Catalog-based Token Transportation in Acyclic
Block-Structured WF-nets

Ahana Pradhan and Rushikesh K. Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Abstract. The problem of workflow instance migration occurs during
dynamic evolutionary changes in processes. The paper presents a catalog-
based algorithm called the Yo-Yo Algorithm for consistent instance mi-
gration in Petri net workflow models. It uses a technique of folding
and unfolding of nets. The algorithm is formulated in terms of Colored
Derivation Trees, a novel representation of the runtime states of work-
flow nets. The approach solves the problem for certain types of changes
on acyclic block-structured workflow nets built in terms of primitive pat-
terns moving much of the computation to schema level on account of the
use of two critical ideas, a catalog and the folding order. The approach
is illustrated with the help of examples and comments on its correctness.

Keywords: Block structured Workflows, Dynamic Evolution, Structural
Compatibility, Token Transportation, Workflow Specification

1 Introduction

Organizational goals are realized by executing business processes that involve
people, resources, schedules and technology. In order to cope up with changing
environments, changing requirements or new internal challenges, business pro-
cesses need to be changed. Traditional workflow management systems (WFMS)
are well-suited for rigid processes. However, the volatile nature of business pro-
cesses requires intricate facilities for changing the workflows at runtime in WFMS
in a valid and consistent manner. In absence of this support the information sys-
tem susceptible to changes needs to be tackled by slower porting processes, it
not being immediately usable due to the not easily bridgeable gap between the
pre-planned and the evolved actuality.

An evolutionary change includes process change at schema level and also
instance migration for all running cases. This paper describes the Yo-Yo algo-
rithm for Petri net models of acyclic block-structured workflows to carry out
consistent runtime instance migration in this context. At the schema level a
Yo-Yo compatibility property is specified to define the scope of the proposed
instance migration algorithm. A specialty of the algorithm is that it gives the
consistent token transportation based on pre-computed catalog solutions. Sec-
ondly, from the two workflow net schemas, we are able to separate immediately
migratable and immediately not migratable markings. This work uses the Petri

288 PNSE’15 — Petri Nets and Software Engineering

net based workflow model called WF-net, which was introduced by Van der
Aalst [1]. We follow a block-structured formulation of WF-nets, in terms of
blocks, which are primitive workflow patterns namely the Sequence, the Parallel
Block and the Exclusive-choice Block. The algorithm is presented for carrying
out runtime token transportation under a set of change operations, which are
the inter-convertibilities among the primitive pattern blocks. The intuition of
this algorithm is presented in our earlier work [2]. The paper provides the full
formulation of the algorithm and its proof of correctness. The formulation is
developed in terms of a new runtime workflow state representation called the
Colored Derivation Tree.

The paper is organized as follows. After discussing the related work, we first
present our pattern based block structured workflow specification approach in
Section 3. Following this, the novel representation called Derivation Tree and its
colored form are developed in Section 4. In Section 5, the intuition behind the
algorithm is first outlined. The ingredients of the algorithm are then discussed
developing the notions of the Yo-Yo compatibility property between two nets,
instance level correctness of migration in the form of a valid and consistent
catalog of token transportation and folding, unfolding operations on WF-net.
Lastly, the algorithm, its working and its applicability are explained with the
help of a practical example scenario. A proof of correctness of Yo-Yo algorithm is
given in Section 6. The algorithm works on colored derivation tree representing
the old net and produces colors in the derivation tree of the new net, i.e. colors
corresponding to the marking in the new net. The catalog is used for color
transfer at each iterative step in the algorithm.

2 Related Work & Contributions of the Paper

In this section, we present a brief account of existing research on dynamic evolu-
tionary changes in Petri net models of workflows to highlight the achievements so
far and respective limitations. The literature in this field can be categorized into
two kinds. Firstly, the change region based approaches are designed to work with
arbitrary structural changes. The second category is of state based approaches.

2.1 Change Region Based Approaches

An earlier among the change region based approaches is the approach of Ellis
et al. [3], representing dynamic change as replacement of a part of the old net
and preserving the same history of execution by an altered making after the
replacement. In their approach called token transfert, the old part referred to as
the old change region is replaced by a new change region. However, some cases
are unsafe to migrate when the old change region is marked, and hence, the
transfers are delayed until the tokens in the old net reach a safe state. This de-
layed execution of changeover requires migration to be withheld till a consistent
point of execution is reached when tokens come out of the change region. This
early work in the field does not suggest a method for identification of unsafe

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 289

change regions or an algorithm for consistent migration. Ellis and Keddara [4]
demonstrate realization of token transfert with the help of transitions called flow
jumpers connecting places in the old and the new nets. However, no algorithm
to compute the flow jumpers has been suggested in this work.

Aalst [5] presents an algorithm for computing change regions in old and new
nets, the notion of which was introduced earlier [3]. Outside the change regions,
the marking in the old net can be carried forward into the new net one on
one without violating validity. However, the adopted consistency criterion uses a
notion of validity based on marking equality in terms of place labels, ignoring the
notion of consistency in terms of history equivalence. Therefore, for several types
of changes, the computed change region does not ensure consistent migration.

Sun and Jiang [6] present a variation of the algorithm given by Aalst [5] for
generating the change region. Their work handles dynamic changes for upward
compatibility, where the behavior of the old net in terms of execution traces is
preserved in the new net. For consistent instance migration, a weaker version
of history equivalence criteria is specified. Unlike usual notion of state in Petri
net formalism, in addition to marking, this work represents the runtime state by
considering execution trace. The work also formulates a property for migratabil-
ity at the level of instance, including those inside change regions. However, this
approach does not provide an algorithm for consistent instance migration.

The work of Cicirelli et al. [7] describes an implementation and a case study
of dynamic evolution based on the theory founded in the works of Ellis et al. [3]
and Van der Aalst [5]. Their work uses the change region generation algorithm
given by Van der Aalst to compute the unsafe regions for instance migration.
The migration strategy is termed as decentralized migration, since the executions
in different parallel branches are independently inspected and set for migration.
The tokens in the old instance are then tagged according to their presence inside
or outside the change region. In a particular state set for migration, some to-
kens may be inside the change region, whereas some are outside. Tokens outside
change region are migrated immediately. Tokens inside change region continue
till they come out of it and enter in a safe state suitable for migration. That
point of execution creates a valid marking in the new schema.

2.2 State Based Approaches

The difference between this category and the earlier one is that the state based
approaches do not pre-compute the change regions. Instead, they directly provide
state based mappings in the new net. If consistent mapping does not exist in
a particular state, this approach can not make use of any possibility of delayed
migration as in change region based approaches.

It has been noted [6] that the change region based approach is a pessimistic
approach since inside a change region, there may be migratable markings. In
the state based approach, this drawback is removed with the additional cost of
instance based solutions. Another shortfall of the existing change region com-
putation algorithms is that they overlook the history equivalence criteria. For
example, a change region computation focuses on finding a mapping for state

290 PNSE’15 — Petri Nets and Software Engineering

(p1,p2,p3) to state (p},ph,ps) ignoring one-to-many or many-to-one mappings
of other kinds such as mappings to states (p}, q), (p}, ph) or (p},ph, p5,p}) in this
case which have the same history of transition firings. The class of state based
approaches solve this problem by keeping the observable behavior of the nets in
focus, thereby exploring richer markings which need not be identical.

The approach of Agostini and Michelis [8] implement the feature of dynamic
change in their MILANO workflow system. This work allows a set of change
operations, which are parallelization, sequentialization and swapping. The map-
pings of runtime states between the old and the new workflows are precomputed
over the entire state space modeled as reachability graph. Instead of identifying
regions, state to state mappings are generated for valid migration points.

Van der Aalst and Basten [9] have looked into the problem of dynamic change
in light of inheritance relations between the nets in a migration pair. If the new
workflow specializes the observable behavior of the old workflow by hiding or
blocking some of the additional tasks, then the new workflow is considered as a
subclass of the old one. They show that if two nets are related by inheritance,
it is always possible to have a correct instance migration from the old to the
new workflow. The work also shows that addition or deletion of cycle, sequence,
parallel or choice branches preserve inheritance relation. The mapping between
the runtime states of the two processes is given by transfer rules guarantee-
ing soundness. However, the problem of consistency in terms of history is not
formally addressed, though the authors point out a supporting example.

2.3 Contributions of Our Work

The paper presents an algorithm for token transportation to ensure the con-
sistency criterion of history equivalence by applying catalog solutions without
replaying the history, unlike most of the existing approaches. For a practical sce-
nario of evolution, where thousands of instances need to be migrated, replaying
history for each of them or solving the state equation [10] along with the solution
for legal firing sequence problem [11] may be computation intensive. The Yo-Yo
algorithm improves the runtime by pre-computing migrations among primitive
patterns, and by generating what is called Yo-Yo compatible derivation trees at
the schema level. Moreover, for the chosen types of nets and change patterns,
the Yo-Yo algorithm successfully carries out consistent migration even for those
cases many of which are not suitable for migration as per the change region
based approaches due to their pessimistic prediction of non-migratability. Yo-
Yo approach does not compute change region, but in turn, it looks for catalog
based transportation which succeeds if the case is migratable by the consistency
criteria of history equivalence.

3 The Pattern Based Approach of Workflow Modeling

The Yo-Yo token transportation approach offloads some of the complexities in-
curred by traditional change region based or state based approaches by means of

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 291

its block structured workflow specification. Confining the scope to block struc-
tured workflows is in line with the philosophy of block structured executable
process models in BPEL [12] and pattern based models such as [13].

The permissible change operations on workflow schemas have been referred
to as change patterns in the literature [14]. The change patterns in the Yo-Yo
approach are inter-convertibilities among the primitive patterns shown in Fig. 1.
The following six kinds of pattern changes are considered: SEQ to AND, AND
to SEQ, SEQ to XOR, XOR to SEQ, AND to XOR, and XOR to AND.

AND fork XOR join
XOR fork
AND join

e o ty F>O— X0
O AND block O O—F—0—1>—0 O XOR block O
O—1 O SEQ block —O t @, |
ty y

Fig. 1. Primitive Gateways and Patterns

3.1 Workflow Primitives

Patterns are commonly occurring configurations in architecture. Control flow
behavior of patterns in workflow processes were described by Aalst et al. [15].
In our work, we formulate and use a grammar for workflow nets in terms of
the primitive workflow patterns. Fig. 1 shows the Petri-net models of primitive
fork-join gateways and pattern blocks. It can be noted that the transitions in the
gateways are kept unlabeled, since these are used only to model the control-flows
and not the workflow tasks. Consequently they are omitted from the specifica-
tions in the string based language of WF-nets which is introduced below. The
string based language captures the control flow dependencies through delimiters.

3.2 CWS: A Compact Block Structured Workflow Specification

Block-structured workflows are composed by nesting the primitive patterns. This
approach simplifies complex processes in terms of blocks. The block structures
are directly folded in or out in the Yo-Yo algorithm. For the purpose of our work
we assume that there is no repetition of transition-labels in a net.

Now, a compact string-based specification language called CWS is introduced
for specifying block structured acyclic WF-nets. Unlike graphical and tuple based
existing description methods for Petri net based workflows, in CWS, the places
are dropped and only the labeled transitions are included. The reason for exclud-
ing the places is that the consistency criterion based on task execution traces
does not require any role from the places. However, places shown in the pictorial
models can be regenerated by parsing CWS specifications. The execution control
transitions used in fork-join patterns are implicitly encoded into the delimiters,
and only the application transitions are included in the specification.

292 PNSE’15 — Petri Nets and Software Engineering

Start — SEQ;

SEQ — SEQ t SEQ t SEQ | SEQ AND SEQ | SEQ XOR SEQ | €
AND — (SEQ t SEQ) (SEQ t SEQ) ;

XOR — | SEQt SEQ]| [SEQ t SEQ] ;

‘Workflow Net CWS Specification
SEQ block in Fig. 1 taty

AND block in Fig. 1 (ta)(ty), (ty)(tz)

XOR block in Fig. 1 [t][ty], [ty][te]

The net in Fig. 8(a) t1(ta(t3)(ta))((ts)(te)t7)ts
The net in Fig. 8(b) titatsta(ts)(te)trts

Fig. 2. CWS Grammar, Example Nets, and their Specifications

The CWS grammar is shown in Fig. 2. A terminal symbol t represents a
transition corresponding to a task in the workflow. Round and square bracket
pairs are used to mark AND and XOR fork-join patterns respectively. The top
level pattern is always a Sequence that can generate either an empty string or a
nesting of blocks. Example nets specified in CWS are given in Fig. 2. It can be
seen that parallel or choice branches can be specified in any order, which creates
multiple equivalent specifications.

4 Derivation Tree of a Workflow Net

Parsing of workflow models into hierarchical blocks has been implemented ear-
lier in the approach of Refined Process Structure Tree (RPST) [16]. It provides
unique parsing of a WF-graph in terms of canonical single-entry-single-exit re-
gions which can be of arbitrary length. However, this approach results in an
infinite-sized catalog, which counters the advantage of our approach.

For Yo-Yo algorithm, the nets are required to be parsed in a hierarchy of fixed-
size ingredient blocks. This parsing obtains the Derivation Tree representation of
a WF-net. The derivation tree is obtained after cleaning up the delimiters from
the CWS parse tree. For the primitive nets shown in Fig. 1, their respective parse
trees and derivation trees are shown in Fig. 3. Table 1 shows the correspondence
between symbols in the derivation tree and WF-net.

The terminals in the parse tree are application transitions, delimiters and
empty sequences; and the non-terminals represent block-structured configura-
tions in the net. The derivation tree excludes delimiters and empty sequences
resulting in leaf non-terminals (e.g. n; and n!” in Fig. 3f).

The child nodes of AND and XOR non-terminals are organized into two
triplets representing the two fork-join branches. Each triplet contains two places
and a transition. The arcs in a triplet are ordered left to right, showing a tran-
sition sandwiched between pre- and post-places respectively.

A derivation tree can be viewed as a hierarchical composition of the deriva-
tion tree patterns, which are the derivation trees of the primitive patterns (Figs.
3b,d,f). An Example of derivation tree patterns in a bigger non-primitive net ap-
pears in Fig. 5, where the derivation tree patterns are marked as dotted ellipses.

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 293

In a derivation tree pattern, the arcs coming out of a SEQ node are ordered
from left to right. A SEQ node representing only a sequence of two transitions
has five arcs, two for the transitions and three for the places. A SEQ node repre-
senting the grammatical reduction of an AND or an XOR branching has three
arcs to connect to the branching and the places before and after it.

Table 1. Mapping of Derivation Tree Symbols

Derivation Tree Symbol Used |Correspondence with
Element/CWS Element WF-net

Leaf non-terminal /empty SEQ|Unfilled circle |Unfolded Place

Non-leaf non-terminal/SEQ |Unfilled circle |Abstraction (Folded place)
Non-leaf non-terminal/AND |Circle marked A|Two parallel branches
Non-leaf non-terminal/XOR |Circle marked x|Two exclusive-choice branches
Terminal/t Symbol tiapei Labeled transition ;qper

/l\’ e \-

e (¢——— AND——p) e e [<—x0R—>1 e
tx ty e SEQ ty

SEQ

e

(a) Parse tree of AND (c) Parse tree of SEQ (e) Parse tree of XOR

ns

Ry ’ [y a4
na' ’ \ .’‘na'"
S ! v .

7 na'
.

(b) Derivation tree of AND (d) Derivation tree (f) Derivation tree of XOR
of SEQ

Fig. 3. CWS Parse Trees and Derivation Trees of Primitive Patterns

4.1 Yield of a Non-terminal

Yield of a non-terminal is a sequence obtained by depth-first traversal on the
terminals in the entire subtree rooted at the non-terminal of a derivation tree,
where elements of the sequence are terminals or sets of terminals which can
be further nested. During the traversal, swapping the traversal order of triplets
under an AN D or X OR node does not alter the yield. Hence, yield of an AN D or
XOR node is formulated as a set of yields of the two triplets. Operator yield(n)
generates this traversal for a non-terminal n. For example, yield(ns) = {t5,t,}
in Fig. 3b, yield(n,) = t,t, and yield(n}) = € in Fig. 3d, yield of the root in Fig.

294 PNSE’15 — Petri Nets and Software Engineering

5a is a sequence with one element {t1tats, tatsts}, and the root of the derivation
tree for the net given in Fig. 8a has yield ¢ {t2{ts,ta}, {t5,t6}t7}ts.

4.2 Local Terminal Coverage of a Pattern

To recall, a pattern is any of the tree structures shown in Figs. 3(b,d,f). The no-
tion of local terminal coverage (LTC) defined on patterns establishes pattern to
pattern correspondence called peers in two nets. LTC of a pattern p, i.e. LT'C(p),
is a cross-product s x o of set s of terminals in the pattern and boolean value o
indicating whether the set is ordered (i.e. SEQ block). The individual elements
can be accessed through a dot operator as p.s and p.o.

Peer Patterns: Two LTCs can be compared by comparing their terminal sets
and the ordering. The comparison operator (equality) called peer is defined as
follows. Let =, be the set equality operator and =, be the ordered set equality
operator. We can define the comparison operator peer(p, q) for two patterns p, ¢
in terms of their respective LTCs, as an operator returning a boolean value:
peer(p,q) = ((p.oAq.0) A (p.s = q.8))V (—(p.oAg.0) A (p.s =5 q.8)). If both sets
are ordered (first part of the disjunction), then the comparison operator checks
for element ordering. This condition defines peer relation between sequences.
For example, Sequence t,t, and t,t, are not peers, their LTCs being ({t,,?,}, 1)
and ({ty,tz},1). If one of the sets is unordered (second part of the disjunction),
the comparison operator checks for set equality not considering the ordering of
elements. This condition defines peer relation between two patterns when one of
them is not a sequence. For example, Sequence ¢,t, and AND (¢,)(t,) are peers,
their LTCs being ({t;,t,},1) and ({t,,t.},0).

The peer operator is thus used to identify pattern to pattern correspondence
between two nets, which contributes to the formulation of hand-in-hand folding
and unfolding of the nets. For formulation of Yo-Yo compatible derivation trees
of a given pair of nets, identification of peer pattern pairs is the very first re-
quirement. The Yo-Yo algorithm carries out token transportation by transferring
colors between the peer patterns. Examples of peer patterns can be seen in Fig.
4, where any two derivation trees satisfy the peer relation.

4.3 Colored Derivation Trees

Coloring of a derivation tree represents a marking of the corresponding net. Non-
terminals can be colored following Definitions 1 and 2. Fig. 4 shows examples of
colorings of derivation trees and the corresponding net markings .

Definition 1 Black Non-terminal: (i) A leaf non-terminal corresponds to a
marked place in the net, and (ii) a non-leaf non-terminal abstracts a marked
subnet in which no labeled-transition has been fired yet.

Definition 2 Red Non-terminal: It is a non-leaf non-terminal that abstracts
a marked subnet where at least one labeled-transition is fired.

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 295

tx ty tx

O—-@® O0—1%@
cl‘loloclmlo
Fig. 4. Examples of Derivation Tree Coloring

5 The Yo-Yo Algorithm for Token Transportation

This section first develops an intuition to the Yo-Yo algorithm, and then discusses
the ingredients of the algorithm, which are the consistency and validity notions,
token transportation catalog, pattern hierarchy and folding order. The algorithm
is discussed at the end of this section.

As discussed previously, a net is considered as a composition of primitive
patterns, and the derivation tree of the net is a hierarchy of derivation trees
of the component patterns. Due to the hierarchical structuring of patterns, the
patterns in the upper level have places that are abstractions of patterns in the
lower level. In other words, a pattern is folded into a place of a pattern which
is at a higher level in the hierarchy. The Yo-Yo algorithm transports tokens
from old net to new net by transporting tokens between peer patterns of two
derivation trees starting from the top level. The tokens move into their places
in the new net as they trickle down when the folded places unfold. Resemblance
between the stretching and squeezing of the string of the Yo-Yo toy, and the
nets being folded and unfolded caused the nomenclature of the algorithm. A
token transportation catalog is constructed for the purpose of peer to peer token
transportation. Transportation in a larger net is thus carried out by applying the
cataloged solutions repetitively through the process of folding and unfolding of
the patterns organized in the hierarchy. Given two pattern hierarchies the Folding
Order is formulated, using which both of the nets are folded hand-in-hand.

5.1 Yo-Yo Compatibility at Schema Level

Yo-Yo compatibility at schema level is a structural property, which is necessary
for instance migration by the Yo-Yo algorithm. It ensures that the old and the
new nets can be folded and unfolded hand-in-hand. During a workflow life-cycle,
at the time of building the new net from the old net, if the changes are confined to
only the allowed pattern alterations, the schema compatibility can be achieved.

A pattern in a derivation tree can be from any of AND, XOR and SEQ
blocks. A pattern occurring at any level in the derivation tree can be replaced
by another pattern without changing the tasks involved in the pattern. Conse-
quently, the tree of the old net is modified by replacing a derivation tree pattern
by another. Two such replacements can be observed in the tree pair shown in Fig.
7. Syntactically, when a Sequence is changed into an AND and XOR, triplets
are formed by including additional nodes according to the grammar. The reverse

296 PNSE’15 — Petri Nets and Software Engineering

happens in the case of a change from AN D or XOR to Sequence. These syntactic
alterations among the primitive patterns can be observed in Figs. 3b,d.f.

The operator compatible(ny,ns) defines the Yo-Yo schema compatibility be-
tween two nets whose derivation trees are rooted at nodes ny and ny respectively:
compatible(ni,ns)= (yield(n,) =, yield(nz)), where the yield equality operator
=, compares two yields considering that swaps of triplets in a fork-join pattern
are permissible. An example pair of compatible yields is t1{to{ts, t4}, {t5, t6 }t7 s
and tqtotsts{ts, ts }t7ts for the trees shown in Fig 8a,b.

5.2 Correctness of Token Transportation

In order to ensure the correctness of the applied dynamic change, validity and
consistency of the resultant marking in the new net must be ensured. For Yo-Yo
migratability, the following models of consistency and validity are adopted.

Axiom 1 Counsistency: The tasks which are already completed in the old net
are also completed in the new net, and vice-versa.

Axiom 2 Validity: Resulting marking in the new net is reachable from its ini-
tial marking.

5.3 Pattern Hierarchy and Folding Order

The process of abstracting a single primitive pattern into a place in a net is called
folding. The reverse, i.e. expansion of a folded place into a pattern is referred
to as unfolding. Folding operation simplifies the structure of a net consisting
of multiple patterns converging into a single pattern at the top level. Folding
operation can be applied multiple times, each one simplifying the net further
until the whole net is folded into a single pattern at the top. The original net
can be obtained by the reverse process of unfolding abstract places into patterns.

(a) A Derivation Tree of Fig. 5b

(c) After folding of patterns Pi and P

Fig. 5. Derivation Tree and Folding Operation

Pattern hierarchy of a derivation tree is a partial order capturing the nest-
ing hierarchy of derivation tree patterns. In the corresponding net, it gives the

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 297

hierarchy of folding of primitive patterns into places. For example, the deriva-
tion tree shown in Fig. ba for the net in Fig. 5b shows the patterns in dotted
ellipses for which the pattern hierarchy is given by bottom-up partial order
({Ps < P2, P3; < P1}). Each folding expression P <+ C in the tree gives a pair
of parent-child patterns, where child C' is folded into a place in parent P. Ex-
pressions in round brackets represent sequences, and sets represent no ordering
constraint among its folding expression elements.

Given two pattern hierarchies, a folding order is formulated for applying the
Yo-Yo algorithm which is the order to fold the peer patterns hand-in-hand. All
parent-child relations among the patterns for each of the two trees are covered
(directly or transitively) in the folding order. The top-down folding order expres-
sion for the two bottom-up pattern hierarchy expressions ({Ps < Py, P3 < P })
and (P < Pj, P} < P{) is a sequence (< P5-P{ >, < Pi-P] >, < P3-Pj >)
consisting of folding expressions < P;-P/ >, i € {1,2,3}, where P;, P/ are peer
patterns. An expression in angular brackets is pair of peer patterns.

5.4 Enumeration of the Token Transportation Catalog

The catalog handles token transportation between two different patterns. Trans-
fer between the same patterns are handled by the algorithm through a simpler
generic step. Consistent migrations between valid markings of different peer pat-
terns create the cases of the token transportation catalog given in Fig. 6. The
counts of valid markings for the three patterns SEQ, AND and XOR blocks
are 3, 6 and 6 respectively. Each marking further generates variants based on
(1) whether the influential places are folded and (2) if a marked place is folded,
whether a token in it represents none, partial or full completion of the subnet
abstracted in it. Some of the resultant markings that are not migratable due
to the consistency criterion are omitted from the catalog. The catalog shown
in Fig. 6 contains 37 entries all in all, and the transportation mappings among
them. The entries are enlisted as colored derivation trees. A bidirectional arrow
between migratable colorings of different patterns means that if one is the old
pattern coloring the other can be the new coloring. For example, consider the
mapping between case 28 and 26. Case 28 is a sequence, where the token is after
t, and before ¢,. Case 26 is an AND pattern which has consistent mapping from
case 28. It can be seen that there are two tokens in the two parallel branches of
case 26, one after ¢, and another before ¢,,. Thus, both the cases have completed
task t, and hence they are defined to be consistent with each other.

In some cases, a SEQ coloring can be mapped to more than one AND or
XOR colorings. These ties are broken based on the conditions on non-empty
yields noted in Table 2. A tag symbol is associated with each condition for use
in Fig. 6. Also, if a node in the catalog is identified as a leaf or non-leaf or
as a just completed folded place (i.e. holding a token just before the exit), the
constraint has to be matched. In the table, node o is in the old SEQ@ pattern
tree, and ni, ny are in the new fork-join pattern tree. When o is the leftmost
child, nq is the leftmost child, and no is the node to the left of ¢,. When o is the
middle child, n; is the node to the right of ¢, and ns is the node to the left of

298 PNSE’15 — Petri Nets and Software Engineering

1 A 2 7 8 17
(non-leaf)
' 'ty tx 'ty "‘ ty

\ 'ﬁo< (m oy ')

5 1
(leaf) 16
/ (non-leaf)

) ty

@; L
g; gg 2 2
o Oﬁk»@ —r
% 'ty
(leaf)

%’ ./53 > =
37 ;’%I; L ty
iiear) (Ieaf)
non-leaf)
tx’ ty

(Ieaf)
(just cnmgleted} \g

EE{ 21 32
o ™
(just!
i tx ty b Y completed)

(just c

Fig. 6. Consistent and Valid Token Transportation Catalog

ty. When o is the rightmost child, n; is the node to the right of t,, and ns is the
rightmost child. Node n is in the subtree rooted at o s.t. yield(n) =, yield(ns).
It can be noted that, since swapping of two tasks in a sequence is not included
in the present catalog, the sequence t.,t, never becomes sequence t,, t,.

Table 2. Tags and Conditions for Catalog Cases

lTag‘ Condition to be evaluated ‘
B |yield(o) =y yield(ni1) or yield(o) =, yield(n1).yield(nz2)Auncolored n
X | yield(o) =y yield(nz2), or, yield(o) =y yield(ni).yield(n2) A Red n
B yield(o) =, yield(ni).yield(nz) A Black n

5.5 Token Transportation Algorithm

The Yo-Yo algorithm formulates a consistent marking in the new net given the
marked old net and a Yo-Yo compatible derivation tree pair of the two nets. The
folding order for the derivation tree pair and the token transportation catalog
are required for the computation. The algorithm is given in Algorithm 1.

At first, the marking of the old net is translated into a coloring in the deriva-
tion tree of the net. Then, the algorithm colors the new derivation tree pattern

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 299

by pattern in top-down fashion given by the folding order. When all the color
ripples reach the leaves, the algorithm successfully terminates.

Algorithm 1: Yo-Yo Algorithm

Input: Old Marked Net N, Unmarked New Net N’, Uncolored Old Derivation
Tree D, Uncolored New Derivation Tree D', Folding Order F', Token
Transportation Catalog

Result: Marking in N’

1 colorTree(D,N)
2 Let < p-qg > be the first folding expression ‘fetched’ from F, where p and ¢ are
peer patterns
if modularTransport(p,q) # true then return false
for every folding expression < p-q > ‘fetched’ from the remainder of F', not
violating the partial order specified in F, where q has colored root do

if p is colored then

L if modularTransport(p,q) # true then return false

W

else localPropagation(q)

Mark the places in N corresponding to Black leaves in D’
return true

© 00w N o wm

Procedure colorTree(Uncolored Derivation Tree D, Marked Net N)

Result: Coloring in D
1 for each leaf non-terminal n in D corresponding to a marked place in N do
L color n Black

S < set of colored nodes in D having uncolored parent
while S is not ¢ do

n < any element from S

p <+ colorParent(n)

S+ S\ {n}

if p is not NULL then S + S U {p}

o N o ok W N

Fig. 7 shows the color propagation traces in the old and then in the new trees.
Old Tree: Steps 1-4 depict the bottom-up coloring of the old tree performed by
procedure colorTree. It starts by coloring the leaf nodes black corresponding to
the marked places in the net of Fig. 8a. Then for each colored node, its parent
is colored either red or black by procedure colorTree until the root is colored.

After transferring color between the top peers, the algorithm goes through the
peer patterns < p;,q; > from the folding order confronting the following cases:
(i) root of g; is uncolored, (ii) p; is colored, root of ¢; is colored, and (iii) p; is
uncolored, root of g; is colored. In case (i) there is no color transfer. In case (ii),
procedure modularTransport colors ¢;. When p; and ¢; are the same patterns,
after replicating the color of p; to ¢;, a red color transferred to a leaf is turned

300 PNSE’15 — Petri Nets and Software Engineering

black to preserve the validity of coloring. If p; and ¢; are different, cataloged
transportations are applied. In case (iii), proc. localPropagation colors g;.

Procedure localPropagation(Uncolored Pattern ¢)

Result: Coloring in ¢
r < root node of ¢
if r is Red then
ny < rightmost child of r
L if n, is leaf then color n, Black else color n, Red

oUW N

else color the leftmost child of r Black

New Tree: Step 1 New Tree: Step 2 New Tree: Step 3

Fig. 7. Derivation Trees Traces in Yo-Yo Transportation

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 301

Function modularTransport(Colored Pattern p, Uncolored Pattern q)

Data: Token Transportation Catalog

Result: Coloring in ¢

if p and q are same patterns then
color ¢ as p // same color transfer
change the Red leaves of ¢ to Black // no leaf is left Red
return true

W=

search catalog for colored p and its mapping to ¢
if no mapping found then
L print instance not consistently migratable, return false

® N o o«

color g as per the search result, return true

Function colorParent(non-terminal n)

1 if n is root node in D then return NULL
2 p < parent node of n

3 if n is Red then color p Red, return p
4 if n is of type SEQ then

5 if p is of type SEQ then

6 if n is leftmost child of p then color p Black else color p Red
7 else if p is of type AND then
8 if n is left child in any triplet from p and left child in the
9 other triplet is Black then color p Black else color p Red
10 else
11 if n is left child in any triplet from p then color p Black
12 else color p Red
13 else
14 if non-terminal left to n is leaf then color p Black else color p Red

15 return p

5.6 An Example Application Scenario

A realistic scenario of dynamic evolution in the reimbursement process in an
academic institute is now illustrated where the Yo-Yo algorithm is used for token
transportation. The old process schema is modeled by the net depicted in Fig.
8(a). The actual tasks corresponding to each labeled-transition are given in Table
3. As per this design, a student has to first fill the reimbursement form and
submit it to initiate a reimbursement request. Next, two concurrent subprocesses
begin, one of which is submission of the bills and then approval by guide and
head of the department. In parallel, the verification of the funding history for the
applicant and funding availability is performed by the awards’ committee, after
a favorable result is confirmed by the committee approval. The reimbursement
amount granted by these three approvals are lastly credited to the student’s
scholarship account thereby completing the workflow.

This design is evolved into the new schema, depicted in Fig. 8(b) due to
the following reasons: every time an application is approved by the head of the

302 PNSE’15 — Petri Nets and Software Engineering

t

t6
(b) The New Workflow Schema

Fig. 8. Reimbursement Workflow

Table 3. Tasks in the reimbursement process in an academic institute

Task Label[Actual Task HTask Label[Actual Task
t1 fill form & submit ts Funding history verification
to submit documents ts Funding availability verification
ts Guide’s approval tr Awards’ committee’s approval
ta HOD’s approval ts credit transaction

department only after its approval by the student’s guide. In the new design, this
dependency is reflected explicitly to prevent an applicant from making approval
request to the HOD prior to his/her guide. Also, for some cases, though the
funding background is verified by the awards’ committee, reimbursement is not
granted due to rejection either from respective guide or the head. Therefore,
to alleviate the unusable funding verification by the awards’ committee, the
designed concurrency is now made sequential by moving the funding related
activities in the later part of the process.

Dynamic migration of the reimbursement applications already in progress
relieves the applicants from having to start fresh. Also, the process is too simple
to maintain different versions. Therefore, consistent dynamic instance migration
in response to the evolutionary changes are desired. The Yo-Yo algorithm carries
out the consistent token transportation as shown in Fig. 8.

The visualization of the transportation in the given net pair is depicted in Fig.
9. The bottom-up coloring of the old derivation tree is equivalent to successive
folding operations of the marked old net. Again, pattern by pattern top-down
coloring of the new derivation tree is equivalent to unfolding a folded pattern in
the new net and marking it each time. Movement of the color ripple into a leaf
node is equivalent to reaching of a token into an actual place. In this case, the
algorithm terminates when all the transported tokens are placed. Fig. 9 shows
the nets being squeezed and released as they undergo token transportation.

6 Correctness of the Algorithm

This section provides a sketch of the proof of correctness and comments on the
runtime complexity of the Yo-Yo algorithm. A top-down proof is given based on

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 303

Old Net: Folding Step 3 New Net: Transported Final Marking

Fig. 9. Token Transportation Through Yo-Yo Steps

a precondition, which is first outlined below.

Completeness of the Catalog A derivation tree of a arbitrary-sized net is
composed of derivation trees of the primitive patterns. The folding operation
enables us to abstract a bigger net into a single primitive pattern configuration.
Given this folding, derivation trees of primitive patterns which are located at a
lower level of a bigger derivation tree are abstracted as folded leaf non-terminals
in the derivation tree of a pattern located at a higher level. Therefore, a derivation
tree of a primitive pattern can have one or more of the following two types of
leaf non-terminals based on where the pattern is located in the entire tree: (1)
leaves which represent folded lower level patterns. These are tagged as non-leaf
in the catalog, and (2) leaves which are actual places in the entire net. These
are unfolded leaves which are tagged as leaf in the catalog.

Coloring of derivation trees is an encoding scheme under which all places fall
into either of the three color based classes shown in the Table 4.

Table 4. Coloring Scheme for Catalog Patterns

l Type of node ‘Marking Status‘ Execution Status ‘ Color ‘
Folded (non-leaf) Unmarked Not applicable Uncolored
Unfolded (leaf) Unmarked Not applicable Uncolored
Folded (non-leaf) Marked null-executed (just started) Black
Unfolded (leaf) Marked Not applicable Black
Folded (non-leaf) marked full-executed (just completed)| Red
Folded (non-leaf) marked partially-executed Red

304 PNSE’15 — Petri Nets and Software Engineering

Every place in a pattern can belong to one of the three classes provided that
the resultant marking is a valid marking. Every marked place in a valid pattern
marking can be colored black or red. This leads to 6 possible colorings of SEQ
pattern given that there are 3 valid markings of the primitive SEQ pattern. There
are 6 valid markings of the primitive AND pattern which leads to 20 colorings.
Similarly, for 6 valid marking of primitive XOR, there are 12 colorings. Out of
these 38 cases, three cases of AND, and two cases of XOR are not migratable to
any other consistent and valid making in any other pattern as per the correctness
criteria. This gives a total of 33 unique migratable colorings of derivation trees
of all primitive patterns. However, 4 more cases need to be considered as follows.

It can be seen that the six rows of the table have been colored using three
colors. Using six different colors results in a much bigger catalog. It was found
that clubbing the cases reduces the size of the catalog considerably, leaving out
4 extra cases that need to be handled separately. The clubbing is done based on
whether the nodes are marked, and if marked, whether at least one task in the
folded section is done. In the catalog these 4 extra cases are due to pairs 18 and
37, 4 and 36, 5 and 34, 6 and 35. One case in each pair is covered in the above
33 cases. In this way we obtain 37 valid and exhaustive entries in the catalog.

Mappings among this group are given as per the consistency criteria. For
some cases among these 37 cases, there are multiple mappings possible. These
are resolved by yield-based tie-breaker rules as explained previously.

The Correctness Argument First, the algorithm colors the old derivation tree
as per the old net marking, preserving the semantics of derivation tree coloring
as given in Section 4.3. Next, it transports the color from the old top pattern to
the new top pattern. If this step is not possible without violating consistency, the
algorithm terminates. After the transfer, the colors are propagated further down
through the descendant patterns in the new tree following the folding order. The
color transfer iteratively continues until either no pattern can be colored thus,
or till the algorithm terminates on finding the case not migratable. If a case is
migratable, Lemma 1 proves that given the yield compatibility at the roots of
a peer patterns guaranties that consistent color transfer between them leads to
consistent color transfer in the immediate child patterns. To prove that this can
be done repetitively for the entire tree Lemma 2 is used. Lemma 3 proves validity
of each color transfer. As a result, the algorithm is guaranteed to terminate and
produces correct token transportation.

Lemma 1 For a given pattern P’ in the new tree having yield compatible root
with peer pattern P in the old tree, consistent color transfer to P' guaranties to
find consistent coloring of the immediate child patterns of P’.

Proof: Coloring P’ either by modularTransport or localPropagation leads to
coloring of the roots of the child patterns visible to P’. Given the yield compat-
ibility between the roots of P and P’, this color passing either by catalog cases
or localTransport can result in the following variants coloring of a child root
against the root of its peer in the old tree. Let Q' be a direct child pattern of

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 305

P’. Let Q' have peer @ in the old tree. (i) Roots of @ and @' have the same
color (ii) Both have no color, and (iii) One of them is colored and the other is
uncolored. (Note that, if P’ and P are the same patterns, color transfer to P’
follows either case (i) or case (ii)).

In case (i), either one of the catalog mappings or the same color replication
mapping between) and @Q’ is guaranteed to be applicable. Since both of them
are preserve consistency by construction, the lemma applies for this case. In case
(ii), a pattern remains uncolored if either token has moved past it or has not
reached in it yet. In case (iii), the colored root can be either black or red, which
gives us four possibilities. If () is uncolored and the root of)’ is black, the token
has not reached in @, whereas in @’ black color means that is in the source
place indicating that no labeled-transition is fired yet. If the root of @’ is red,
the token is past @), whereas in Q' it is in the sink place just after firing the last
transition in it. The other two possibilities in this case are reverse of the first
two possibilities. Given the yield compatibility between the parent roots, i.e. the
roots of P and P’, it ensures the same relative positioning of @ and Q" with
their respective parent patterns, i.e. they are both either left, right or middle
children. Therefore, when P and P’ are consistently colored, a token before @
and after @’ is a contradiction, which proves case (ii). Similar argument follows
for case (iii) also. In this way consistent transportation for the direct children
can be achieved. Case (i) is handled by modularTransport, case (ii) and the last
two possibilities of case (iii) do not require any coloring action, and the first two
possibilities of case (iii) are handled by localPropagation.

Lemma 2 Let two Yo-Yo compatible derivation trees have patterns P,(Q) in the
old tree and their respective peer patterns P’, Q' in the new tree. Let () be child
of P and Q' is child of P'. Let the roots of P and P’ satisfy yield compatibility.
If P and Q' satisfy Lemma 1, then so do Q' and all of its immediate children.

Proof: The lemma is about a structural property achieved due to Yo-Yo compat-
ibility and folding order that ensures yield compatibility between the roots of
peer patterns extracted from the folding order for coloring at each step of itera-
tion. We use notation Sx to represent the yield sequence of the root of derivation
sub-tree X. Let the transition terminals of peer patterns P and P’ be denoted by
t, (left) and ¢, (right). P and P’ can be either of Sequence or fork-join patterns.
We analysis the case where P is a Sequence and P’ is a fork-join. The other
three cases can be proved similarly. When P is a Sequence and P’ is a fork-join,
P’ has at most six immediate child patterns rooted at its six leaf non-terminals.
These are shown in Fig. 10a as Q};, Q)2, @51, Qhs, Q%1, and Q%,. The term @’
in the lemma refers to each one of them. Similarly, P being a Sequence has three
child patterns @1, Q2 and @3 as shown in Fig. 10b. Since the roots of P and
P’ are yield compatible, Sq,t:9¢,t,Sq; =y {Sq;, Sq1,t=5q;, > Sqy,tvSaqs, Squ, }-
From this, at subtree level we can observe that S, =, Sq/ Sq/,, @ € {1,2,3}.
As each pattern has two transitions, to accommodate four transitions, each of
@1, Q2 and Qs is a hierarchy of two patterns as shown in Fig. 10c or 10d.

Now there are two cases: Q' can be either @}, or Q},. For the first case, P has
subtree as Fig. 10c, and for the second P has subtree as Fig. 10d. In the folding

306 PNSE’15 — Petri Nets and Software Engineering

i ; AN A
tx ty tx ty tilti2 ti3ti4
JAVAN AN N N A
t11t12t13t14 t21t22 t23 124 t31 13233134 ti3 tid ti1 ti2
(a) New (b) OId (c) Qiin old (d) Qi in Old

Fig. 10. Visualization of the subtrees of P’ and P in Lemma 2

order corresponding to the first case, element < Q;1-Q); > precedes element
< Qi2-Q)y >, and for the second case they are swapped. As the coloring follows
the folding order, after every step the visible parts of the nets are composed of
the patterns from the already traversed. In this regard, for the extracted element
< Qij—ng >, the roots of @;; and ng are yield compatible and hence, consistent
color transfer to Q) ; guaranties consistent color transfer to the next level, thereby
proving Lemma 1 for this case. The justification for other combinations of P and
P’ mentioned at the beginning of this argument is skipped due to lack of space.

Lemma 3 Peer to peer color transfer preserves validity pattern of coloring.

Proof: For catalog transfer cases validity is preserved by construction. For same
color replication, validity of the newly produced color is preserved by the correct-
ness of the old pattern coloring and the validity preserving step of the algorithm
(line 3 of modularTransport). For local transportation, validity is preserved by
following the definitions. Therefore, the lemma is proved.

Time Complexity and Brief Comparison As it can be observed from the
algorithm, the asymptotic time complexity of the runtime token transportation
in terms of number of patterns n is linear. This computation does not include
parsing of the workflow specifications, finding out the compatible derivation tree
pairs and the folding order. Therefore, the Yo-Yo approach improves the runtime
migration cost by pushing much of the complexity into one-time schema level
computations and design time catalog construction depending on the grammar.
As compared to history-replay approach, Yo-Yo transportation does not compute
or reproduce history. Transportation via pre-computed mappings among marked
patterns achieves the desired migration.

7 Conclusions and Future Work

The paper developed a novel catalog based dynamic token transportation tech-
nique called Yo-Yo algorithm with the help of contributory concepts such as CWS
specification grammar for block structured WF-nets, derivation trees and their
colorings, peer patterns, Yo-Yo compatibility, catalog based transportation, and
folding and unfolding of hierarchically organized patterns. The algorithm uses
the ready-made consistent and valid migration solutions from the token trans-
portation catalog repetitively to achieve correct transportation for non-primitive
bigger nets. Also, immediately non-migratable markings are automatically iden-
tified by the algorithm due to the non-existence of the corresponding entries in

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 307

the catalog. We supplemented the discussion on the algorithm with an example
realistic situation and also provided the sketch of the proof of correctness. We
plan to integrate an implementation of this algorithm in the workflow engine
described in [17]. We aim to generalize the approach to handle replacement,
removal, addition and swapping of tasks.

References

10.

11.

12.

13.

14.

15.

16.

17.

. van der Aalst, W.M.: The application of petri nets to workflow management.

Journal of circuits, systems, and computers 8(01) (1998)

Pradhan, A., Joshi, R.K.: Token transportation in petri net models of workflow
patterns. In: 7th India Software Engineering Conference, India, 2014. (2014)
Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proceedings of conference on Organizational computing systems, ACM (1995)
Ellis, C.A., Keddara, K.: A workflow change is a workflow. In: Business Process
Management, Models, Techniques, and Empirical Studies, Springer-Verlag (2000)
van der Aalst, W.M.: Exterminating the dynamic change bug: A concrete approach
to support workflow change. Information Systems Frontiers 3(3) (2001)

Sun, P., Jiang, C.: Analysis of workflow dynamic changes based on petri net.
Information and Software Technology 51(2) (2009)

Cicirelli, F., Furfaro, A., Nigro, L.: A service-based architecture for dynamically
reconfigurable workflows. Journal of Systems and Software 83(7) (2010)
Agostini, A., Michelis, G.D.: Improving flexibility of workflow management sys-
tems. In: Business Process Management: Models, Techniques, and Empirical Stud-
ies. LNCS 1806, Springer (2000)

van der Aalst, W.M., Basten, T.: Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science 270(1) (2002)
Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541-580

Morita, K., Watanabe, T.: The legal firing sequence problem of petri nets with
state machine structure. In: Circuits and Systems, 1996. ISCAS’96., Connecting
the World., 1996 IEEE International Symposium on. Volume 3., IEEE (1996) 64-67
Jordan, D.; Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11 (2007)

Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: Business process management. Springer (2008)

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3) (2008)

Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1) (2003)

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering 68(9) (2009) 793-818

Pradhan, A., Joshi, R.K.: Architecture of a light-weight non-threaded event ori-
ented workflow engine. In: The 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, India, 2014. (2014) 342-345

