
A Critique on Code Critics

Angela Lozano ?, Gabriela Arévalo ??, and Kim Mens

Vrije Universiteit Brussel Universidad Abierta Interamericana Université catholique de Louvain
Pleinlaan 2 Av. Montes de Oca 745 Place Sainte Barbe 2

Brussels, Belgium Buenos Aires, Argentina Louvain-la-Neuve, Belgium
alozano@soft.vub.ac.be gabriela.b.arevalo@gmail.com kim.mens@uclouvain.be

Abstract. Code critics are a recommendation facility of the Pharo
Smalltalk IDE. They signal controversial implementation choices such
as code smells at class and method level. They aim to promote the use
of good and standard coding idioms for increased performance or a bet-
ter use of object-oriented constructs. This paper studies relations among
code critics by analyzing co-occurrences of code critics detected on the
Moose system, a large and mature Smalltalk application. Based upon this
analysis, we present a critique on code critics, as a first step towards an
improved grouping of code critics that identifies issues at a higher level
of abstraction, by combining lower-level critics that tend to co-occur, as
well as improvements in the definition of the individual critics.

Keywords: code critics, bad smells, co-occurrence, Smalltalk, Pharo,
empirical software engineering

1 Introduction

A plethora of code recommendation tools exists to support developers when
coding a software system. Whereas some of these recommendations remain at a
high level of abstraction (e.g., low coupling and high cohesion), others are much
more specific (e.g., ‘classes should not have more than 6 methods’).

Research on recommendation systems to detect and correct controversial im-
plementation choices typically follows a top-down approach. Recommendations
defined at a high level of abstraction are refined into the detection of more con-
crete symptoms until a straightforward detection strategy is reached. Different
recommendation approaches exist that detect issues like design flaws [12] or an-
tipatterns [13]. While these approaches discover similar issues, they often vary
significantly in the heuristics, metrics and thresholds they use. These differences
have various causes. Heuristics are incomplete by definition. The definition of
many metrics remains open to interpretation resulting in different tools that
may provide different results for the same metric. And thresholds used tend to
be either absolute values that cannot be reused across different applications, or

? Angela Lozano is financed by the CHaQ project of the Flemish IWT funding agency.
?? also DCyT - Universidad Nacional de Quilmes and CONICET - Buenos Aires, Ar-

gentina

2 A Critique on Code Critics

relative values whose cut point may be arbitrary. For these reasons, it is difficult
to justify that concrete detection strategies and how they are combined into
higher-level recommendations accurately represent all and only those entities
that a higher-level recommendation aims to capture.

As opposed to defining high-level recommendations as an ad-hoc combina-
tion of lower-level issues, this paper presents a first step towards ‘discovering’
higher-level recommendations from a detailed analysis of the occurrence of more
specific low-level ones. More specifically, our analysis is based on a study and
possible interpretation of the co-occurrence of low-level recommendations in sev-
eral applications.

The low-level issues analyzed in this particular paper are the so-called code
critics. Code critics are a list of detectors for harmful implementation choices in
Pharo Smalltalk that signal certain defects or performance issues in Smalltalk
source code, mainly in methods and classes. Each critic is defined with a short
name and a rationale that explains why that implementation choice could be
harmful and, in some cases, also proposes a refactoring. An example of such a
code critic is the critic named ‘Instance variables not read AND written’ with
rationale:

“Checks that all instance variables are both read and written. If an in-
stance variable is only read, you can replace all of the reads with nil,
since it couldn’t have been assigned a value. If the variable is only writ-
ten, then we don’t need to store the result since we never use it. This
check does not work for the data model classes, or other classes which
use the instVarXyz:put: messages to set instance variables.”

Although code critics sometimes report false positives (like the instVarXyz:

put: messages mentioned in the rationale of the critic above), the Code Critics
browser allows one to ‘ignore’ each reported result individually. Results that
have been ignored are saved within the image1, so that the system remembers
that they have been ignored and does not present them again to the developer
when the same code critics are checked again later.

Each code critic belongs to one of the following categories: Unclassified
rules, Style issues, Coding Idiom Violations, suggestions for Optimization, De-
sign Flaws, Potential Bugs, actual Bugs and likely Spelling errors. For instance,
the code critic named ‘Instance variables not read AND written’ is categorized
as an Optimization issue.

This paper is structured as follows: Section 1 detailed the problem and con-
text of low-level recommendation tools. Section 2 introduces the concept of code
critics in more detail, and Section 3 shows how we define the distance function to
calculate if code critics co-occur in the analyzed application. Section 4 presents
critiques on individual critics and several patters of co-occurring critics. Section
5 concludes our work and presents some future work.

1 Smalltalk systems store the entire program and its state in an image file.

A Critique on Code Critics 3

2 An Introduction of code critics

Although Pharo’s Critic Browser is designed to be launched by a developer from
a menu in the IDE, the tool can also be run programmatically to analyze part
of the image with a selected set of critics. In our experiment, we analyzed 120
code critics, 27 applied to classes, and 93 applied to methods. We excluded the
category of Spelling rules, which check the spelling of comments and identifiers
of classes, methods and variables. We are less interested in these rules as they
do not refer to either the structure or design of the source code, and tend to
generate quite some noise in the results.2

Id Critic name
CC01 A metamodel class does not override a method that it should override
CC02 Class not referenced
CC03 Class variable capitalization
CC04 Defines = but not hash
CC05 Excessive inheritance depth
CC06 Excessive number of methods
CC07 Excessive number of variables
CC08 Instance variables defined in all subclasses
CC09 Instance variables not read AND written
CC10 Method defined in all subclasses, but not in superclass
CC11 No class comment
CC12 Number of addDependent: messages > removeDependent:
CC13 Overrides a ‘special’ message
CC14 References an abstract class
CC15 Refers to class name instead of ‘self class’
CC16 Sends ‘questionable’ message
CC17 Subclass responsibility not defined
CC18 Variable is only assigned a single literal value
CC19 Variable referenced in only one method and always assigned first
CC20 Variables not referenced
Table 1. Some of the most frequent class-level critics and their identifiers.

Table 1 lists some of the most frequently found class-level code critics, and
Table 2 lists some discovered method-level critics. We added an identifier to
each of them for easy reference later. For example, CC09 refers to the code critic
‘Instance variables not read AND written’.

For our analysis we studied Moose [5], a Smalltalk platform consisting of a
variety of software and data analysis tools. More specifically, we analyzed all
packages contained in the downloadable image containing the latest distribution
of Moose (i.e., Pharo 1.4). For each package studied (71 in total) we accumulated
all critics found in methods and classes, except for those methods and classes

2 For the same reason they do not even appear in recent versions of the Critic Browser.

4 A Critique on Code Critics

Id Critic name
MC01 detect:ifNone: -> anySatisfy:
MC02 Inconsistent method classification
MC03 Law of Demeter
MC04 Methods implemented but not sent
MC05 Rewrite super messages to self messages

when both refer to same method
MC06 Sends different super message
MC07 Temporaries read before written
MC08 Unclassified methods
MC09 Uses detect:ifNone: instead of contains:
MC10 Utility methods

Table 2. Some common method-level critics and their identifiers.

related to tests. We excluded the tests because critics about test code often lead
to false positives. Test code tends to adhere to other idioms than ordinary code.
For instance, test code often contains duplicated code between test methods
(due to similar calls to ‘assert’ or other testing methods). Moreover, test code
often contains trial-and-error code to deal with all cases to be tested, which is
typically not considered good practice in normal code.

3 Critiques on individual and co-occurring code critics

Our analysis generates two boolean tables per package: one for its classes and
another for its methods. Each table shows which source code entities suffer from
which critics. Each column represents a method or class of the package, and
each row represents which entities are in the result set of a code critic. E.g.,
suppose we analyze the following class-level code critics in the package Compiler
(which is part of the analyzed distribution): ‘Instance variables not read AND
written’ (CC09), ‘Sends ‘questionable’ message’ (CC16), ‘Excessive number of
variables’ (CC07), ‘Excessive number of methods’ (CC06) and ‘Variables not
referenced’ (CC20). Table 3 presents the results3, where the rows identify the
critiqued entities for a corresponding critic in the analyzed package. In other
words, critiqued(c, p) is a sequence of boolean values < c(e1), c(e2), . . . , c(en) >
where c(ei) = true if and only if ei is the ith entity in package p (by alphabetic
order on its fully qualified name), and ei is in the result set of code critic c.

Next, we calculate the distance between pairs of critics based on the enti-
ties they critique. The distance between two code critics c1 and c2, for a given
package p, is calculated by counting the number of classes or methods where the
critics do not match (XOR of the critiqued entities), over the number of classes

3 To limit the size of the example, this table present only a subset of all classes that
were critiqued. However, for the sake of the example, in order to illustrate how the
approach works, we ask the reader to assume that the classes shown in Table 3 are
all the critiqued classes in the package.

A Critique on Code Critics 5

A
m

b
ig

u
o
u
sS

el
ec

to
r

. B
lo

ck
N

o
d
e

. E
n
co

d
er

. L
it

er
a
lV

a
ri

a
b
le

N
o
d
e

. V
a
ri

a
b
le

N
o
d
e

. C
o
m

m
en

tN
o
d
e

. U
n
d
V

a
ri

a
b
le

R
ef

er
en

ce

. M
es

sa
g
eN

o
d
e

. A
ss

ig
n
m

en
tN

o
d
e

. P
a
rs

eN
o
d
e

. M
et

h
o
d
N

o
d
e

. D
ec

o
m

p
il
er

. C
o
m

p
il
er

. P
a
rs

er

. B
y
te

co
d
eE

n
co

d
er

. T
em

p
V

a
ri

a
b
le

N
o
d
e

CC09 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CC16 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0

CC07 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

CC06 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1

CC20 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Table 3. Code critics (CC) per class for the Compiler package.

CC09 CC16 CC07 CC06 CC20

CC09 0 0.81 0.77 0.81 0.83
CC16 0.81 0 0.40 0.50 0.66
CC07 0.77 0.40 0 0.22 0.57
CC06 0.81 0.50 0.22 0 0.66
CC20 0.83 0.66 0.57 0.66 0

Table 4. Distance among the code critics shown in Table 3.

or methods that violate one or both of the critics being analyzed (OR of the
critiqued entities). This distance value varies between zero and one. Values close
to zero mean that a pair of critics tends to affect the same source code entities.

Dp(c1, c2) =
|critiqued(c1, p) ⊕ critiqued(c2, p)|
|critiqued(c1, p) ∨ critiqued(c2, p)|

For instance, Table 5 calculates the distance between ‘Instance variables not
read AND written’ and ‘Variables not referenced’ based on the presented exam-
ple. The resulting distance, shown as a shaded cell in Table 4, is 0.83 (i.e., 5/6)
because their results differ in five classes, but coincide in one class (BlockNode).
Therefore, the critics have low co-occurrence for the results of this package.

CC09: Instance variables not read & written 1111000000000000
CC20: Variables not referenced 0100000101000000

XOR 1011000101000000
OR 1111000101000000

Table 5. Calculation of the distance between a pair of critics based on their results
for a given package (shown in table 3).

6 A Critique on Code Critics

Using the Boolean table 3 and the distance table 4 we proceed to discard pairs
of code critics that do not seem interesting for our analysis, based on three crite-
ria. First, pairs with high distances (greater than 0.9) are discarded as they tend
not to co-occur often and therefore are likely to represent accidental matches.
Secondly, we discard pairs of critics that always occur together (distance zero)
in the same source code entities, because they are likely to represent alternative
implementations of a same code critic. Thirdly, we exclude all pairs of critics for
which one of the code-critics covers more than 90% of all source code entities
analyzed, because as a consequence of their high coverage they will show a strong
correlation with nearly all other code-critics and thus generate significant noise
in the results. In our example, all distances are kept in our analysis. The choice
of thresholds of 0.9 and 90% was based on initial experiments where we tried to
determine what values would constitute a good cut point to discard less relevant
pairs of critics. However, these thresholds should be reevaluated when applying
the approach to other code critics, other applications, or different programming
languages.

4 Identified patterns

Based on the raw results of our initial analysis, this section presents some inter-
esting critiques which we have observed. Since this is a preliminary research, we
do not claim these critiques to be exhaustive nor complete. In the text below, we
use the word critique to denote the identified patterns in our analysis, and critic
to refer to Pharo’s code critics. We present our critiques as patterns, consisting
of a short name, a description and some concrete examples. The patterns are
divided in two big categories. The first category describes the critiques discov-
ered by analyzing individual code critics. Note that we limited our analysis of
individual code critics to those that appear at least in one of the non-discarded
co-occurrences. The second category describes the critiques which stem from
the observed correlations between pairs of code critics (extracted from their
co-occurrence as explained in Section 3).

4.1 Critiques on Individual Critics

Here we present our critiques on the individual class-level critics of Table 1.

Misleading name. Some code critics have misleading names and should be
improved. For example, ‘References an abstract class’ (CC14) is misleading.
According to the name, a developer could assume that the code critic identifies
a class B that is referencing an abstract class A. But in fact it detects the
opposite, namely an abstract class A being referred to from somewhere within
the analyzed application. A better name would thus be ‘Abstract class being
referenced’. The name ‘Instance variables not read AND written’ (CC09) is ill
chosen too because, looking at how this code critic is implemented, it refers to
instance variables which are EITHER read-only, write-only, OR not referenced

A Critique on Code Critics 7

at all. A better name for this code critic could therefore be ‘Instance variables
not fully exploited’.

Too general. Some critics are too general and could be split into several more
specific critics. For example, the critic ‘Instance variables not read AND written’
(CC09) mentioned above could be split into three different critics (‘unrefer-
enced instance variables’, ‘only written instance variables’, ‘only read instance
variables’). The critics ‘Overrides a special message’ (CC13) and ‘Sends ‘ques-
tionable’ message’ (CC16) are about specific messages and could be split into
separate critics for each of those messages. This would however lead to many
individual critics, but they could be presented as a common group to the user,
allowing him to inspect or ignore the details of the individual underlying critics,
if he desires to do so.

Too tolerant. We also observed that, despite the fact that some critics seem
meaningful and well-defined, they produce mostly false positives. This happens
because there are often cases where it is acceptable not to adhere to some critics.
However, when a critic produces mainly such false positives, we can wonder
whether it is useful to keep the critic. Nevertheless, our results might be biased,
since we analyzed only one rather well-designed framework (Moose).

An example of such a critic is ‘Refers to class name instead of ‘self class’ ’
(CC15), for which we discovered mostly acceptable deviations. For example, in
Smalltalk it is quite common and acceptable in methods for checking equality
to write anObject isKindOf: X, to verify that the type of anObject is indeed
of a particular class X (and not some subclass). Similarly, the expression self

class == X is often used to check if a given instance of this class is indeed of
class X. Another case is when you write X new, because you want to be sure
to create an instance of X and not of one of its subclasses. A last example is
when you write an expression like X allsubclasses to refer to the root X of a
relevant class hierarchy, and you want to manipulate the individual classes.

Many of the critics which are too tolerant could be refined further in order to
avoid catching some of the false positives they produce. For example, if we con-
sider CC15 again, we note that it often regards an expression like isKindOf: X

used in a method implemented by class X as problematic, but in fact isKindOf:
self class would be even more problematic, because it would get a different
meaning in subclasses. This could be solved by making the critic take into ac-
count this case or any other of the above cases as known exceptions to the critic.

Too restrictive. Whereas some critics are too tolerant, others are too restric-
tive and could miss interesting cases. For example, ‘Excessive inheritance depth’
(CC5) uses a threshold of 10 as depth level, but may miss other cases of ex-
cessive depth such as classes with inheritance depth 9. Obviously, there is no
perfect threshold, but we found 20 additional classes with a depth of at least 9
(as compared to only 10 classes with a depth of at least 10) that should have
been reported. We assume the threshold was set high in order to avoid producing
too many results, making it harder for the user to process all reported results.

8 A Critique on Code Critics

Redundant representation of results. Another source of noise in the results
could be the amount of results produced by the critic, even if none of them
are false positives. Sometimes, it would suffice to present the results differently
to avoid such noise. For example, consider ‘Excessive inheritance depth’ (CC5)
again. Currently, it reports all leaf classes of hierarchies that suffer from the
critic. But this generates many unnecessary results. It suffices to know the root
of the hierarchy to start fixing the problem (and additionally, this could allow
the user to lower the threshold so that the critic becomes less restrictive too).

Missing critics. Some important critics seem to be missing from the list of
code critics. For example, there seem to be little or no critics related to inheri-
tance issues [10], such as local behavior in a class with respect to its superclass or
subclasses, or good reuse of superclass behavior and state. Local behavior identi-
fies methods defined and used in the class that are not overridden in subclasses,
often representing internal class behavior, and Reuse of superclass behavior and
state identifies concrete methods that invoke superclass methods by self or su-
per sends, not redefining behavior of the class. Code critics regarding inheritance
could identify bad practices when implementing hierarchies.

Good critics. Whereas in this paper we focused mainly on negative critiques on
code critics, we can remark that there are useful and well-designed code critics
too. Our ultimate goal is to keep the good critics while identifying those that
can be improved, in order to come up with a new and better-structured set of
code critics. For example, ‘Defines = but not hash’ (CC04) shows all classes that
override = but not hash. If method hash is not overridden, then the instances
of such classes cannot be used in sets. The implementation of Set assumes that
equal elements have the same hash code. Another example is ‘Method defined
in all subclasses, but not in superclass’ (CC10) which detects classes defining a
same method in all subclasses, but not as an abstract or default method in the
superclass. This critic helps us find similar code that might be occurring in all
the subclasses and that should be pulled up into the superclass.

4.2 Patterns of Co-occurring Critics

Now that we have described some critiques based on an analysis of individ-
ual code critics, we discuss some critiques derived from our analysis of the co-
occurrence of pairs of code critics.

Redundant Critics. Critics are redundant when they detect the same prob-
lem. This happens for critics that come in two versions: one which just detects
the problem and another one which detects it and at the same time proposes an
automated refactoring to the problem. An example of this is ‘detect:ifNone: ->
anySatisfy:’ (MC01) versus ‘Uses detect:ifNone: instead of contains:’ (MC09).
Whereas MC01 offers an automated restructuring, in spite of its name MC09
only detects the problem. Although we did discover such cases in our experi-
ment where we ran the critics directly, Pharo’s Critic Browser would only use

A Critique on Code Critics 9

one of these critics in order to avoid the user to get repeated results. Observe
that the solution suggested by critic MC09 differs from the solution proposed by
MC01, which can be confusing. Given that a same critic could have several pos-
sible refactorings, it would therefore be better to keep refactoring and detection
strategies separated, and to have only one detection strategy per critic.

Indirect Correlation. This occurs when the results of two critics overlap sig-
nificantly, without them having a common root cause. For instance, the following
two correlations seem to occur essentially because one of the critics (CC06) gen-
erates so many results. They are ‘Excessive number of methods’ (CC06) vs. ‘Ex-
cessive number of variables’ (CC07), and ‘Sends ‘questionable’ message’ (CC16)
vs. ‘Excessive number of methods’ (CC06).

Overlap Requires Splitting. A third pattern occurs when two critics produce
overlapping results because they have a common root cause. It would be good to
split such critics such that the common part becomes one separate critic and the
non-overlapping parts become other critics. For instance, ‘Instance variables not
read AND written’ (CC09) is overlapping with ‘Variables not referenced’ (CC20)
because both critics detect unreferenced instance variables. While CC09 should
be split as explained in section 4.1 (too general), CC20 could be split in a critic
for class variables and one for instance variables. The critic for ‘unreferenced
instance variables’ would then become a common subcritic for both CC09 and
CC20.

Overlap Requires Merging. This pattern occurs when two code critics that
regularly occur together could be combined into a single more specific critic.
For instance, in the Smalltalk language, methods are grouped in method pro-
tocols representing the purpose of the method. Instance creation methods like
new, for example, are put in the ‘instance-creation’ protocol. The method-
level critic ‘Inconsistent method classification’ (MC02) is triggered when methods
are wrongly classified and ‘Unclassified methods’ (MC08) are reported when no
protocol was assigned to a method. These critics coincide when an overridden
method is unclassified whereas the method it overrides was classified. From the
point of view of critic MC02, it is considered as an inconsistent classification since
the classification of the parent and child method are different, whereas from the
point of view of critic MC08 the child method is unclassified. Combining them
in a new dedicated critic ‘Inconsistently unclassified methods’ makes sense, be-
cause there is an easy refactoring that could be associated to this particular
combination of critics, namely to classify the child method in the same protocol
as the parent one. For cases where the critics do not overlap, the original critics
MC02 and MC08 should still be reported.

Same niche. Sometimes, code critics seem to correlate just because they both
refer to a specific kind of source entity. For example, the two independent critics
on abstract classes ‘References an abstract class’ (CC14) and ‘Subclass respon-
sibility not defined’ (CC17) often appear together, simply because they are the

10 A Critique on Code Critics

only ones that both apply to abstract classes. (This pattern could be considered
as a specific case of Indirect Correlation.)

Almost subset. This pattern occurs when most of the result set for one critic
in practice always seems to be a subset of that for another critic. For example,
the results for code critic ‘Variable referenced in only one method and always
assigned first’ (CC19) refers to the same variables reported by ‘Instance variables
not read AND written’ (CC09). Indeed, if a variable is used only in one method
and always assigned first (CC19), it is likely that this variable will not be read
in that same method (or any other method) and thus is reported by CC09 too.

Ill-defined critic. Correlations between two critics may arise because one of
them is ill-defined. If the ill-defined critic were fixed, the correlation would prob-
ably disappear. For example, ‘Refers to classname instead of self class’ (CC15)
correlates with ‘Sends ‘questionable’ message’ (CC16), because CC15 often gives
false positives related to the use of isKindOf:, which is also one of the question-
able messages. If we would fix CC15 to avoid those false positives, this correlation
would likely disappear.

Noisy correlation. This pattern describes critics that seem to be correlated
to many other critics and therefore produce too much noise. They could better
be removed if the overlap with another critic is not strong (likely to be only
accidental matches). For example, ‘Excessive number of Methods’ (CC6) has
this problem, because the more methods a class has, the higher the chance that
the class suffers from other critics as well.

High-level critics. Whereas in this section we analyzed the co-occurrence
of critics mainly by focusing on their shortcomings, in forthcoming research
we will analyze the results more in-depth and will also identify good, desired
or expected correlations between critics. For example, the correlation between
‘Utility methods’ (MC10) and ‘Law of Demeter’ (MC03) is not unexpected as it
may indicate an imperative (non object-oriented) programming style.

5 Discussion, Conclusion and Future Work

This paper presented our initial results of an analysis of low-level code critics
detected on the Moose system, a large and mature Smalltalk application. The
results of this analysis can help us identify which low-level critics could benefit
from redefinition or refactoring so that they would provide more accurate or
meaningful results, as well as how to combine them into more high-level critics
to improve the recommendations they provide.

As future work, we plan to provide a more in-depth analysis, including a
deeper analysis of the method-level critics, and propose concrete improvements,
combinations and refactorings of the existing code critics. This analysis could
then be repeated iteratively, to further improve the improved critics, again by

A Critique on Code Critics 11

analyzing their correlations, until we eventually reach a stable group of proposed
critics.

Finally, although in this paper we focused on Pharo Smalltalk’s code critics
only, we believe the ideas and approach presented in this paper to be easily gen-
eralizable to other code checking tools and programming languages. To confirm
this, we have started to analyze other code checking tools for similar correlations
and improvements: CheckStyle [2], PMD [7] and FindBugs [4, 11] for Java, Splint
[9] or Cppcheck [3] for C, Pylint [8] for Python, FxCop for .NET, PHP Mess
Detector [6] for PHP and Android Lint [1] for Android programming. For each of
these tools, we performed an initial analysis on a single application. We observed
that, in spite of the fact that some of these tools focus on checks that are quite
different from Pharo’s code critics, our approach could still be used to analyze
those tools. Whereas for most tools we indeed found many examples similar to
the critique patterns mentioned in this paper, for some tools we discovered only
very few correlations. This could be due to the particular applications that were
analyzed (indeed, in our analysis of the 51 packages of Moose too, there were
a few packages that did not have many critics). Or it could suggest that, while
the approach remains applicable, it may be less relevant for some of the tools
we analyzed. This may for example be the case for tools that are already quite
mature and offer a stable and orthogonal set of checks. More experiments are
needed to confirm this. This may be the topic of a forthcoming paper.

References

1. Androidlint. http://tools.android.com/tips/lint. Accessed: 2015-03-30.
2. Checkstyle. http://checkstyle.sourceforge.net. Accessed: 2015-03-30.
3. Cppcheck. http://cppcheck.sourceforge.net/. Accessed: 2015-03-30.
4. Findbugs. http://findbugs.sourceforge.net. Accessed: 2015-03-30.
5. MOOSE. http://www.moosetechnology.org/. Accessed: 2015-03-30.
6. Phpmd. http://phpmd.org/. Accessed: 2015-03-30.
7. PMD. http://pmd.sourceforge.net/. Accessed: 2015-03-30.
8. Pylint. http://www.pylint.org/. Accessed: 2015-03-30.
9. Splint. http://www.splint.org/. Accessed: 2015-03-30.

10. G. Arévalo, S. Ducasse, S. Gordillo, and O. Nierstrasz. Generating a catalog of
unanticipated schemas in class hierarchies using formal concept analysis. Inf. Softw.
Technol., 52(11):1167–1187, Nov. 2010.

11. D. Hovemeyer and W. Pugh. Finding bugs is easy. In Companion to the 19th An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA 2004, pages 132–136. ACM, 2004.

12. R. Marinescu. Detecting design flaws via metrics in object oriented systems.
In Proc. of the Technology of Object-Oriented Languages and Systems (TOOLS),
pages 173–182. 2001.

13. N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic generation of detection
algorithms for design defects. In Proc. of the Int’l Conf. on Automated Software
Engineering (ASE), pages 297–300. IEEE Computer Society, 2006.

