

The Hunch Factor: Exploration into Using Fuzzy Logic
to Model Intuition in Particle Swarm Optimization

Stephany Coffman-Wolph
West Virginia University Institute of Technology

405 Fayette Pike, Montgomery, West Virginia 25136
sscoffmanwolph@mail.wvu.edu

Abstract
Particle Swarm Optimization (PSO) is a powerful biology-
based optimization search strategy. This paper explores the
addition of intuition into the PSO algorithm to improve the
speed and number of iterations required to find solutions to
the problem. This intuition will be modeled using a fuzzy
variable called the Hunch Factor. It will act as memory for
the system and influence the choices of the algorithm. Thus,
allowing the algorithm to make more human-like decisions.
This paper is an early exploration into the hunch factor via
several experiments of the hunch factor with a simple opti-
mization problem.

 Background
L. Zadeh introduced the concept of fuzzy logic as an ex-
pansion of Boolean logic in his monumental paper entitled
“Fuzzy Sets” (Zadeh 1965). Fuzzy logic is a set of rules
and techniques for dealing with logic beyond a two-value
(yes/no, on/off, true/false) system. Therefore, fuzzy logic,
on a basic level, is an abstraction of traditional, two-value
logic. Thus, fuzzy logic mimics a more human like ap-
proach to decision making. Fuzzy logic differs from tradi-
tional mathematical sets because it allows for an overlap of
values between fuzzy sets.
 Particle Swarm Optimization (PSO) is considered to be a
highly successful and widely used problem-solving method
and a subfield of swarm intelligence (Kennedy and Eber-
hart 2001). PSO is a biology-based optimization search
strategy. It uses multiple independent particles to search
the solution space of a given optimization problem. In PSO
each individual particle stores the current candidate solu-
tion and refines the solution during the execution of the al-
gorithm. PSO was based on the social behavior of animals
and insects that regularly exist in groups.

Copyright held by the author.

 The hunch factor supplies a human “hunch-like” ele-
ment into the decision-making processes of the PSO algo-
rithm. The hunch factor, represented by a membership
function, is used to represent the innate ability of the sys-
tem to derive guesses that influence the decisions made by
the system. Additionally, the hunch acts as a fuzzy learning
component for the algorithm since the hunch is continually
altered during PSO execution. The hunch factor was first
introduced in the author’s dissertation (Coffman-Wolph
2013).

The PSO Algorithm
The Particle Swarm Optimization (PSO) algorithm used in
this paper is based on the original written by Kennedy and
Eberhart (Kennedy and Eberhart 2001). The algorithm is a
simple biology-inspired mathematical algorithm containing
three main functions: fitness, velocity, and new location.
Each of the three functions is processed on each particle
individually until either the number of iterations is com-
plete or a target value is reached. The fitness function de-
termines how “good” the current candidate solution is, the
velocity function determines the direction and speed the
particle should head during the next iteration, and the new

Particle Definition
of particles
of iterations

Init Particles

Find Neighbors

Init Best

PSO

Velocity

New Location

Fitness

Update Neighbors

Update Best

Best
Global

Solution

Figure 1: PSO Flowchart

location function uses the velocity and previous location
information to find the next candidate solution. Figure 1
provides the basic flowchart for the PSO algorithm.

Particles
Each particle has the following elements:
• xi: A candidate solution
• vi

old: Previous calculated velocity
• pi: Particle’s best solution so far
• Ni: List of neighbors
• pn: Neighbor’s best solution, nεNi

Fitness Function
The fitness equation is always problem dependent. Howev-
er, it will always be a method for the evaluation of the can-
didate solution information. The number of variables in the
equation(s) equals the size of the candidate solution vector.
Any problem that can be formulated into an optimization
problem can be used as a fitness function for the PSO.

Velocity Function
The velocity function determines both the direction and
speed the particle should move to form the next candidate
solution. The velocity is calculated for each element of the
candidate solution using the following formula:

vi = α * vi
old + φ1r()*(pi - xi) + φ2r()*(pn

*
 - xi)

where:
• α = Inertia [0,1]
• φ1 = Learning factor 1
• φ2 = Learning factor 2
• [φ1 + φ2 = 4]
• r() = Random number function [0,1]

• xi: Current position/candidate solution of particle i
• vi

old: Previous calculated velocity
• pi: Particle’s best solution so far
• pn: Neighbor’s best solution, nεNi

New Location Function
The new location function updates the particle’s candidate
solution. It uses the values calculated by the velocity func-
tion. The equation can be problem specific. The general
equation for finding the new location for particle i is as fol-
lows:

xi = xi + vi
where:
• xi: Current position/candidate solution of particle i
• vi: Calculated velocity

Nearest Neighbors Calculation
The nearest neighbors are calculated using the traditional
distance equation. The neighbor list is part of the initial
start up calculations. Additionally, the calculations are re-
run and updated after an iteration of the algorithm (i.e., all
the particles have been updated). The distance equation is
as follows:
distance= xo-­‐nx0 2+…+ (xn-­‐nxn)2

where:
• xi: Current position/candidate solution of particle i
• nxi: Current position/candidate solution of neighbor par-
ticle ni

The Hunch Factor
As stated earlier the hunch factor is represented by a mem-
bership function. It is used to represent the innate ability of
the system to derive guesses that influence the decisions
made by an algorithm. The hunch provides memory for the
system and acts as a learning element. The hunch member-
ship function is updated during runtime with information
gained during the run of the algorithm. Specifically for the
PSO, the hunch will be updated for every particle each it-
eration of the algorithm.
 The hunch factor will be applied directly to the velocity
function and, thus, influence the values of the next candi-
date solution. Basically, the hunch factor will be an addi-
tional factor to the direction and speed the particle will
move in based on previous history of either the particle
and/or all the particles (depending on the experiment set).

Figure 2: Initial Hunch Factor

Hunch Factor Representation
The hunch factor is stored as a fuzzy value and represented
by a membership function. For simplicity, the hunch fac-
tor will be represented by a triangle membership function
for these experiments. It is a fuzzy value and will be treat-
ed as such (i.e., storage and manipulation) during the exe-
cution of the algorithm. The hunch factor will be defuzzi-
fied and applied to the non-fuzzy velocity function calcula-

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0	
 0.5	
 1	

tion. (Defuzzification, in this case, will be based on the
center of mass for the membership function).
 To illustrate this concept, we can compare this to the
childhood game of hot and cold. A group of players are at-
tempting to find an object within a given room based on a
leader calling out hot and cold to various players as they
move around the room. The players begin by wanding
around the room at random. As a player get positive
reinforcement (i.e., warmer) they move in that postive
direction until they get negative reinforcement (i.e., colder)
and they change their path. The hunch factor is the
accumulation of the warmer and colder clues received
throughout the game and, thus, use the entire history
instead of just the previous limited information. The hunch
factor assists in speeding up the processes to finding the
correct solution.

Hunch Factor Manipulation
After each iteration of the PSO algorithm and for each par-
ticle, the difference between the old fitness value and the
new fitness value is used to alter the hunch accordingly. If
the new fitness value is greater than the old fitness value,
then the hunch is altered in a positive manner - the width of
the membership function is decreased and the height in-
creased. If the new fitness value is less than the old value,
then the opposite changes are made to the hunch. The
magnitude of the difference between the values is also tak-
en into consideration.

The Velocity Function with Hunch Factor
As stated, the hunch factor is applied to the velocity func-
tion. This allows the hunch factor to alter the speed and di-
rection of the particle. The velocity function is, therefore,
altered slightly from the original provided in the PSO algo-
rithm. The following shows the altered velocity formula:

vi = h * α * vi
old + (φ1r()*(pi - xi) + φ2r()*(pn

*
 - xi))

where:
• h = hunch factor value
• α = Inertia [0,1]
• φ1 = Learning factor 1
• φ2 = Learning factor 2
• [φ1 + φ2 = 4]
• r() = Random number function [0,1]

• xi: Current position/candidate solution of particle i
• vi

old: Previous calculated velocity
• pi: Particle’s best solution so far
• pn: Neighbor’s best solution, nεNi

Experiments
In this paper, several hunch factor experiments will be car-
ried out. One set of experiments will be focused on the
number of hunch factors considered: one global hunch fac-
tor vs. a hunch factor specific to an individual particle.
Another set of experiments will focus on the level of influ-
ence the hunch factor has on the velocity function. The fi-
nal set of experiments will focus on the manipulation of the
hunch factor during the runtime of the function.

Experiment #1: Number of Hunch Factors
As mentioned in an earlier section, the preliminary hunch
research began in the author’s dissertation (Coffman-
Wolph 2013). In this work, a single global hunch factor
was maintained for the system. This simple hunch factor
showed some promise in positively influencing the system.
This first experiment directly expands on the original ex-
periment. Thus, experiment #1 will compare the results of
having a global hunch factor for the system with individual
hunch factors associated with specific particles. The
membership functions will be constant and the update
methods will be exactly the same, just the number of hunch
factors will be different.

Experiment #2: Hunch Factor and Velocity
The hunch factor is applied directly to the velocity equa-
tion calculation. Initially, the hunch factor is simply ap-
plied to the velocity as an additional factor. In this exper-
iment the hunch factor will be applied at various partial
levels and compared directly to the unaltered full hunch
application. Additionally, the hunch factor will be moved
from the first term of the velocity equation (i.e., the old ve-
locity or the old information) to the second and third terms
of the velocity equation (i.e., the best solutions seen by the
particle and neighboring particles or the new information)
to observe the effects.

Experiment #3: Hunch Factor Manipulation
The final set of experiments will focus on the manipulation
of the hunch factor. In the first two experiments, the hunch
factor will be manipulated in a very simple manner. If the
fitness value improves, the hunch factor height will be in-
creased by 25 percent and width be decreased by 10 per-
cent. If the fitness value does not improve, the hunch fac-
tor height will be decreased by 25 percent and width in-
creased by 10 percent.
 In experiment #3 the hunch factor height and width will
be increased/decreased using various percentages. Also,
the positive and negative influences will not remain con-
sistent (i.e., more “punishment” for wrong, less “reward”
for correct). The combinations that will be tried are as fol-
lows:

• Height and width 10% increase/decrease
• Height 10% increase when correct, 20% decrease when
incorrect, width 10% increase/decrease
• Height and width 10% increase when correct, 20% de-
crease when incorrect
• Height 20% increase when correct, 10% decrease when
incorrect, width 10% increase/decrease
• Height and width 20% increase when correct, 10% de-
crease when incorrect

Testing Problem
For demonstration purposes in this paper, a simple optimi-
zation problem is used. This problem is defined as follows
(Hillier and Lieberman 1990):

Maximize Z = 2x0 * x1 + 2x1 – x0
2 – 2x1

2
 where x0 and x1 ≥ 0

Testing Environment
The programming code for the PSO was written in Java.
The testing environment is as follows: Eclipse SDK 4.2.1
using Java version 1.6 on a MacBook Pro running OS X
version 10.8.2 with 3 GHz Intel Core i7.

Results
The following sections cover the results of the three exper-
iments outlined in detail earlier in this paper. Experiment
#1 dealt with the difference between having a single global
hunch factor versus a hunch factor tailored to each particle.
Experiment #2 dealt with how the hunch factor was ap-
plied to the velocity equation. Experiment #3 explored var-
ious manipulations of the hunch factor during runtime.

Data Collected
The following data was collected during various runs for
all three experiments with the simple optimization problem
provided earlier.

100 particles, 1000 iterations

Time Fitness

PSO 1124 0.8542
PSO, Hunch New 1162 0.8669
PSO, Hunch Old 1140 0.9777
PSO, Multi Hunch 1060 0.8778

Figure 3: Data for 100 particles, 1000 iterations

100 particles, 2000 iterations

Time Fitness

PSO 2233 0.8576
PSO, Hunch New 2381 0.8850
PSO, Hunch Old 2246 0.9806
PSO, Multi Hunch 2209 0.9199

Figure 4: Data for 100 particles, 2000 iterations

100 particles, 3000 iterations

Time Fitness

PSO 3328 0.9690
PSO, Hunch New 3362 0.7806
PSO, Hunch Old 3350 0.9636
PSO, Multi Hunch 3225 0.9309

Figure 5: Data for 100 particles, 3000 iterations

100 particles, 4000 iterations

Time Fitness

PSO 4507 0.9629
PSO, Hunch New 4642 0.9392
PSO, Hunch Old 4659 0.9513
PSO, Multi Hunch 4222 0.9140

Figure 5: Data for 100 particles, 4000 iterations

200 particles, 1000 iterations

Time Fitness

PSO 6639 0.9236
PSO, Hunch New 6794 0.9376
PSO, Hunch Old 6748 0.9203
PSO, Multi Hunch 6369 0.9012

Figure 6: Data for 200 particles, 1000 iterations

300 particles, 1000 iterations

Time Fitness

PSO 21070 0.9274
PSO, Hunch New 20780 0.9706

PSO, Hunch Old 21060 0.9600

PSO, Multi Hunch 20154 0.9480
 Figure 7: Data for 300 particles, 1000 iterations

100, 1000 100, 4000

Percentage (%) Fitness Fitness
10 0.9837 0.958
20 0.8941 0.9697
30 0.9641 0.9259
40 0.9870 0.9300
50 0.9152 0.9855
60 0.9223 0.8685
70 0.8756 0.9399
80 0.9535 0.9560
90 0.9541 0.9390

100 0.9777 0.9513
Figure 8: Data for Hunch % Applied

Set Up
PSO Fit-
ness

PSO
Hunch Old

PSO
Hunch
New

100 p, 1000 it 0.8542 0.9777 0.8669
100 p, 2000 it 0.8576 0.9806 0.8850
100 p, 3000 it 0.9690 0.9636 0.7806
100 p, 4000 it 0.9629 0.9513 0.9392

Figure 9: Data for Hunch Placement

Set Up
PSO Fit-
ness

PSO
Hunch Old

PSO
Hunch
New

100 p, 1000 it 0.8542 0.9777 0.8669
200 p, 1000 it 0.9236 0.9203 0.9376
300 p, 1000 it 0.9274 0.9600 0.9706

Figure 10: Data for Hunch Placement

Itera-
tions

Nor-
mal

Case
#1

Case
#2

Case
#3

Case
#4

Case
#5

1000 0.9777 0.9210 0.9282 0.9401 0.9659 0.9919

2000 0.9806 0.9797 0.9683 0.7785 0.9871 0.9492

3000 0.9636 0.9817 0.9535 0.9362 0.9684 0.9455

4000 0.9513 0.9786 0.9759 0.9314 0.9856 0.9456
Figure 11: Data for Hunch Test Cases

Experiment #1 Results: Number of Hunch Factors
As stated earlier, experiment #1’s focus was to compare
the effects of having one global hunch factor for the PSO
verses having a hunch factor for each particle. The follow-
ing diagrams demonstrate the various results found for
each test problem and various test cases (i.e., various parti-
cle and iteration sizes).

 The analysis of the results begins by focusing on in-
creasing the number of iterations. Figure 12 shows that
there was negligible difference in execution time for just
the PSO, the PSO with one hunch factor, and the PSO with
a separate hunch factors for each particle. Figure 13 shows
the average fitness values found for the PSO, the PSO with
1 hunch factor, and the PSO with a separate hunch factor
for each particle.
 As can be observed in Figure 12, when dealing with the
standard PSO, as the number of iterations increases, the
fitness value improves. However, when the global hunch
factor is added to the PSO system, the hunch performs ex-
tremely well at lower iterations and becomes un-effective
as the number of iterations increases. The system with in-
dividual hunch factors for each particle follows a pattern
similar to the standard PSO system, but also demonstrates
a performance issue with high iterations similar to the
global hunch PSO system. However, it should be observed
that both systems with the hunch outperformed the stand-
ard PSO in terms of fitness at low iteration values.
 Figure 14 and Figure 15 demonstrate the effects of the
number of hunch factors as the number of particles in-
creases (while the number of iterations is held constant).
Figure 14 (as with Figure 6) shows that the execution time
is negligibly affected by the addition of the hunch into the
system. Figure 15 illustrates the changes in the fitness val-
ue with the addition of the hunch. It can be observed, that
overall the hunch (single global or multiple) is less effec-
tive as the number of particles increases. However, at low
number of iterations, either system with the hunch out per-
forms the standard PSO.

Figure 12: Comparison of Execution Time (Time in
Milliseconds vs. Iterations in 1000s)

Experiment #2 Results: Hunch Factor and Veloci-
ty
Experiment #2 consists of two experiments. The first ex-
periment is the level (i.e., percentage) of effect the hunch
has on the velocity function. Figures 16 and 17 illustrate
the results of these different levels. The second experiment

0"
500"

1000"
1500"
2000"
2500"
3000"
3500"
4000"
4500"
5000"

0" 1" 2" 3" 4" 5"

PSO"Time""

PSO"1"Hunch"

PSO"Mul6"Hunch"

focuses on the difference between applying the hunch to
the “old information” vs. the “new information” and can be
observed in Figures 18 and 19.

Figure 13: Comparison of Fitness Values (Fitness
Value vs. Iterations in 1000s)

Figure 14: Comparison of Execution Time (Time in
Milliseconds vs. Particles in 100s)

Figure 15: Comparison of Fitness Values (Fitness
Value vs. Particles in 100s)

Applying only a percentage of the hunch into the velocity
calculation had interesting results as seen in Figures 16 and
17. The “normal” mode was 100% (i.e., the point on the
far right). Applying only a portion of the hunch was suc-
cessful in the runs of 1000 and 4000 iterations. Middle

ranges of the hunch were overall not successful. However,
high percentages of the hunch were successful in both
1000 and 4000 iterations.

Figure 16: Hunch Percentage Applied - 100 parti-
cles, 1000 iterations (Fitness Value vs. Hunch Per-
centage)

Figure 17: Hunch Percentage Applied - 100 parti-
cles, 4000 iterations (Fitness Value vs. Hunch Per-
centage)

Figure 18: Hunch Applied Old Information (Fitness
Value vs. Iterations in 1000s)

From Figures 18 and 19, it can be observed that the ap-
plication of the hunch to either the old information or new
information has very little effect on the fitness values
found as the iteration size increased. However, as Figure

0"

5000"

10000"

15000"

20000"

25000"

0" 1" 2" 3" 4"

100"p,"1000"it"

200"p,"1000"it"

300"p,"1000"it"

0.86%

0.88%

0.9%

0.92%

0.94%

0.96%

0.98%

1%

0% 20% 40% 60% 80% 100% 120%

0.84%

0.86%

0.88%

0.9%

0.92%

0.94%

0.96%

0.98%

1%

0% 1% 2% 3% 4% 5%

PSO%Fitness%

PSO%1%Hunch%

PSO%Mul;%Hunch%

0.84%

0.86%

0.88%

0.9%

0.92%

0.94%

0.96%

0.98%

1%

0% 1% 2% 3% 4%

100%p,%1000%it%

200%p,%1000%it%

300%p,%1000%it%

0.86%

0.88%

0.9%

0.92%

0.94%

0.96%

0.98%

1%

0% 20% 40% 60% 80% 100% 120%

19 illustrates, the term of the velocity equation where the
hunch was applied affects the results as the number of par-
ticles increases. The hunch on the new information match-
es the pattern for the PSO without the hunch. Overall the
hunch being applied to the old information produces better
fitness values.

Figure 19: Hunch Applied New Information (Fitness
Value vs. Particles in 100s)

Experiment #3 Results: Hunch Factor Manipula-
tion
Experiment #3 consisted of 5 test cases of various manipu-
lations of the hunch factor. The test cases are as follows:
• Case #1: Height and width 10% increase/decrease
• Case #2: Height 10% increase when correct, 20% de-
crease when incorrect, width 10% increase/decrease
• Case #3: Height and width 10% increase when correct,
20% decrease when incorrect
• Case #4: Height 20% increase when correct, 10% de-
crease when incorrect, width 10% increase/decrease
• Case #5: Height and width 20% increase when correct,
10% decrease when incorrect

Figure 20: Hunch Test Cases (Fitness Value vs. It-
erations)

Figure 20 illustrates (using the data from Figure 11) the
fitness value that resulted from the various test cases. As

can be observed in Figure 21, of the 5 test cases, one test
case stood out: #4.

Figure 21: Hunch Test Case #4 (Fitness Value vs. It-
erations)

Test case #4: Height 20% increase when correct, 10% de-
crease when incorrect, width 10% increase/decrease. This
test case used positive reinforcement. When the particle
was moving in the correct direction, the hunch was in-
creased more. However, if it was moving in an incorrect
direction, less hunch manipulation occurred (i.e., less pun-
ishment).

Discussion and Concluding Remarks
The hunch factor has been shown in the experiment results
of the previous section to have promise. These are simply
the preliminary and exploratory results using a very simple
optimization problem. The hunch factor works extremely
well with smaller number of particles and fewer iterations.
The hunch factor, is thus, best suited for assisting particles
in finding the general area within the search space. (The
hunch factor has either no effect or slight negative effect
when honing in on a solution). Thus, the hunch could pos-
sibly make an excellent addition to an algorithm designed
to find “good” starting points for other optimization algo-
rithms that require such starting points.
 Additionally, it can be observed that the hunch factor
should be applied to the portion of the velocity function
that contains the previous information. It would be helpful
to use either the full hunch factor or a fraction of the hunch
factor when determining the velocity and, thus, the next
possible solution. The single global hunch should be ma-
nipulated using positive reinforcement.

Future Work
The work done in this paper focuses on a specific optimi-
zation problem and provides only the beginning of explora-
tion into the use of the hunch. Given these preliminary re-

0.7$

0.75$

0.8$

0.85$

0.9$

0.95$

1$

0$ 1000$ 2000$ 3000$ 4000$ 5000$

Normal$

Case$#1$

Case$#2$

Case$#3$

Case$#4$

Case$#5$

sults, the next step would be to expand to other problem
sets – with larger and more varied problems. Although the
extra computation for the hunch factor is small and should
not cause a hindrance when expanding to larger problems,
more experimentation is needed to verify that conclusion.
Additionally, it would be interesting to experiment further
with various membership functions and not just a simple
triangle membership function for the hunch factor repre-
sentation. Another step would be to move to a completely
fuzzy algorithm version of the PSO (Coffman-Wolph
2013a and Coffman-Wolph 2013b) and run these same ex-
periments with the hunch factor. The hunch factor showed
great promise when using a small numbers of particles and
less iterations – something that could be further explored.
In particular the application of using the hunch factor when
trying to find starting points for other optimization algo-
rithms.

Acknowledgments
The author would like to thank the reviews for their helpful
suggestions.

References
Coffman-Wolph, S. 2013. Fuzzy Search Strategy Generation for
Adversarial Systems using Fuzzy Process Particle Swarm Opti-
mization, Fuzzy Patterns, and a Hunch Factor. Ph.D. diss., De-
partment of Computer Science, Western Michigan University,
Kalamazoo, MI.
Coffman-Wolph, S. and Kountanis, D. 2013a. Fuzzy Process
Particle Swarm Optimization. In the Proceedings of the 43rd
Southeastern Conference on Combinatorics, Graph Theory, &
Computing. Winnipeg: Utilitas Mathematica Pub. Inc.
Coffman-Wolph, S. and Kountanis, D. 2013b. A general frame-
work for the fuzzification of algorithms. In the Proceedings of the
4th biennial Michigan Celebration of Women in Computing
(MICWIC 2013).
Hillier, F. S., and Lieberman, G. J. 1990. Introduction to Opera-
tions Research. McGraw-Hill.
Kennedy, J., and Eberhart, R. C. 2001. Swarm Intelligence. San
Francisco, CA: Morgan Kaufmann Publishers, Inc
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control 8: 338-
353.

