
The Static Analysis of Linear Loops 

Michael Lvov1, Yulia Tarasich1,  

1Kherson State University, 40 rokiv Zhovtnya St. 27 

73000, Kherson, Ukraine 

{Lvov, YuTarasich}@ksu.ks.ua 

Abstract. In the first part of the paper, we consider the problem of generation 

of polynomial invariants of iterative loops with operator of initialization of loop 

and non-singular linear operator in the loop body. In the article we also show 

the algorithm for calculating the basic invariants for linear operator of the 

Jordan cell, and an algorithm for calculating the basic invariants of 

diagonalizable linear operator with an irreducible minimal characteristic 

polynomial. The second part presents a new method for proving the invariance 

of the system of linear inequalities and of termination of certain linear iterative 

loops of imperative programs whose data are elements of the constructive 

linearly ordered field. The theoretical material of the paper is illustrated by 

examples. 
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1 Introduction 

As for now, methods of program statistical analysis are being studied intensely. 

One of the important problems is a problem of the automatic generation of program 

invariants. Invariants of program are used particularly in methods of programs 

verification. 

The problem of searching for loop invariants in imperative programs was offered 

by R. Floyd [1] and C. Hoare [2]. 

A correctness property of the program is formulated in terms of its total or partial 

correctness. Often, the proof of termination of the program should be implemented 

separately from the proof of its partial correctness. The algorithmic unsolvability of 

the termination problem shows that the general algorithm of proof of termination of 

the program does not exist. To prove the partial correctness of programs, Р. Floyd and 

S. Hoare offered the idea of building loop invariants [1] and invariant relations in 

control points of programs [2], which allows to prove programs by method of math 

induction. 

Thus, there is a problem of finding the invariants of the program as a key problem 

of analysis of programs properties. 



Now, the main attention is paid to the problem of constructing polynomial 

invariant equalities. A set of invariant equalities forms the polynomial ideal, a finite 

basis of which one must build. Note that in a general case, the problem of 

constructing this basis has not been solved. 

The existence and efficiency of algorithms to generate program invariants depend 

on the subject domain, i.e., on the properties of the data algebras the program deals 

with. Problems of automatic generation of program invariants for various data 

algebras have been being analyzed since beginning of 1970s at the Institute of 

cybernetics of NAS of Ukraine. Their main results are represented in [3,4]. 

Numerical data algebras are the most important from the practical point of view. 

The paper [5] outlines two methods of constructing polynomial invariant equalities 

types in programs whose data algebra is the domain of integrity (polynomially 

determinate programs) or a field (rationally determinate programs).  

This idea used in [6] to generate polynomial invariants of bounded degree for 

polynomially determined programs. Program conditions such as 0)( Xf  were 

taken into account, where )(Xf  are polynomials of program variables. In [7] they 

proposed a method to generate polynomial program invariants of bounded degree in 

linearly determinate (affine) programs containing recursive procedure calls. 

In [8] they proposed a method to generate polynomial loop invariants as template 

polynomials with the use of the algorithm for computing Grobner bases. In [9] they 

described a method to generate nonlinear and, generally speaking, nonpolynomial 

invariant relation for linear loops.  The method uses eigenvalues and eigenvectors of 

the linear operator in the loop body. 

The paper [10] is devoted to the algebraic fundamentals of the problem of 

generating polynomial loop invariants. The main result of the study is an algorithm 

for generating all polynomial invariants for loops with so-called solvable assignment 

operators. In particular, affine operators with positive real eigenvalues are solvable. 

The same authors [11] proposed a method to generate polynomial loop invariants, 

including enclosed loops, as well as program conditions in the form of both 

polynomial equalities and inequalities. The paper considers a great number of 

examples and presents tables for the algorithm time depending on technical 

parameters of the program being analyzed. 

In [12] they proposed an algorithm to search for loop invariants based on a system 

of recurrent relations with loop variables and parameter n, which is the loop index. 

The algorithm searches for the solution of this system not depended on n. It is 

implemented in Theorema software system and is illustrated with examples in detail. 

The problem of the description of invariant inequalities is less studied. The main 

intricacy lies in the infinity of the basis of the metaideal [13] of polynomial 

inequalities [13, 14]. Iterative methods for solving the problem of the description of 

linear invariant inequalities were considered in [15-18]. In [15], the problem of 

generation of the simplest invariant inequalities is solved. In [16-17], general iterative 

methods are used to solve the problem of searching for linear invariant inequalities. 

In [19] they described a method of proving the invariance of the system of linear 

inequalities for a class of linear iterative loops with real eigennumbers of linear 



   

operators in the loop body. This method can be applied to the entire class of linear 

iterative loops and it can also be applied to prove their termination. The paper with 

description of it is under preparation for a publication.  

2 The Static Analysis of Polynomial Invariant Equations 

2.1 L-invariants of Linear Maps and Invariants of Linear Loops. 

Definition 1. Let W be an n-dimensional vector space over the field of rational 

numbers Q  and let 
_

Q  be the algebraic closure of the field Q . Let ),....( 1 nxxX   

be an n -dimensional vector of variables. A rational function )()(
_

XQXp   is 

called L-invariant of a linear operator WWA :  if, for any vector Wb  the 

following relationship holds: 

)()( bpbAp                               (1) 

Example 1. (a linear operator with characteristic polynomial 23 x )  

Let us consider a linear operator with the matrix 


















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010

A , ),,( zyxX  . 

It's easy to calculate [26], that the rational expression 
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                (2) 

where ,2,2,2 23
3

3
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3
1    and )

3

2
sin()

3

2
cos(


 i  is the 

primitive third root of unity, is the L-invariant of this operator. 

Definition 2. Let ),...,( 1 nxxX   and ),...,( 1 nbbb  - be two collections of 

variables. The following fragment of an imperative program is called a linear loop:  

X := b; 

While Q(X, b) do X := A*X  

Remark 1. Operators X:=b and X:=A*X are interpreted as simultaneous 

assignments of the values of the variables of the right sides to the variables on the left 

sides. In what follows, we ignore the condition Q(X, b) and consider that the linear 

loop is infinite and that its execution is nondeterministic. Thus, we consider loops of 

the form 



X := b; 

While True|False do X := A*X               (3) 

Definition 3. Let a vector Wbbb n  ),...,( )0()0(

1

)0( be chosen as initial. 

Sequence of vectors, set by recurrent correlation 
)()1( jj Abb 
, will be called the 

orbit of linear operator A .  

A loop sets the orbit of linear operator A  in spaceW . Obviously, an orbit A  lies 

in some one-dimensional variety, and the system of invariants characterizes this 

variety as algebraic. 

Definition 4. Polynomial ),( XbP is called loop invariant if, for any natural j  

and any 
)0(b  0),( )()0( jbbP . 

Theorem 1. If )()()( XqXrXp  is an L-invariant of a linear operator A , 

then the polynomial )()()()( brXqbqXr   is an invariant of a linear loop over the 

field 
_

Q .  

We call such loop invariants L-invariants (of linear loops). 

 

Example 2. (a linear loop with operator from example 1) 

The linear loop corresponding to the operator A , has the form 

(x, y, z) := (a, b, c); 

While True|False do (x, y, z) := (y, z, 2*x) 

L-invariant of this loop is defined by formula (2):  

))(()(

))()((),,,,,(
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2

2
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2
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2
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cbacbazyx

cbazyxzyxcbazyxP








    (4) 

Note that L-invariant of the loop ),,,,,( cbazyxP is defined over a field 

),,( 321

_

Q . However, it has a set of L-invariants with coefficients from the field 

Q , which can be constructed, they are shown in (4) the canonical form to the 

polynomial from 321 ,,  , and then - to the polynomial from 2 with using the 

relation 
2

231    and Vieta's  relation. Technique for computing L-invariants over a 

field Q  is demonstrated in [20]. Note that if the variables cba ,,  are the assigned 

numeric values, L-invariant is converted into a loop invariant. 

In [22] they described the results, that link L-invariants to eigenvalues and 

eigenvectors of the operator 
TA . The main result of this work: 

Theorem 2 (about the multiplicative relations). Let m ,...,1  be eigenvalues of a 

linear operator A  and let mss ,...,1  be eigenvectors of the conjugate operator  
TA  



   

that correspond to these eigenvalues. We assume that there are integers mkk ,...,1  

such that  

1...1

1  mk

m

k
  .    (5) 

Then 

mk

m

k
XsXsXp ),(...),()( 1

1    (6) 

is L-invariant of the linear operator A . 

Proof of the theorem 2 can be found in [21] 

Example 3 (continuation of example 2). Apply the theorem 2 to the example 2. 

Calculate the eigennumbers of operator .A   



















002

100

010

A , 2
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01

)( 3 







 







 EAh .  

A characteristic polynomial has the form b 2)( 3  xxh . Its roots are  

23

3

3

2

3

1 2,2,2    ,  where )32exp(  i   is the primitive cube 

root of unity. 

Calculate the eigenvectors 321 ,, sss  of matrix 



















010

001

200
TA :  

)1,,(),1,,(),1,,( 3

2

332

2

221

2

11   sss . 

It is easy to check that 1
2

2

31 



. By the theorem 2 the operator A  has a L-

invariant (2). 

Corollary 1. If the minimum characteristic polynomial )(xh  of linear operator 

A  has a free term equal to 1  (i.e. 1)det( A ), then the linear operator A  has 

a L-invariant. 

Example 4. A loop of the points rotation of a plane ),( ba at an angle 

)34arctan( . 

(x,y) := (a,b); 

While True do (x, y):= (4/5*x - 3/5*y, 3/5*x + 4/5*y) 

Calculate the eigenvalues and eigenvectors of the operator A : 










 


5/45/3

5/35/4
A . 1

5

8
)( 2   EAh . 

5

3

5

4
,

5

3

5

4
21 ii   .  )1,(),1,( 21 isis  .  

Since 121  , L-invariant of the operator A  is  

22))((),( yxyixyixyxp  . 

And the loop invariant is 
2222 bayx  .   

Example 5. Loop of Fibonacci sequence calculation, starting with a pair of ),( ba .  

(x,y) := (a,b); 

While True|False do (x, y):= (x + y, x) 

Calculate the eigenvalues and eigenvectors of the operator A : 











01

11
A . 1)( 2   EAh . 

5
2

1

2

1
,5

2

1

2

1
21   . 

)1,5
2

1

2

1
()1,(),1,5

2

1

2

1
()1,( 2211   ss . 

Since 121  , L-invariant of the operator A  is  

2222

21 )()))(((),( yxyxyxyxyxp   . 

The invariant relation of loop is 
222222 )()( babayxyx  . 

Corollary 2. If the characteristic (minimum) polynomial )(Xh  of linear operator 

A  is axm  , then linear operator has an L-invariants.  

Proofs of corollaries 1 and 2 are in [21] 

Theorem 3. Let )(xh  be an polynomial from variable x  with rational 

coefficients and ),...,( 1 m are all its roots in an algebraic closure 


Q  of the 

field Q . Consider the set }1...:...{)( 11

11  mm k

m

kk

m

k
xxhG  that is the set of 

monomials of the field of rational expressions )(XQ  (possibly with negative 

degrees), who receive a value of 1 when we substitute i instead of ix . Then )(hG  

is a multiplicative abelian group with a finite number of generators. 

The proof of theorem 3 is obvious, since the subgroup of an abelian group with a 

finite number of generators has a finite number of generators. 



   

It follows from theorem 3 that the main problem for the generation of L-invariants 

is the problem of finding an algorithm for constructing a set that generate the groups 

)(hG . 

Example 6 (continuation of example 3). It is easy to see that we have the following 

multiplicative relations for the polynomial 2)( 3  xxh  between its roots: 

3

3

3

2

2

231

2

32132

2

1 ,,,    

These relations have relevant binomials 
3

3

3

2

2

231

2

32132

2

1 ,,, xxxxxxxxxxx  , 

that form a Gröbner basis of the ideal ))(()( hGIGI B  . 

Corollary 3. The set of all L-invariant of operator A  defines the field of rational 

expressions.  

Proof of corollary 3 is in [21] 

Theorem 4 Let )(xf be irreducible over the field Q  and reduced polynomial and 

},...,{ 21 m  is the set of its roots over the field 
_

Q . If we have a nontrivial 

multiplicative relationship 1...1

1 mk

m

k   with integer indices 
mkk ,...,1

between his 

roots, then the free term 
ma   )(xf  equal to 1  or 




m

i

ik
1

0 . 

The proof is in [21] 

Definition 5. L-invariants of operator A , defined of multiplicative relation 

between the roots of the characteristic polynomial 1...1  m , will be called 

whole. L-invariants of operator A , defined of multiplicative relation 

  0,1...1

1 i

k

m

k
km , will be called rational. 

Theorem 5. If the characteristic polynomial of operator A  is 1),( kxh k
, then 

operator A  has a rational L-invariants. 

The proof of theorem 5 is in [21] 

2.2 L-invariants of Jordan Cells  

A nondegenerate linear operator A can be represented in a suitable basis by the 

following Jordan form of its matrix [18, 22]. 





















)(...00

......

0...)(0

0...0)(

22

11

mmJ

J

J

A







,   (7) 

where )( iiJ   are Jordan cells of different sizes. Jordan cell is of the form  

































0...0

1...0

0...0

0...1

)(J     (8) 

Thus, theorem 2 is applied only to the rows of the matrix of the linear operator A , 

that correspond to the eigenvectors of A , i.e., to the collection of the last rows of 

Jordan cells )( iiJ  , mi ,...,1 . Below, we will extend this theorem to arbitrary 

nondegenerate linear operators by considering Jordan cells on the whole.  

Transformation XJJ *: , where ),...,( 1 kxxX  , in the coordinate form is 

kkkkk xxxxxxxx    :;:;...;: 11211  

Introduce the following notation: zxyx
df

k

df

k  ,1 .  

For each Jordan cell )( kkJ  of the Jordan form of the operator A  its own 

sequence of subspaces of eigenpolynomials is determined. 

The main theory of the eigenpolynomials of Jordan cells as well as of the 

relationship between eigenpolynomials and L-invariants of linear operators is 

formulated in [23, 24]. 

The concept of eigenpolynomial of a linear operator can be of an independent 

interest for linear algebra applications. 

If all eigennumbers of linear operator A  are rational numbers, then the problem of 

constructing this basis is an algorithmically solvable with the help of 

theoretical&number algorithm. 

In the [25] a direct method of finding invariants of Jordan cells is described. The 

main results of this work are discussed below. 

Theorem 6 (about the structure of the ideal of invariants). Let A  be an arbitrary 

nondegenerate linear operator, presented in a suitable basis of matrix (7), 

)(),...,(
1

AIAI
kJJ  are ideals of his invariants, presented in homogeneous 

coordinates 

iiiiijij zyuzxu /,           
iiiiijij cbecae  ,  

by basis of the form 

)1,,( uqu jj  , 2,...,1  nj  

and )(AI is an ideal of invariants of the operator redA , and )(AI  is an ideal of 

invariants of the operator A  (of the loop (3)). Then  

))(())((...))(())((
1

AIGBaseAIGBaseAIGBaseAIGBase
kJJ  

 
Theorem 7. If a group of multiplicative relations of roots of an irreducible 

polynomial )(xf  is nontrivial ))()(( efMR  , there may be two situations: 



   

1. The set of roots ),...,( 1 n   is divided into certain number l  of equally-

powerful classes .,...,1};,...{;,..., 1)1(1 ljjddjjl     

wherein ldnlend j  ),( . Multiplicative relations from )( fMR  in this 

situation have the form ljjj ,...,1,   , where j are roots from 1. 

2. The equally-powerful classes .,...,1};,...{,,..., 1)1(1 kiiddiil     

Wherein kdnlend j  ),( . Multiplicative relations from )( fMR )( fMR  

in this situation have the form lijiji ,...,1,   , where j are roots from 1. 

Both situations may occur simultaneously. 

For the proof of theorem 7, take a look in [25]. This theorem has a key role for the 

algorithm of calculation of  the system generators of the group )( fMR . 

Theorem 8. Let ][)( xQxf   is an irreducible polynomial and m ,...,1  are its 

roots. The problem of constructing a basis of a set of generating the group 

}...:...{)( 11

11 UxxhG mm k

m

kk

m

k

U   , where U  is a group of all roots from 1 is 

algorithmically solvable. 

The proof of theorem 8 is in [25]. 

Thus, by theorem 6, the invariants of a linear operator can be classified as 

intracellular - that are inherent to each Jordan cell of linear operator, and intercellular 

- those that are inherent in its diagonalisable part. 

Intracellular invariants are computed directly from the formulas of [25] 

)

)(

...

)(

( 1

1

njn

jn

jjj acz

bzcy
C

acz

bzcy
C

a
c

z
x





















 . 

The existence of intercellular invariants depend on the existence of nontrivial 

multiplicative relations between the eigenvalues of the linear operator (theorem 2). 

For linear operators with an irreducible minimum characteristic polynomial 

problem of constructing a basis of set of multiplicative relations between its 

eigenvalues is algorithmically solvable, but the algorithm of theorem 8 is ineffective 

due to a very large degree of the polynomial )(xS ,  which is be necessary to 

decompose into factors. 

The problem of constructing a basis of set of multiplicative relations for arbitrary 

linear operators is still open. 

3 The Static Analysis of Linear Inequalities. 

Let 
nKW   be an n-dimensional vector space over a linearly ordered and 

constructive field K  and 

_

K is an algebraic closure of K . 



Definition 6. As a linear semi-algebraic set ),...,( 1 nxxM  is called the area W , 

that is defined by a quantifier-free formula in the signature of the logical connectives 

 ,&,  with linear inequalities in the variables
 nxx ,...,1  as atoms. If the field 

M  is given by the formula
 

)(XF , i.е. }F(X):{XМ  , We shall denote it by
 

))(( XFM .   

Definition 7. Let ),,...,( 1 nxxX   and ),...,( 1 nbbb   be two vectors of 

variables. The linearly loop with the precondition is a fragment of imperative program 

in the form 

X := b; // )(bS
 
- a precondition 

While U(X, b) do X := A*X                     (9) 

where )(bS , and ),( bXU  are quantifier-free formulas of applied logic of linear 

semi-algebraic sets, A  is a matrix of the linear operator WW  . 

Non-deterministic and associated with loop (9) we call the loop of the form 

X := b; // )(bS - a precondition 

While True|False do X := A*X             (10) 

whose number of repeats  is nondeterministic.     

Remark 2. Definition 7 of loops differs from the definitions 2 and 3 because of its 

precondition )(bS  that limited the initial values of the loops variables by a linear 

semi-algebraic set and an introduction to the consideration of the conditions of the 

loop ),( bXU .  

Definition 8. Linear inequality ],[),( 1 bXKbXP   is called an invariant for the 

loop (9) with a precondition )(bS , if it is executed whenever the loop body is 

executed.  

nnnn

df

babaxaxabXP '

1

'

111 ......),(   

Thus, the invariance means performing of a sequence of formulas 

),()( bbPbS  ,  // Invariant is executed in the input in the loop 

),(),( bAbPbbU  ,   // Invariant is executed after the first iteration 

),(),( 2 bbAPbAbU  , // Invariant is executed after the second iteration 

               … 

),(),( 1 bbAPbbAU kk  , // Invariant is executed after the k-th iteration 

),(),( bbAPbbAU kk   // Invariant is executed at the completion of the 

loop 



   

Theorem 9. If all eigenvalues Kin   ),,...,( 1  of operator A  are real, 

the problem of proving of the invariance ),( bXP  for the loop (9) is algorithmically 

solvable. 

The main content of the proof of theorem 9 is formulated in lemmas 1-5 [13]. 

Definition 9. The linearly defined loop (10) is called completed if for any 

))(( XSMb   the sequence  

,...1,0,, )()1()0(   mbAbbb mm
       (11) 

for some natural )(** bmm   satisfies the relationship ),( *)( bbU m .  

Thus, if the loop is completed, for each ))(( XSMb   is the smallest positive 

integer )(* bm , on which the loop (9) is completed.   

Definition 10. Let 
nKca , . A linear inequality 

 ),(),(),,,( bcXabXcaL
df

      (12) 

is called conditional invariant of linear certain loop (9) (with a precondition 

)(bS
), if for any 

))(( XSMb 
 

),( bAOrbit
 (11) is satisfies to relations 

),,,()( bbcaLbS 
, 

)(*,...,2,1),,,,(),( )()1( bmmbbcaLbbU mm 

. 

Remark 3. If the loop (10) is not completed (is branched) at some point b ,  

)(* bm
 it should be considered equal to infinity.: 

)(* bm
.  

Example 7. 

)10(&)10(),(  yxyxS
, 

)|(|&)|(|),,,( 2121   bybxbbyxU
, 













5/35/4

5/45/3
A . 

21 22 bbyxL 
//

)2,2(),1,1(  ca
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Fig. 2. Geometric illustration of the linear defined loop. 

In this example, the linear operator A  is an operator of rotation for 

angle )3/4(arctg . A starting point b  belongs to the unit square. The orbit of a 

linear operator A  is a sequence, each point of which lies on the loop 
2

2

2

1

22 bbyx  . The condition of repeating of the loop is a «point ),( yx  that 

lies outside the square with side 2  and center at ),( 21 bb  ». Therefore, a loop is 

completed when the point gets inside this square, i.e. a point will make the rotation by 

angle  k2  with accuracy equal to . Since the angle   is incommensurate 

with  , the orbit of the operator A  is a dense set on the circle
2

2

2

1

22 bbyx  , 

therefore, the loop is complete. In this example, the basic algorithm is used to prove 

that 21 22 bbyxL  is a conditional invariant of loop. 

Let )(xf  be a minimal characteristic polynomial of the operator A , 

},...,{ 1 n   is a set of its roots (spectrum A ).  Suppose further that, k21,...,  

is a set of complex eigenvalues, and nk  ,...,12   
is a set of real eigennumbers 

and kk 21221 ,...,     than we obtain a representation of a linear operator in 

the so-called real Jordan form: 
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

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
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

n

k

kB

B

B
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0..0.0
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1
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 ),,,( bXcaL


 

),( bXU

 



   

Where      











jj

jj

jj rB




.
 

Remark 4. After the transition to a basis of eigenvectors the coefficients of 

inequality will be changed. If )(S is a transition matrix, then the new values of the 

vectors ba ,  calculated by the formulas 
1)(1)( ,   SbSbSaSa SS
. But in order 

not to overload the text by new notations, we will use the old notations. 

Note, that the matrix of the form 













df

B , where 122    is a matrix 

of rotation of vector of two-dimensional space on the angle  , that is defined by 

ratios   )sin(,)cos( . That is why 













)cos()sin(

)sin()cos(

jj

jj

jj rB




, 
22

jjjjr   . 

inequality (12), whose invariance is regarded by a loop (11) with a specific initial  

value b , indicates that ),(),)(,( bcXabAOrbitX  . Algorithm of prove of 

the invariance of (12) will be formulated in the equivalent form: 

),(),(
),(

bcXaSup
bAOrbitX




. 

Let us consider the linear form ),(...2211 Xaxaxaxa
df

nn  . The 

transformation XAX *:  converting this form in ),( AXa , and m  is a multiple 

iteration of loop, that is described by the transformation XAX m *:  - in 

),( XAa m
.   

Let 
),(),...,,( 212211 kkk xxXxxX 

, 
),(),...,,( 212211 kkk aaaaaa 

. 

Then 

nnkkkk xaxaXaXaXa   ...),(...),(),( 121211      (13) 

Conversion ),( AXa  of a linear form can be written as 

nnnkkkkkk xaxaXBaXBaAXa    ...),(...),(),( 121212111    (14) 

And its m -th iteration can be written as 

nn

m

kk

m

k

m

k

mm xaxaXBaXBaXAa
nkk

  
...),(...),(),( 121211 121

  (15) 

Passing in (14) to the representation in the form jjj BrB  , we obtain: 

nn

m

kk

m

k

m

k

m

k

mmm xaxaXBarXBarXAa
nkk

  
...),(...),(),( 1212111 121  



Consider the question of the set of values of the operator orbit 

),(...),( 11 1 k

m

k

m XBaXBa
k

  for the initial value ),...,( )0()0(

1

)0(

kbbb  , where 

),( 212 jjj bbb  , kj ,...,1 . The interpreted pair jX  shall be as points on the two-

dimensional plane, and the conversion of 











)cos()sin(

)sin()cos(

jj

jj
df

jB



- as a 

rotations of points jX  on the angle j .   

The proof is formulated in lemmas 1-7 in [20]. 

Theorem 10. The problem of proving the invariance of inequality ),,,( bXcaL  

for the loop (9) with diagonalizable linear operator A  and with an initial point b  is 

algorithmically solvable. 

Theorem 11. The problem of proving the invariance of inequality
 

),,,( bXcaL  

for the loop (9) (i.e., with the precondition )(bS ) is algorithmically solvable. 

Theorem 12. The problem of termination of the loop (9) is algorithmically 

solvable. Proof of theorems 10-12 is in [20]. 

4 Conclusion 

This review represents main results of several works of one of the authors of the 

theory of program invariants. Subject of the research is an invariant of linear iteration 

loops. A new approach to the problems of static analysis of linear loops is 

represented: the problem of generating of polynomial invariance equations and the 

problem of proving the invariance of linear inequalities. This approach uses the 

representation of a linear operator in the loop body in the Jordan form and is based on 

the analysis of the spectrum of this operator.  

The main results about invariant equality are the theorem 2 about multiplicative 

relations, a formula of invariant equations for the Jordan cell, a theorem 6 of the 

structure of a basis of the ideal of polynomial invariants, and, also, the algorithm of 

constructing of the basis of ideal of polynomial invariants for operators with 

irreducible over the field of rational numbers characteristic polynomial. Thus, for a 

given problem the problem of constructing of the basis of ideal of polynomial 

invariants for operators with a reducible characteristic polynomial remains open. 

From the practical view, the interest is in constructing the corresponding effective 

algorithms. 

Unlike polynomial equations, the set of linear invariant inequalities does not have a 

finite basis. Therefore, a method of generating the basis is not applicable to this task. 

This paper represents the basic idea of the direct method of proof of the invariance of 

linear inequalities. There is a need to note, that the key role in the method is played by 

the set of maximal (from the modulus) eigenvalues of operator A . In this case, the 

case of maximal real eigenvalues and the maximal complex eigenvalues are 

significantly different. In the second case, the method uses the original method of 



   

finding the maximum of the linear form in the orbit of a linear operator, and various 

algorithms of computation in the field of algebraic number. 

There is a need to assume that this method can be used as a basis for a general 

algorithm of proving the invariance of a system of linear inequalities for linear-certain 

programs, similar to the method of proof of invariance of polynomial equations [5, 6], 

and to prove the invariance of polynomial inequalities for linear-certain programs.  
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