
SATToSE 2014: The Post-proceedings Editorial

Davide Di Ruscio† and Vadim Zaytsev‡

†University of L’Aquila, Italy, davide.diruscio@univaq.it
‡Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Venue

SATToSE is the Seminar Series on Advanced Techniques and Tools for Software
Evolution. Its previous editions has happened in Waulsort (Belgium, 2008), Côte
d’Opale (France, 2009), Montpellier (France, 2010), Koblenz (Germany, 2011,
2012) and Bern (Switzerland, 2013). Its seventh edition took place in L’Aquila
(Italy) on 9–11 July 2014. Each edition of SATToSE witnesses presentations on
software visualisation techniques, tools for coevolving various software artefacts,
their consistency management, runtime adaptability and context-awareness, as
well as empirical results about software evolution.

The goal of SATToSE is to gather both undergraduate and graduate students
to showcase their research, exchange ideas, improve their communication skills,
attend and contribute technology showdown and hackathons.

The highlights of the programme included five invited lectures (given by
Marianne Huchard, Leon Moonen, Alfonso Pierantonio, Alexander Serebrenik,
Tanja Vos), an interactive tutorial (by Anya Helene Bagge) and a hands-on
hackathon (by Alexander Serebrenik). The detailed programme, as well as the
pre-proceedings volume with moderated but not yet reviewed abstracts and
drafts can be found on our website: http://sattose.org/2014.

Selection process

We would like to express our gratitude to the following people (listed in lexico-
graphic order) who provided the reviews for the submissions of this volume:

� Gabriela Arévalo
� Çiğdem Aytekin
� Anya Helene Bagge
� Antonio Cicchetti
� Juri Di Rocco
� Davide Di Ruscio
� Mike Godfrey
� Mathieu Goeminne
� Ammar Hamid
� Michiel Helvensteijn

� Ludovico Iovino
� Andy Kellens
� Xavier Le Pallec
� Angela Lozano
� Mircea Lungu
� Tom Mens
� Oscar Nierstrasz
� Bogdan Vasilescu
� Sylvain Vauttier
� Tanja Vos

mailto:davide.diruscio@univaq.it
mailto:vadim@grammarware.net
http://sattose.org/2014


The call for post-proceedings contributions was communicated to all partic-
ipants after the event — only some decided to pursue the finalisation of their
contribution for the post-proceedings, others often solicited more co-authors,
changed the title, included more results. As a result, we have received 12 sub-
missions: one of them was a keynote add-on, one was a tutorial write-up, the
rest were being extended versions of pre-proceedings abstracts.

Each submitted report has been reviewed by at least three different peers.
All submissions with a conflict of interest with one of the editors (co-authored
by them or their colleagues) were handled by the other editor. The emphasis
was put on clear problem definitions and descriptions of advanced aspects of
the techniques contemplated in the solution, as opposed to the finality of the
obtained results. Thus, most submissions are intermediate reports on ongoing
work or summaries of previously developed tools and papers. The authors re-
ceived enough time after the review to take the feedback into account and finalise
their submissions.

Organisation

� General Chair: Davide Di Ruscio (University of L’Aquila)
� Program Chair: Vadim Zaytsev (Universiteit van Amsterdam)
� Hackathon Chair: Alexander Serebrenik (TU Eindhoven)
� Steering Committee Chair Ralf Lämmel (Universität Koblenz)
� Local Committee:

• Romina Eramo (University of L’Aquila)
• Ludovico Iovino (University of L’Aquila)

� Steering Committee:
• Michael W. Godfrey (University of Waterloo)
• Marianne Huchard (Université Montpellier 2)
• Tom Mens (University of Mons)
• Oscar Nierstrasz (University of Bern)
• Coen De Roever (Free University Brussels)
• Vadim Zaytsev (Universiteit van Amsterdam)

� Post-proceedings Editors:
• Davide Di Ruscio (University of L’Aquila)
• Vadim Zaytsev (Universiteit van Amsterdam)



Contents of the volume

� Profiling, Debugging, Testing for the Next Century
The methods of software engineering have improved significantly over half
the century of its existence: we now have advanced languages that help to
shape our thinking about both the problem and the solution; we have com-
pilers and other grammarware that assists us in the most laborious tasks
of translating programs written or drawn in software languages to machine
code; we have various programming paradigms and schools of thought that
allow us to represent our solutions in a concise yet efficient way. Program-
ming environments have also grown, but the author of this contribution
claims that the difference between an old Emacs and a modern Eclipse is
less ground-breaking than the difference between, say, RPG and Swift. This
report focuses on possible advanced techniques of profiling, testing, debug-
ging and visualisation, prototyped in Pharo.

� “What Programmers Do with Inheritance in Java”, Replicated on Source
Code
Inheritance is one of the key techniques of the object-oriented paradigm.
As such, it has been thoroughly researched — this paper replicates one of
such studies, published at ECOOP 2013. The original study found that the
defined inheritance relationships are extensively used in the code, mostly
for subtyping and reuse purposes, and that late-bound self-reference occurs
frequently. This replication confirmed and complemented the results by run-
ning the same experiments on the source code as opposed to the byte code
used in the original paper.

� Explora: Infrastructure for Scaling Up Software Visualisation to Corpora
Software analyses often receives considerable profits from visualisation tech-
niques, which help overcome the intangible nature of software by letting the
user interact with concrete representations of various aspects of it. Some vi-
sualisations are also models which abstract from less important aspects and
focus on the essentials. Yet, software corpora, quite often used in empiri-
cal software analysis — a software reverse engineering domain that requires
useful and scalable visualisations — are not well-supported, as the authors
of this report claim. This contribution presents Explora, an infrastructure
that is specifically targeted at visualising software corpora (at this point, in
Smalltalk and Java).

� Detecting Refactorable Clones by Slicing Program Dependence Graphs
Code duplication is a well-known and well-researched code smell that can
sometimes be linked to increased maintenance costs and creating difficul-
ties in understanding a software system. One of the solutions addressing
the issue involves detecting duplicated code, refactoring it into a separate
function and replacing all the clones with appropriately parametrised calls
to the new function. This report describes a confirmatory replication of a
CodeSurfer-based tool for detecting such refactorable code clones based on
the combination of program dependence graphs and backward program slic-
ing.



� A Critique on Code Critics
Pharo (a Smalltalk IDE) has a recommendation facility called “code critics”
which is used for signalling code controversial and suspicious implementation
choices and for promoting good style language idioms. For instance, they
report code smells and encourage correct use of object orientation. In this
paper, code critics are re-evaluated based on a case study of the code of a
big system with 51 packages (Moose). It was observed that some code critics
tend to occur together and therefore should be grouped in issues of a higher
level of abstraction; others occur only in presence of others up to the point of
being overshadowed by them; some are even triggered by the same patterns
and offer competing solutions. The approach is promising and can be applied
broadly to any quality-driven program analysis.

� User Interface Level Testing with TESTAR
Software testing is exercised at many levels, and if done at the Graphical User
Interface (GUI) level, allows to create very realistic test cases due to close
emulation of user behaviour. This report offers an extension of the TESTAR
tool by the same authors and their collaborators. TESTAR implements a
model-driven approach to test automation which generates test cases based
on a model which is automatically derived from the GUI through the accessi-
bility API. The extension revolves around action ranking and using machine
learning techniques in order to execute sensible and sophisticated sequences
of GUI actions instead of blindly making a random selection of clicks and
keystrokes that are visible and unblocked in each state.

� Qualifying Chains of Transformation with Coverage-based Evaluation Crite-
ria
Development of complex and large model transformations can be optimised
by composition of reusable smaller ones. Yet, composing them is a complex
problem: typically smaller transformations are discovered and selected by
developers from different and heterogeneous sources, and then chained by
composition processes that are semi-automated at best. Without consider-
ing the semantic properties of a transformation, it is difficult for the user
to make the right choice between two possible proposed chains. This report
contains a proposal to classify such chains with respect to the coverage of
the metamodels involved in the transformation.

� Describing the Correlations between Metamodels and Transformations As-
pects
The paper considers two main concepts in MDE: a metamodel as a model
that all regular models in the ecosystem conform to; and a model trans-
formation as a description of changes in models. Surfacing, formalising and
maintaining relations between the artefacts of these two kinds is a big subdo-
main of modelware. This report presents an approach to understand struc-
tural characteristics of metamodels by looking at how model transformations
depend on metamodels of their source and target models.



� A Three-level Formal Model for Software Architecture Evolution
Architecture Description Languages are the focus of this paper: a brief
overview of them is given, and one (Dedal) is explain in full detail. It formally
defines the architecture of a software system on three levels: the abstract
specification, the concrete configuration and the instantiated architecture
assembly. Software evolution is expressed in Dedal in static invariants that
bind descriptions together and in evolution rules that trigger changes at each
level. The running example in the paper is a home automation software that
is used to guide the reader through explanations of evolution in Dedal. The
authors consider integrating the methods presented here, in an IDE platform
to help developers embrace software evolution further.

� Representing Uncertainty in Bidirectional Transformations
Bidirectional transformations (BX) are a largely recognised quickly grow-
ing field of MDE. In BX, we usually deal with both ways of propagating
information between two (or more) software artefacts — such changes are
typically non-univocal in the sense that more than one correct solutions could
be admitted and tolerated. However, most existing BX frameworks do not
represent uncertainty explicitly. In this report, the authors insist that they
should and show that it is quite possible in their framework, by re-explaining
the non-deterministic nature of bidirectionality and presenting a case study
with a family of cohesive models with uncertainty.

� Towards a Taxonomy for Bidirectional Transformation
Software model consistency and synchronisation are often achieved by de-
signing and implementing bidirectional transformations. This report demon-
strates an early attempt to take a step towards a taxonomy of BX by il-
lustrating a set of relevant properties of such mappings. The contribution is
of an analytical nature: existing literature is analysed and characteristics of
existing approaches are put into perspective.

� Languages, Models and Megamodels
Software modelling is considered to be a somewhat difficult or even obscure
subdomain of software engineering, with some of its topics such as meg-
amodelling leaning towards the obscure part. However, it can be explained
in relatively simple terms and given to software evolution researchers, can
prove to be a useful advanced technique of expressing relations between soft-
ware artefacts. During SATToSE 2014, we have held an interactive tutorial
on this topic, which this report tries to summarise and complement.


