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Abstract 

 

Dimensionality reduction is the mapping of data 

from a high dimensional space to a 

lower dimension space such that the result obtained by 

analyzing the reduced dataset is a good approximation 

to the result obtained by analyzing the original data set. 

  There are several dimensionality reduction 

approaches which include Random Projections, 

Principal Component Analysis, the Variance approach, 

LSA-Transform, the Combined and Direct approaches, 

and the New Random Approach. 

In this paper, we propose three new techniques, 

each of which will be a modified version of the last 

three techniques mentioned above (the Combined and 

Direct approaches, and the New Random Approach). 

We shall implement each of the ten reduction 

techniques mentioned, after which we shall use these 

techniques to compress various pictures. Finally, we 

shall compare the ten reduction techniques 

implemented in this paper with each other by the extent 

to which they preserve images. 

  

Index Terms— dimensionality reduction, image 

compression, principal component analysis  

 

1.  Introduction 

Given a collection of n data points (vectors) in high 

dimensional space, it is often helpful to be able to 

project it into a lower dimensional space without 

suffering great distortion (NR 2010a). In other words, it 

is helpful if we can embed a set of n points in 

d-dimensional space into a k-dimensional space, where 

k << d. This operation is known as dimensionality 

reduction. 

There are many known methods of dimensionality 

reduction. These include Random Projection (RP), 

Singular Value Decomposition (SVD), Principal 

Component Analysis (PCA), Kernel Principal 

Component Analysis (KPCA), Discrete Cosine 

Transform (DCT) and Latent Semantic Analysis (LSA) 

(NR 2009).  For each of these methods, each attribute in 

the reduced set is a linear combination of the attributes 

in the original data set. 

 
 

 

 

 

 

 

 

 

 

Other dimensionality reduction methods, however, 

reduce a dataset to a subset of the original attribute set. 

These include the Combined Approach (CA), the Direct 

Approach (DA), the Variance Approach (Var), 

LSA-Transform, the New Top-Down Approach (NTDn), 

the New Bottom-Up Approach (NBUp), the Weighted 

Attribute Frequency Approach (WAF) and the Best 

Clustering Performance Approach (BCP) (Nsang 

2011). 

Dimensionality reduction has several advantages, 

the most important of which is the fact that with 

dimensionality reduction, we could drastically speed up 

the execution of an algorithm whose runtime depends 

exponentially on the dimensions of the working space. 

At the same time, the solution found by working in the 

low dimensional space is a good approximation to the 

solution in the original high dimensional space.  

 One application of dimensionality reduction is in 

the compression of image data. In this domain, digital 

images are stored as 2D matrices which represent the 

brightness of each pixel. Usually, the matrix 

representing an image can be quite large, and for this 

reason it could be very time consuming querying this 

matrix to find out any information about the features 

of the image. In this paper, dimensionality reduction 

techniques are used to reduce the matrix 

representation of an image. This makes it possible to 

query the reduced matrix to get any information about 

the original image. Besides, we can use these 

techniques to compress all the pictures we have in a 

given folder, or website, thus conserving memory. 

The rest of the paper is organized as follows. In 

Section 2, we shall examine the different 

dimensionality reduction techniques that shall be used 

to reduce the images. In Section 3 we shall look at the 

effects of reducing images using each of these 

techniques, and in Section 4 we shall compare the ten 

reduction techniques implemented in this project with 

each other by the extent to which they preserve 

images, and by their speeds of execution. Then we 

shall conclude this paper in Section 5. 

 

2. Dimensionality Reduction Techniques 

 

  In this section, we shall examine the different 

reduction techniques that we will be using to reduce the 

images. They include the following: 
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2.1 Random Projection 

 

  In Random Projection, the original d-dimensional 

data is projected to a k-dimensional (k << d) subspace 

through the origin, using a random d x k matrix R whose 

columns have unit lengths (Bingham E. 2001). If Xnxd is 

the original set of n d-dimensional observations, then 

        dxknxd

RP RXX
nxk

  

is the projection of the data onto a lower k-dimensional 

subspace. 

The key idea of random mapping arises from the 

Johnson Lindenstrauss lemma (Johnson W. B.) which 

states that if points in a vector space are projected onto 

a randomly selected subspace of suitably high 

dimension, then the distances between the points are 

approximately preserved. 

   

2.2 Principal Component Analysis (PCA) 

 

Given n data points in 
P
 as an n x p matrix X, we want 

to find the best q-dimensional approximation for the 

data (q << p). The PCA approach achieves this by first 

computing the Singular Value Decomposition of X. In 

other words, it finds matrices U, D and V such that X = 

UDV
T
 where: 

  U is an n x n orthogonal matrix (i.e. U
T
U = In) 

whose columns are the left singular vectors of X; 

  V is a p x p orthogonal matrix (i.e. V
T
V = Ip) 

whose columns are the right singular vectors of X; 

  D is an n x p diagonal matrix with diagonal 

elements d1 ≥ d2  ≥  d3 … ≥ dp  ≥  0 which are the 

singular values of X. Note that the bottom rows of 

D are zero rows. 

 Define Uq to be the matrix whose columns are unit 

vectors corresponding to the q largest left singular 

values of X. Uq is a n x q matrix. 

 

The transformed matrix is given by (Bingham E. 2001): 

X
SVD

 = X
T
Uq 

 

2.3 The Variance Approach (NR 2010b) 

 

With the Variance approach, to reduce a dataset D 

to a data set DR, we start with an empty set, I, and then 

add dimensions of D to this set in decreasing order of 

their variances. That means that a set I of r dimensions 

will contain the dimensions of top r variances. 

Intuitively, it easy to justify why dimensions of low 

variance are left out as they would fail to discriminate 

between the data. (Indeed, in an extreme case where all 

the values along a dimension are equal, the variance is 

0, and hence this dimension cannot distinguish between 

data points). Thus, let  

Ir = {i1, . . . , ir} ⊂ {1, . . . , n},  

the collection of dimensions corresponding to the top r 

variances. That is i1 denotes the dimension of largest 

variance, i2 the dimension of next larger variance, etc. 

The reduced data base is obtained by extracting the data 

corresponding to the selected dimensions. That is, 

project D on Ir to obtain: 

DR = D(:, Ir), 

where DR has the same number of rows as D and r 

columns: the i
th
 column of DR is the column of the 

original database with the i
th
 largest variance. 

 

2.4 LSA-Transform (Nsang 2011) 

 

  LSA-Transform is probably the best technique for 

reducing image data. It makes use of the redundancy of 

the data in matrices that represent images, in practice. 

Specifically, if I is an image, and M is the matrix (of 

pixel brightness values) representing I, LSA-Transform 

simply selects only the even columns and rows of M to 

give M1. The simple explanation for this is as follows: 

one point on an image is usually represented by a whole 

rectangle of values in the corresponding matrix. For 

instance, a dark point maybe represented by the values: 

 

93 94 88 93 

87 89 89 89 

87 83 88 88 

93 89 88 89 

 

Each of these values, as we can see, is less than 95. 

Selecting only the even rows leaves us with: 

 

87 89 89 89 

93 89 88 89 

 

Similarly, selecting only the even columns leaves us 

with: 

 

89 89 

89 89 

 

Thus the original sub-matrix of sixteen cells becomes 

reduced to a smaller matrix of four cells, which also 

represents one dark point on an image. After the 

execution of LSA-Transform, therefore, M and M1 

become two matrices representing I, one a quarter the 

size of the other. 

 

2.5 The Combined Approach (NR 2010b) 

 

  Like the two previous approaches, the Combined 

Approach is one approach which reduces a dataset D to 

a subset of the original attribute set. 

     To reduce a dataset Dnxp to a dataset containing k 

columns, the Combined Approach selects the 

combination of k attributes which best preserve the 

interpoint distances, and reduces the dataset to a dataset 

containing only those k attributes. To do so, it first 

determines the extent to which each attribute preserves 



  

the interpoint distances. In other words, for each 

attribute, x, in D, it computes gxm and gxM given by: 
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2

2

||||

||)()(||

vu

vfuf



 } 

           gxM = max{
2

2

||||

||)()(||

vu

vfuf



 } 

where u and v are any two rows of D, and f(u) and f(v) 

are the corresponding rows in the dataset reduced to the 

single attribute x. The average distance preservation for 

the attribute x is then computed as: 

 

           gxmid = (gxm + gxM)/2 

 

To reduce the dataset D from p columns to k columns, 

this approach then finds the combination of k attributes 

whose average value of gxmid is maximum. 

 

2.6 The Direct Approach (NR 2010b) 

 

As with the Combined Approach, to reduce a 

dataset Dnxp to a dataset containing k columns, the 

Direct Approach selects the combination of k attributes 

which best preserve the interpoint distances, and 

reduces the original dataset to a dataset containing only 

those k attributes. To do so, it first generates all possible 

combinations of k attributes from the original p 

attributes. Then, for each combination, C, it computes 

gcm and gcM given by: 

 

            gcm = min{
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where u and v are any two rows of D, and f(u) and f(v) 

are the corresponding rows in the dataset reduced to the 

attributes in C. The average distance preservation for 

this combination of attributes is then computed as: 

 

          gcmid = (gcm + gcM)/2 

 

To reduce the dataset D from p attributes to k attributes, 

this approach then finds the combination of k attributes 

whose value of gcmid is maximum. 

 

As we can see, the difference between the Combined 

and Direct Approaches is that for the Combined 

Approach, we first find the average distance 

preservation for each attribute, and then, for any 

combination of attributes, we compute its average 

distance preservation by finding the averages of the 

distance preservations of the individual attributes. With 

the Direct Approach, on the other hand, to find the 

average distance preservation for any combination of 

attributes, C, we reduce the original dataset directly to 

the dataset containing only the attributes in C, and then 

compute the average distance preservation for this 

combination using the formulas above. 

 

2.7 The New Random Approach 

 

This is a technique suggested by Nsang, Maikori, 

Oguntoyinbo and Yusuf in (NMOY 2015). With this 

technique, to reduce a data set D of dimensionality d to 

one of dimensionality k, a set Sk is formed consisting of 

k numbers selected at random from the set S given by: 

    S = {x ϵ N | 1  x  d} 

Then, our reduced set, DR, will be given by: 

     DR = D(:, Sk) 

That is, DR is a data set having the same number of rows 

as D, and if Ai is the i
th
 attribute of DR, then Ai is the j

th
 

attribute of D if j is the i
th
 element of Sk.. 

 

2.8 The Modified Combined Approach 

 

As we saw in Section 2.5 above, the Combined 

Approach computes the average distance preservation 

of a combination of attributes by computing the average 

of their gxmid values.  It’s very clear that for any given 

attribute, x, gxmid is only an estimate of its average 

distance preservation, since it is computed as the 

midpoint between gxm, the minimum distance 

preservation, and gxM, the maximum distance 

preservation. 

The modified version of the Combined Approach 

improves on the original version by computing the 

average distance preservation of a combination of 

attributes as the average of the actual distance 

preservations of each attribute. If x is an attribute of a 

dataset D, the actual distance preservation of x is 

computed as: 
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where n is the number of rows of D, u and v are any two 

rows of D, and f(u) and f(v) are the corresponding rows 

in the dataset reduced to the single attribute x. The term 

nr in this equation is the number of pairs of rows of D 

computed as: 
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Thus, for any combination of attributes C of D, the 

average distance preservation of C is given as: 
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where Cn is the number of attributes in C. Therefore, to 

reduce a dataset D from p columns to k columns, the 

modified version of the Combined Approach finds the 



  

combination C of k attributes of D whose value of Cg  

is maximum. 

 

2.9 The Modified Direct Approach 

 

Like the Direct Approach, to reduce a dataset Dnxp 

to a dataset containing k columns, the modified version 

of the Direct Approach selects the combination of k 

attributes which best preserve the interpoint distances, 

and reduces the original dataset to a dataset containing 

only those k attributes. To do so, it first generates all 

possible combinations of k attributes from the original p 

attributes. However, for each combination, C, instead 

of estimating its average distance preservation using its 

gcmid value, it computes the actual average distance 

preservation of C using the following formula: 
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where n is the number of rows of D, u and v are any two 

rows of D, and f(u) and f(v) are the corresponding rows 

in the dataset D reduced to the attributes of C. Once 

again, the term nr in this equation is the number of pairs 

of rows of D computed as: 

             
2

)1(
2




nn
Cn n

r
. 

Therefore, to reduce a dataset D from p columns to k 

columns, the modified version of the Direct Approach 

finds the combination C of k attributes of D whose 

value of Cg  is maximum. 

 

2.10 The Modified New Random Approach 

 

       This technique is suggested as an improvement of 

the New Random Approach discussed in Section 2.7 

above.  To reduce a dataset Dnxp from p attributes to k 

attributes using the modified version of the New 

Random Approach, we use the algorithm below. 

Clearly, the idea here is to generate a result which is 

less random (and thus more efficient) than the result of 

the New Random Approach. Note that m in the 

algorithm is the number of times the execution of the 

New Random Approach is repeated.  

  

Algorithm 

 

    M = [] 

    for i = 1 to m do 

  Run the New Random Approach to generate k 

numbers at random in the range 1..p 

 Store the list of numbers generated as the i
th
 row 

of M 

    end 

    Generate the one-dimensional matrix M1 with p 

entries such that M1[p] holds the frequency of the 

number p in the matrix M 

     Finally, generate the matrix Result which contains 

the k entries in M of highest frequency, arranged in 

ascending order 

 

Thus, if D is the original dataset, the result of reducing 

D using the modified version of the New Random 

Approach is given by: 

  DR  = D(:, Result) 

Below is the result of a sample run of the program with 

D as given in Table 1 below (and with m = 4): 

 

i) After the first run of NRA: 

M = [ 9     2     3     7     5     1    10] 

 

ii)  After the second run of NRA: 

 

       









7823546

10157329
M  

 

 
 

Table 1: The D Dataset 

 

iii) After the third run of NRA: 

 

       



















3584921

7823546

10157329

M
 

 

iv) After the fourth run of NRA 

 

       





















10718652

3548921

7823546

10157329

M
 

 

Thus: M1 = [3  4  3  2  4  2  3  3   2  2] and 

        

           Result = [1  2  3  4  5  7  8]  

Thus the result of reducing the dataset D using the 

modified version of the New Random Approach is the 

dataset DR is given in Table 2 below. 

 



  

 
 

Table 2: The DR Dataset 

 

3.0 Reducing Images Using These Techniques 

 

  In this section, we shall use each of the techniques 

examined in Section 2 above to reduce images, and the 

effects of each reduction will be presented. 

  To achieve this aim, we shall make use of the 

MATLAB functions imread which converts an image 

into a matrix, and imshow which converts a matrix 

representing pixel brightness values into the image. (In 

other words, the function of imread is the reverse of the 

function of imshow.) 

 

3.1 Random Projection 

 

Random Projection is useless in preserving images. The 

simple reason is that when we multiply the matrix 

representing an image by a random matrix R, the 

resulting matrix typically has values outside the range 

of pixel brightness values. In our experiment, this is the 

result we obtained: 

 

Original Image: 

 

 
 

Reduced Image: 

 

 

3.2 Principal Component Analysis (PCA) 

 

Like RP, PCA is useless in preserving images. The 

following is the result obtained when we tried to reduce 

the result obtained using PCA: 

 

Original Image: 

 

 
 

Reduced Image: 

 

 
 

3.3 Variance 

 

Apart from RP and PCA, all the other methods we 

implemented were reasonably efficient in preserving 

images. With the Variance method, the results obtained 

are displayed below: 

 

Original Image: 

 

 
 

Reduced Image: 

 

 



  

3.4 Combined Approach 

 

Original Image: 

 

 
 

Reduced Image: 

 

 
 
 

3.5 Direct Approach 

 

Original Image: 

 
 
Reduced Image: 

 

 
 

 

 

3.6 The Modified Combined Approach 

 

Original Image: 

 

 
 

Reduced Image: 

 

 
 

 
3.7 The Modified Direct Approach 

 

Original Image: 

 
 

Reduced Image: 

 

 
 

 



  

3.8 LSA-Transform 

 

Original Image: 

 

 
 

Reduced Image: 

 

 
 

 
3.9 The New Random Approach 

 

Original Image: 

 

 
 

Reduced Image: 

 

 

3.10  New Random Approach (Modified Version) 

 

Original Image: 

 

 
 

Reduced Image: 

 

 
 

 

Remark:  

 

As can be observed from the results above, 

some reduction methods (such as the Combined 

and Direct Approaches and their modified 

versions) maintain the sizes of the original image 

while others do not. 

 

  

4.0 Comparisons Between the Different 

Dimensionality Reduction Techniques 

 

As mentioned above, there are two types of 

reduction techniques: those in which each attribute of 

the reduced set is a linear combination of the attributes 

in the original data set; and those which reduce a 

dataset to a subset of the original attribute set. Of the 

ten techniques implemented in this paper, two of them 

(RP and PCA) belong to the first category, and as we 

have seen, they are both useless in preserving images. 

This applies to almost every technique in this category. 

Two exceptions in this regard include Two 

Dimensional PCA and Discrete Cosine Transform 

(Nsang 2011). All the other eight techniques 

implemented in this paper belong to the second 

category, and as we have seen, they are all efficient in 

preserving images. 



  

Of these eight techniques, as mentioned above, 

LSA-Transform is probably the best in preserving 

images. Apart from the fact that the quality of the 

reduced image is practically the same as the quality of 

the original image, its speed of execution is very high. 

All the other seven techniques also significantly 

maintain the quality of the original image especially 

when most of the attributes of the matrix representing 

the original image are maintained – for instance when 

the number of attributes of the matrix representing the 

reduced image is at least 90% of the number of 

attributes of the matrix representing the original image. 

However, if we reduce the matrix representing the 

original image to 60% say (as in this case in this paper), 

as we can see, some of these methods are more efficient 

than others in preserving the original image. From the 

best to worst (as we can see from the results above), we 

have the New Random Approach, the Modified New 

Random Approach, and the Variance Approach 

followed by the Direct and Combined Approaches and 

their modified versions. Interestingly, these last four 

approaches are also the least time efficient. As a matter 

of fact, these last four approaches could take many days 

to run! 

Because the Combined and Direct approaches and 

their modified versions have high run-time 

complexities, they are only suitable for reducing small 

images. The Variance approach on the other hand has 

the lowest run-time complexity (apart from 

LSA-Transform, of course), which makes it the most 

suitable for reducing large images. Obviously, the New 

Random Approach and its modified version are also 

suitable for reducing large images. 

 

 

5.0 Conclusion and Future Work 
 

In this paper, we have studied two categories of 

dimensionality reduction techniques: those in which 

each attribute in the reduced set is a linear combination 

of the attributes in the original set, and those which 

reduce a data set to a proper subset of the original 

attribute set. As we have realized, while most of the 

techniques in the first category are useless in preserving 

images, every technique in the second category can be 

used to preserve images. Image preservation is a very 

important application of dimensionality reduction as it 

enables us to conserve memory and to improve the 

speed of execution of any programs which use these 

images.  

 

We also noticed that while LSA-Transform, the New 

Random Approach, the Modified New Random 

Approach, and the Variance Approach have low 

run-time complexities and can be used to reduce large 

images, the Direct and Combined Approaches and their 

modified versions have very large run-time 

complexities and can only be used to reduce small 

images. 

 

We shall compare the extents to which each method 

discussed in this paper preserves the interpoint 

distances and k-means clustering of different datasets in 

another work. We shall also analyze the time 

complexity of each of the ten techniques implemented 

in this paper. We could not do these in this paper due to 

time and space constraints. 

 

References 
 

Nsang A., Ralescu A. 2010, Approaches to 

Dimensionality Reduction to a Subset of the Original 

Dimensions. In Proceedings of the Twenty-First 

Midwest Artificial Intelligence and Cognitive Science 

Conference (MAICS 2010), South Bend, IN., 70 - 77.  

 
Nsang A., Ralescu A. 2009, A Review of 

Dimensionality Reduction and Their Applications. In 

Proceedings of the Twentieth Midwest Artificial 

Intelligence and Cognitive Science Conference 

(MAICS 2009), Fort Wayne, IN., 118 - 123. 

 

Nsang, A. 2011. Novel Approaches to Dimensionality 

Reduction and Applications, An Empirical Study. 

Lambert Academic Publishing. 

 

Bingham E., Manilla H. 2001, Random Projections in 

Dimensionality Reduction: Applications to Image and 

Text Data. In Conference on Knowledge Discovery 

Discovery in Data, Proceedings of the Seventh ACM 

SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 245-250. 

 

Johnson W. B., Lindenstrauss J., 1984. Extensions of 

Lipshitz mapping into Hilbert Space. Contemporary 

Mathematics. 

 

Nsang A., Ralescu A. 2010. More Dimensionality 

Reduction to a Subset of the Original Attribute Set. In 

Proceedings of the Twenty-First Midwest Artificial 

Intelligence and Cognitive Science Conference 

(MAICS 2010), South Bend, IN., 109-116.  

 

Nsang A., Maikori A., Oguntoyinbo F., Yusuf H. 2015. 

A New Random Approach to Dimensionality 

Reduction, Unpublished. 

 

 

 

 

 

 


