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Abstract 

The present work addresses the utilization of Artificial Neu-
ral Networks (NN) for the identification and control of sys-
tems, in special to control nonlinear dynamic systems or 
systems with some degree of uncertainty. Because NNs 
have an inherent ability to approximate functions and to 
adapt to changes in input and parameters, they can be used 
to control systems too complex for linear controllers, such 
as PID controllers. In the present work a mathematical basis 
for NN is presented, the mathematical representation of a 
process unit, or neuron, and how they can be put together in 
order to form nets that can learn from external data. In se-
quence, it is presented structures of inputs that can be used 
along with NN to model nonlinear systems. The most com-
mon configurations of input vectors for the training of NN 
are highlighted. Following, a method of control is presented 
that take advantage of NN, where a NN is used to build a 
predictive nonlinear controller using a model predictive 
control (MPC) structure. Two nonlinear systems were used 
to test the identification and control of the structures pro-
posed. The results shows the NN used were efficient in 
modeling and controlling the nonlinear plants. 

Introduction   

The modern feedback controlling systems are responsible 

for the success of several operational systems and are ap-

plied in the military, aerospace, manufacturing industry 

and other fields (Franklin, Powell, & Emami-Naeini, 

2006). The function of the feedback controller is to induce 

an input in a system so that it would respond with a desired 

output. There are many methods to design a controller; the 

most popular and widely used in the industry are based on 

state space or frequency analysis. Such design techniques 

have yielded successful applications such as the control of 

pitch, yaw and roll in aircrafts, satellite positioning and air 

conditioning control (Franklin et al., 2006). Proportional, 

Integral and Derivative  (PID) controller are still the most 

popular type of control used in the manufacturing industry, 

mostly given its simplicity and fact that most applications 
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where it is used are highly linear (Visioli, 2006). However, 

the increasing complexity of some systems challenges the 

classic feedback control theory. Challenges such as non-

linearities, rapid change conditions, black-box systems or 

high level of uncertainty can make classic controllers, such 

as the PID, have poor performance.  

 The operation of a complex system requires the control-

ler to be smart in a way, to adapt and learn from changes in 

the system dynamics, noise or external output. A solution 

for the control of complex system is to use control struc-

tures inspired in biological systems. Biological systems are 

adaptive and resilient to the environmental changes where 

they are inserted. Bacteria constantly change their DNA 

sequencing so that they remain unknown to the defense 

systems of other creatures. Most animals have a neural 

system that allows than to sense the environment and to 

rationalize a best course of action, such as when to run 

from or fight a predator, or in the case of humans, how to 

solve a mathematical equation. Fuzzy logic, Evolutive Al-

gorithms and Artificial Neural Networks (NN) are among 

the theories developed with an inspiration in biological 

systems. Neural networks tries to mimic the biological 

neural system, it presents an inherent capacity for learning, 

adapt and parallel computing (S. Haykin & Network, 

2004). With that NNs have being gaining exposure for its 

successful utilization for modeling complex non-linear 

systems. 

  Most NN applications are designed in an open loop, 

such as designs for pattern recognitions (Ebrahimzadeh & 

Ranaee, 2010), classification (Krizhevsky, Sutskever, & 

Hinton, 2012) and function approximation (Zainuddin & 

Pauline, 2011). However, the use of NN in a feedback con-

trol loop has proven to be efficient when controlling non-

linear systems. Chen, M. (Chen, Ge, & Voon Ee How, 

2010) proposed a NN structure to control nonlinear sys-

tems with multiple inputs and multiple outputs [MIMO]. 

Dierks, T and Sarangapani, J.(Dierks & Jagannathan, 

2010) used NN in a feedback loop to control a Quadrotor 



UAV and Addeh, J. et al.(Addeh, Ebrahimzadeh, Azarbad, 

& Ranaee, 2014) used NN for statistical process control. 

 The present work investigates the application of NN for 

identification and control of systems. For the identification 

process, the NN is placed in parallel with the model and 

random step signals are generated for input. The plant’s 

response to the signals can be used for training the NNs. 

The trained NN are then used in a predictive control struc-

ture. Matlab was used to implement the NNs, plants and 

input signals. The goal of this work is to investigate if a 

system can automatically experiment with a plant, learn 

from the experiment and control the plant, automatically 

and without needing a mathematical model of the plant or a 

fine tune the of the controller(Nørgård, Ravn, Poulsen, & 

Hansen, 2000).  

Methodology 

The processing unit of a NN is a neuron. The mathematical 

model of an artificial neuron tries to mimic the behavior of 

a biological neuron. An artificial NN is based on the ap-

proximation models of how a biological neuron processes 

the electric impulses it receives from other neurons or ex-

ternal stimuli. The model used in the present work is the 

perceptron of Rosenblatt (Rosenblatt, 1958). Figure 1 

shows the schematic for this model of neuron and eq. 1 

shows the model of a single neuron.  

  
𝑦𝑖  = 𝑓(∑𝑤𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+ 𝑤𝑖0)  (1) 

where 𝑦𝑖 is the output of neuron 𝑖, 𝑥𝑗 is the 𝑗-th input, 𝑤𝑖𝑗  

is the weigh given to input 𝑗 when it is going to neuron 𝑖 
and 𝑤𝑖0 is the bias of the neuron. Activation function of the 

neuron 𝑓(. ) can have several forms, such as sigmoid, line-

ar, step or a radial basis function (S. S. Haykin, Haykin, 

Haykin, & Haykin, 2009).  

 Networks of neurons can be built by aligning neurons in 

single layers and by grouping the layers, forming a multi-

layer network. Figure 2 shows a NN with two layers of 

neurons.  

 Where 𝑥𝑛 are the inputs of the network, 𝐿 is the number 

of neuron in the first layer, 𝑣𝐿𝑛 is the weigh from 𝑛-th in-

put to 𝐿-th neuron. 𝑚 is the number of neuron on the sec-

ond layer,  𝑤𝑚𝐿  is the weight from the output of 𝐿-th neu-

ron on the first layer to the 𝑚-th neuron on the second lay-

er. 𝑣0𝐿 is the bias of the 𝐿-th neuron and 𝑤0𝑚 if the bias of 

the 𝑚-th neuron. 

 Multilayer structures of NN, as the one shown in figure 

2, are universal approximators, meaning that they can ap-

proximate or model any input pattern (Hornik, 

Stinchcombe, & White, 1989). This universal approxima-

tion feature makes NN feasible for modeling non-linear 

dynamics systems. By changing the NN input arrange-

ments, it is possible to include temporal information about 

the system to be modeled. Among other input arrangement, 

the input structure used to model linear systems can be 

highlighted, such as the linear models of finite input re-

sponse (FIR) and the autoregressive with exogenous input 

(ARX)(Nørgård et al., 2000). Figures 3 (a) and (b) shows 

the use of NN with input arrangement of a FIR and ARX 

model, respectively.  

 

 

 

 

 

 

 

 

 

 

 Figure 3 shows that the NN inputs include past values of 

the plant’s input signal as well as the plant’s response sig-

nal to the inputs. This input configuration gives the NN 

enough information to model the dynamics of a system.  

System Identification 

In this work the ARX structure were used for the identifi-

cation of systems. The NN are placed in parallel with the 

plant and a series step signals, with normally distributed 
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Figure 1. Schematic of artificial neuron 

Figure 3. NN input structure: FIR (a) and ARX (b) 

Figure 2. Schematics of a feedforward neural network 



amplitudes, are generated as input to the plant. The input 

and output response of the plant are then arranged as an 

input to the NN. With the appropriate inputs, the NN are 

trained to best mimic the output of the plant. A validation 

set of input signals and plant output signals are used to test 

the NN on the ability to represent the plant for signals not 

previously used in the training. Matlab was used to imple-

ment the training inputs. Figure 4 illustrates an input signal 

used for identification, where the lower and upper bound of 

the signal is 0 and 1, and the steps last for 20 samples.  

Neural Networks approximate functions by changing the 

weights for the neuron inputs. Many optimization methods 

can be used to optimize the matrix of NN weights, but in 

this work the Levenberg-Marquardt is used given its better 

performance in comparison with other methods (Moré, 

1978). 

Control Structure 

Two strategies can be used for controlling dynamic sys-

tems: feedback control and optimization. The feedback 

control loop strategy includes using the controller and the 

plant in the same control loop, in a way that the entire sys-

tem can described as a transfer function. Using optimiza-

tion to control systems includes defining the system as an 

objective problem where the independent variables are the 

inputs to the plant. For this work the optimization strategy 

is used and the control structure follows that of a model 

prediction control (MPC), as initially presented by Clarke 

et. al. (Clarke, Mohtadi, & Tuffs, 1987). Figure 5 show a 

simplified structure of the predictive control structure.  

In predictive control, the control problem is transformed 

into an optimization problem where the goal is to minimize 

the error between reference and output as well as the varia-

bility of control input at each interaction. The objective 

function presented in eq. 2 is minimized 

where, 𝑁1, 𝑁2 and 𝑁𝑢  are the minimum, maximum and 

control prediction horizon, respectively. 𝑟(𝑡) and �̂�(𝑡) is the 

reference and output prediction, respectively, from time 𝑡. 

𝑢(𝑡) is the control signal at time 𝑡 and 𝜌 is a penalty 

weight given to the variation in control signal. The vector 

of control signals 𝑈(𝑡) are optimized at every time step 𝑡, 

where 𝑈(𝑡) = [𝑢(𝑡), 𝑢(𝑡 + 1), … , 𝑢(𝑡 + 𝑁𝑢 − 1)]. 
The NN model of the plant is used to predict the plant’s 

output �̂�(𝑡 + 𝑖) at 𝑖 steps ahead of 𝑡, then the prediction is 

used to optimize the future control signals. Figure 6 shows 

the structure of a MPC where a NN is used as the plant’s 

model, where �̂�(𝑡) = [�̂�(𝑡 + 𝑁1), �̂�(𝑡 + 𝑁1 + 1), … , �̂�(𝑡 +
𝑁2)].  

Plants 

Two models of non-linear plants were used to test the con-

troller structure proposed. One is the non-linear model of a 

valve (Nørgård et al., 2000). The plant’s mathematical 

model is shown on eq. 3. In order to illustrate the plant’s 

non-linearity, figure 7 shows the output of the plant for a 

slope input.  

𝑥(𝑡) =  1,4138𝑥(𝑡 − 1) −  0,6065𝑥(𝑡 − 2) +
 0,1044𝑢(𝑡 − 1) + 0,0883𝑢(𝑡 − 2)  

 

𝑦(𝑡) =
𝑥(𝑡)

√0,1 + 0,9𝑥(𝑡 )2
 

 

(3) 

 A nonlinear model of a tank used for chemical reaction 

was also used to test the NN MPC controller. Figure 8 

𝐽(𝑡, 𝑈(𝑡)) = ∑ [𝑟(𝑡 + 𝑖) − �̂�(𝑡 + 𝑖)]2
𝑁2
𝑖=𝑁1

+

𝜌 ∑ [𝑢(𝑡 + 𝑖) − 𝑢(𝑡 + 𝑖 − 1)]2𝑁𝑢
𝑖=1   

(2) 
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Figure 4. Example of a control signal used for NN training. 

Figure 6. Predictive Control with NN model 

Figure 5. Simplified predictive control structure 



shows the schematics of the tank and eq. 4 illustrates the 

equation that models the tank 
𝑑ℎ(𝑡)

𝑑𝑡
= 𝑤1(𝑡) +  𝑤2(𝑡) − 0.2√ℎ(𝑡)  

 
𝑑𝐶𝑏(𝑡)

𝑑𝑡
= (𝐶𝑏1 − 𝐶𝑏(𝑡))

𝑤1(𝑡)

ℎ(𝑡)
+ (𝐶𝑏2 − 𝐶𝑏(𝑡))

𝑤2(𝑡)

ℎ(𝑡)
−  

 
𝑘1𝐶𝑏(𝑡)

(1+𝑘2𝐶𝑏(𝑡))
2  

(4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ℎ(𝑡) is the level of liquid in the tank, 𝐶𝑏(𝑡) is the 

concentration of the output product, 𝑤1(𝑡) is the flow of 

concentrated 𝐶𝑏1, and 𝑤2 is the flow of solvent 𝐶𝑏2. In this 

work, the concentration 𝐶𝑏1 and 𝐶𝑏2 is 24.9 and 0.1, re-

spectively, following the work of Nørgård et. al. (Nørgård 

et al., 2000) for the same plant. The goal is to control the 

output concentration 𝐶𝑏(𝑡) by varying the flow 𝑤1(𝑡). The 

flow 𝑤2(𝑡) is left at a constant rate of 0.1. 

 

Results and Discussion 

Both plants are single input, single output models. In order 

to control the plants the first step was to model the plant 

using NN.  

Valve 

To identify the dynamics of the nonlinear valve, an input 

signal was generate consisting of 6000 samples, with am-

plitude varying from 0 to 1 at every 20 samples.  

 It was assumed that a NN with two layers would be suf-

ficient to model the nonlinear dynamic of the valve. The 

first layer had 15 neurons and the second layer has one 

neuron. The second layer serves as a summation of outputs 

from the first layer and due that it has a linear activation 

function, while the first layer has a hyperbolic tangent acti-

vation function. The input structure  𝑋(𝑡) used for the NN 

followed an ARX structure with delayed inputs and de-

layed outputs as illustrated in eq. 5 

𝑋(𝑡) =

[
 
 
 
 
 
 

𝑦(𝑡 − 1)
⋮

𝑦(𝑡 − 𝑛𝑎)

𝑢(𝑡 − 𝑑)
𝑢(𝑡 − 𝑑 − 1)

⋮
𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1)]

 
 
 
 
 
 

  (5) 

where 𝑛𝑎=3, 𝑛𝑏=8 and 𝑑 = 2. 

 The training performance of the NN is show in figure 9, 

where it can be seen that the validation performance based 

on the Mean Squared Error (MSE) is negligible. Figure 10 

illustrates the plant output and the NN output for the same 

set of inputs. Notice that the NN is capable of closely rep-

resent the valves dynamic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Control and output signal of the valve. 

Figure 8. Schematic of chemical reaction tank 

Figure 9. Training performance of NN to model nonlinear 

valve 



Figure 10. Output of valve and NN model for the same set of in-

puts 

 Using the NN model of the plant in the MPC control 

loop it was possible to control the output of the plant. The 

optimization method used is a classic levenberg-marquardt. 

The minimum, maximum and control prediction horizon 

are: 𝑁1 = 1,𝑁2 = 7 and 𝑁𝑢 = 1. The penalty for signal 

control variation is 𝜌 = 10.  Figure 11 shows the inputs 

and outputs of the system, using a MPC controller and the 

NN as a model for prediction. The red dotted line is the 

reference of the system (r), the light line is the control sig-

nal of the plant (u) and the bold line is the output of the 

plant.  

It can be seen that despite the non-linearity of the plant, the 

controller was able to efficiently control the plant, with a 

rapid response time. 

Reaction Tank 

To identify the dynamics of the nonlinear reaction tank, an 

input signal was generate consisting of 4000 samples,  with 

amplitude varying from 0 to 5 at every 20 samples.  

 It was assumed that a NN with two layers would be suf-

ficient to model the nonlinear dynamic of the tank. The 

first layer had 12 neurons and the second layer had just one 

neuron. The input structure  𝑋(𝑡) used for the NN followed 

an ARX structure with delayed inputs, delayed outputs and 

following the format in eq. 5, with 𝑛𝑎= 4, 𝑛𝑏=5 and 𝑑 = 1. 

 The training performance of the NN in modeling the 

reaction tank is shown in figure 12, where it can be seen 

that MSE is negligible. Figure 13 illustrates the plant’s 

output and NN prediction for the same set of inputs, it can 

be seen that both signals overlap, suggesting that the plant 

model the plant’s dynamic efficiently. 

 The NN model was used in a MPC structure to control 

the reaction tank plant. The method of levenberg-

marquardt was used for optimization in the MPC structure. 

The minimum, maximum and control prediction horizon 

are: 𝑁1 = 1,𝑁2 = 7 and 𝑁𝑢 = 2. The penalty for signal 
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Figure 11. Signals of reference, control and plant output for a 

MPC controller using a NN model for the control of a valve 

Figure 12. Training performance of NN to model nonlinear reac-

tion tank 

Figure 13. Concentration outputs from reaction tank and NN 

model for the same set of inputs 



control variation is 𝜌 = 0.05.  Figure 14 illustrates the in-

puts and outputs of the system, where the red dotted line is 

the reference of the system (r), the light line is the control 

signal of the plant (u) and the bold line is the output of the 

plant (y). 

 Despite of the non-linearity of the plant, the controller 

was able to execute control of the plant. However, it can be 

seen that, for lower reference levels, the controller is not 

able to stabilize the output of the plant around that refer-

ence value. This can be due the fact that the NN did not 

model the dynamics of the plant for such lower reference 

levels. The training set used for identification of the plant 

should have included more data in the lower reference lev-

els. The NN do not correctly represent the plant for such 

low levels of reference, therefore it predicts erroneous 

plant’s output. That makes the optimizer to optimize an 

objective function that is not representative of the plant, 

causing the marginal control performance in the lower ref-

erence levels. 

 For higher reference levels, the controller was able to 

control the concentration in the reaction tank. To maintain 

the steady levels of the plant’s output, the control signal 

constantly changes in the time interval from 40s to 80s. 

This illustrates the optimizer trying to compensate for fu-

ture changes in the output and adjusting the control signal 

ahead of time, so that the future output would follow the 

reference input. In this work, the performances of the NN 

in a predictive control structure are in close agreement with 

the work of Nørgård et. al. (Nørgård et al., 2000). 

Conclusions 

In this paper, multilayer, feedforward neural networks 

were used to identify the dynamics of two nonlinear plants, 

a valve and a reaction tank.  Random step signals were 

used as input in the identification of the plants, while their 

responses were recorded. The set of inputs and outputs 

were used to train the NNs. Despite the simplicity of the 

NNs used, the models proved satisfactory to represent the 

plants for the range of inputs used in training. 

 The NNs of the plants were used in a control loop with a 

MPC structure. Given a set of control inputs, the NN were 

used to provide predictions of plants outputs. The output 

predictions are used to calculate the error from a desired 

reference signal. A levenberg-marquardt optimization 

method was used to optimize the control inputs in order to 

minimize the plant’s output error.  

 For both plants in this work, the NN proved to be effi-

cient in modeling the non-linearity of the plant. Additional-

ly, the use of NN models in a MPC structure made possible 

the control of the nonlinear plants, where the controller 

would compensate for the plant’s nonlinearities. The con-

troller had a marginal performance in controlling the reac-

tion tank for low reference levels. What is explained by the 

fact that the NN did not capture the dynamics of the plant 

for those levels. During the training of the NN for model-

ing the reaction tank, more low levels of reference should 

be the used so that the NN could have more information 

about the dynamics of the plant in those levels and there-

fore build a more accurate model of the plant. 

 The use of NN in the control of systems makes it possi-

ble for the control of nonlinear systems, black box systems 

and system with changing dynamics. The same methods 

used in this work for identification and control of systems 

can be extended to the identification and control of other 

complex systems. 
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