problem is defined as follows 
(Hillier and Lieberman 1990): 

Maximize Z = 2x0 * x1 + 2x1 – x0
2 – 2x1

2 
  where x0 and x1 ≥ 0 

Testing Environment 
The programming code for the PSO was written in Java.  
The testing environment is as follows:  Eclipse SDK 4.2.1 
using Java version 1.6 on a MacBook Pro running OS X 
version 10.8.2 with 3 GHz Intel Core i7. 

Results 
The following sections cover the results of the three exper-
iments outlined in detail earlier in this paper.  Experiment 
#1 dealt with the difference between having a single global 
hunch factor versus a hunch factor tailored to each particle. 
Experiment #2 dealt with how the hunch factor was ap-
plied to the velocity equation. Experiment #3 explored var-
ious manipulations of the hunch factor during runtime. 

Data Collected 
The following data was collected during various runs for 
all three experiments with the simple optimization problem 
provided earlier. 
 

100 particles, 1000 iterations 

 
Time Fitness 

PSO 1124 0.8542 
PSO, Hunch New 1162 0.8669 
PSO, Hunch Old 1140 0.9777 
PSO, Multi Hunch 1060 0.8778 

Figure 3: Data for 100 particles, 1000 iterations 
 
 
 

100 particles, 2000 iterations 

 
Time Fitness 

PSO 2233 0.8576 
PSO, Hunch New 2381 0.8850 
PSO, Hunch Old 2246 0.9806 
PSO, Multi Hunch 2209 0.9199 

Figure 4: Data for 100 particles, 2000 iterations 
 

100 particles, 3000 iterations 

 
Time Fitness 

PSO 3328 0.9690 
PSO, Hunch New 3362 0.7806 
PSO, Hunch Old 3350 0.9636 
PSO, Multi Hunch 3225 0.9309 

Figure 5: Data for 100 particles, 3000 iterations 
 

100 particles, 4000 iterations 

 
Time Fitness 

PSO 4507 0.9629 
PSO, Hunch New 4642 0.9392 
PSO, Hunch Old 4659 0.9513 
PSO, Multi Hunch 4222 0.9140 

Figure 5: Data for 100 particles, 4000 iterations 
 

200 particles, 1000 iterations 

 
Time Fitness 

PSO 6639 0.9236 
PSO, Hunch New 6794 0.9376 
PSO, Hunch Old 6748 0.9203 
PSO, Multi Hunch 6369 0.9012 

Figure 6: Data for 200 particles, 1000 iterations 
 

300 particles, 1000 iterations 

 
Time Fitness 

PSO 21070 0.9274 
PSO, Hunch New 20780 0.9706 

PSO, Hunch Old 21060 0.9600 

PSO, Multi Hunch 20154 0.9480 
 Figure 7: Data for 300 particles, 1000 iterations 

 
 
 
 
 



 
100, 1000 100, 4000 

Percentage (%) Fitness Fitness 
10 0.9837 0.958 
20 0.8941 0.9697 
30 0.9641 0.9259 
40 0.9870 0.9300 
50 0.9152 0.9855 
60 0.9223 0.8685 
70 0.8756 0.9399 
80 0.9535 0.9560 
90 0.9541 0.9390 

100 0.9777 0.9513 
Figure 8: Data for Hunch % Applied 

 

Set Up 
PSO Fit-
ness 

PSO 
Hunch Old 

PSO 
Hunch 
New 

100 p, 1000 it 0.8542 0.9777 0.8669 
100 p, 2000 it 0.8576 0.9806 0.8850 
100 p, 3000 it 0.9690 0.9636 0.7806 
100 p, 4000 it 0.9629 0.9513 0.9392 

Figure 9: Data for Hunch Placement 
 

Set Up 
PSO Fit-
ness 

PSO 
Hunch Old 

PSO 
Hunch 
New 

100 p, 1000 it 0.8542 0.9777 0.8669 
200 p, 1000 it 0.9236 0.9203 0.9376 
300 p, 1000 it 0.9274 0.9600 0.9706 

Figure 10: Data for Hunch Placement 
 

Itera-
tions 

Nor-
mal 

Case 
#1 

Case 
#2 

Case 
#3 

Case 
#4 

Case 
#5 

1000 0.9777 0.9210 0.9282 0.9401 0.9659 0.9919 

2000 0.9806 0.9797 0.9683 0.7785 0.9871 0.9492 

3000 0.9636 0.9817 0.9535 0.9362 0.9684 0.9455 

4000 0.9513 0.9786 0.9759 0.9314 0.9856 0.9456 
Figure 11: Data for Hunch Test Cases 

Experiment #1 Results: Number of Hunch Factors 
As stated earlier, experiment #1’s focus was to compare 
the effects of having one global hunch factor for the PSO 
verses having a hunch factor for each particle.  The follow-
ing diagrams demonstrate the various results found for 
each test problem and various test cases (i.e., various parti-
cle and iteration sizes). 

 The analysis of the results begins by focusing on in-
creasing the number of iterations.  Figure 12 shows that 
there was negligible difference in execution time for just 
the PSO, the PSO with one hunch factor, and the PSO with 
a separate hunch factors for each particle.  Figure 13 shows 
the average fitness values found for the PSO, the PSO with 
1 hunch factor, and the PSO with a separate hunch factor 
for each particle. 
 As can be observed in Figure 12, when dealing with the 
standard PSO, as the number of iterations increases, the 
fitness value improves.  However, when the global hunch 
factor is added to the PSO system, the hunch performs ex-
tremely well at lower iterations and becomes un-effective 
as the number of iterations increases.  The system with in-
dividual hunch factors for each particle follows a pattern 
similar to the standard PSO system, but also demonstrates 
a performance issue with high iterations similar to the 
global hunch PSO system.  However, it should be observed 
that both systems with the hunch outperformed the stand-
ard PSO in terms of fitness at low iteration values. 
 Figure 14 and Figure 15 demonstrate the effects of the 
number of hunch factors as the number of particles in-
creases (while the number of iterations is held constant).  
Figure 14 (as with Figure 6) shows that the execution time 
is negligibly affected by the addition of the hunch into the 
system.  Figure 15 illustrates the changes in the fitness val-
ue with the addition of the hunch.  It can be observed, that 
overall the hunch (single global or multiple) is less effec-
tive as the number of particles increases.  However, at low 
number of iterations, either system with the hunch out per-
forms the standard PSO. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Comparison of Execution Time (Time in 
Milliseconds vs. Iterations in 1000s) 

Experiment #2 Results: Hunch Factor and Veloci-
ty 
Experiment #2 consists of two experiments.  The first ex-
periment is the level (i.e., percentage) of effect the hunch 
has on the velocity function.  Figures 16 and 17 illustrate 
the results of these different levels.  The second experiment 
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focuses on the difference between applying the hunch to 
the “old information” vs. the “new information” and can be 
observed in Figures 18 and 19. 
 

 

 

 

 
 
 

Figure 13: Comparison of Fitness Values (Fitness 
Value vs. Iterations in 1000s) 

 

Figure 14: Comparison of Execution Time (Time in 
Milliseconds vs. Particles in 100s) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Comparison of Fitness Values (Fitness 
Value vs. Particles in 100s) 

 
Applying only a percentage of the hunch into the velocity 
calculation had interesting results as seen in Figures 16 and 
17.  The “normal” mode was 100% (i.e., the point on the 
far right).  Applying only a portion of the hunch was suc-
cessful in the runs of 1000 and 4000 iterations.  Middle 

ranges of the hunch were overall not successful.  However, 
high percentages of the hunch were successful in both 
1000 and 4000 iterations. 
 

 
Figure 16: Hunch Percentage Applied - 100 parti-
cles, 1000 iterations (Fitness Value vs. Hunch Per-
centage) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Hunch Percentage Applied - 100 parti-
cles, 4000 iterations (Fitness Value vs. Hunch Per-
centage)  
 
 
 
 
 
 
 
 
 
 
 
Figure 18: Hunch Applied Old Information (Fitness 
Value vs. Iterations in 1000s) 
 

From Figures 18 and 19, it can be observed that the ap-
plication of the hunch to either the old information or new 
information has very little effect on the fitness values 
found as the iteration size increased.  However, as Figure 
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19 illustrates, the term of the velocity equation where the 
hunch was applied affects the results as the number of par-
ticles increases.  The hunch on the new information match-
es the pattern for the PSO without the hunch.  Overall the 
hunch being applied to the old information produces better 
fitness values.  

 

 

 

 

 

 

Figure 19: Hunch Applied New Information (Fitness 
Value vs. Particles in 100s) 

Experiment #3 Results: Hunch Factor Manipula-
tion 
Experiment #3 consisted of 5 test cases of various manipu-
lations of the hunch factor.  The test cases are as follows: 
• Case #1: Height and width 10% increase/decrease 
• Case #2: Height 10% increase when correct, 20% de-
crease when incorrect, width 10% increase/decrease 
• Case #3: Height and width 10% increase when correct, 
20% decrease when incorrect 
• Case #4: Height 20% increase when correct, 10% de-
crease when incorrect, width 10% increase/decrease 
• Case #5: Height and width 20% increase when correct, 
10% decrease when incorrect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Hunch Test Cases (Fitness Value vs. It-
erations) 
 
Figure 20 illustrates (using the data from Figure 11) the 
fitness value that resulted from the various test cases. As 

can be observed in Figure 21, of the 5 test cases, one test 
case stood out: #4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: Hunch Test Case #4 (Fitness Value vs. It-
erations) 
 
Test case #4:  Height 20% increase when correct, 10% de-
crease when incorrect, width 10% increase/decrease.  This 
test case used positive reinforcement.  When the particle 
was moving in the correct direction, the hunch was in-
creased more.  However, if it was moving in an incorrect 
direction, less hunch manipulation occurred (i.e., less pun-
ishment).   

Discussion and Concluding Remarks 
The hunch factor has been shown in the experiment results 
of the previous section to have promise.  These are simply 
the preliminary and exploratory results using a very simple 
optimization problem. The hunch factor works extremely 
well with smaller number of particles and fewer iterations.  
The hunch factor, is thus, best suited for assisting particles 
in finding the general area within the search space.  (The 
hunch factor has either no effect or slight negative effect 
when honing in on a solution).  Thus, the hunch could pos-
sibly make an excellent addition to an algorithm designed 
to find “good” starting points for other optimization algo-
rithms that require such starting points. 
 Additionally, it can be observed that the hunch factor 
should be applied to the portion of the velocity function 
that contains the previous information.  It would be helpful 
to use either the full hunch factor or a fraction of the hunch 
factor when determining the velocity and, thus, the next 
possible solution.  The single global hunch should be ma-
nipulated using positive reinforcement. 

Future Work 
The work done in this paper focuses on a specific optimi-
zation problem and provides only the beginning of explora-
tion into the use of the hunch.  Given these preliminary re-
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sults, the next step would be to expand to other problem 
sets – with larger and more varied problems.  Although the 
extra computation for the hunch factor is small and should 
not cause a hindrance when expanding to larger problems, 
more experimentation is needed to verify that conclusion.  
Additionally, it would be interesting to experiment further 
with various membership functions and not just a simple 
triangle membership function for the hunch factor repre-
sentation.  Another step would be to move to a completely 
fuzzy algorithm version of the PSO (Coffman-Wolph 
2013a and Coffman-Wolph 2013b) and run these same ex-
periments with the hunch factor.  The hunch factor showed 
great promise when using a small numbers of particles and 
less iterations – something that could be further explored.  
In particular the application of using the hunch factor when 
trying to find starting points for other optimization algo-
rithms. 
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